| 
 | 2021
		
		  J. Tu, H. Li, X. Yan, M. Ren, Y. Chen, M. Liang, E. Bitar, E. Yumer and  R. UrtasunExploring Adversarial Robustness of Multi-Sensor Perception Systems in Self Driving [pdf] 
 In Conference on Robot Learning (CoRL), London UK, November 2021
   S. Segal, N. Kumar, S. Casas, W. Zeng, M. Ren, J. Wang, and  R. UrtasunJust Label What You Need: Fine-Grained Active Selection for Perception and Prediction through Partially Labeled Scenes [pdf] 
 In Conference on Robot Learning (CoRL), London UK, November 2021
   A. Cui, A. Sadat, S. Casas, R. Liao,  R. UrtasunLookOut: Diverse Multi-Future Prediction and Planning for Self-Driving [pdf]  (oral)
 In International Conference on Computer Vision  (ICCV), October 2021
   J. Tu, T. Wang, J. Wang, S. Manivasagam, M. Ren and  R. UrtasunAdversarial Attacks On Multi-Agent Communication [pdf] 
 In International Conference on Computer Vision  (ICCV), October 2021
   Y. Xiong, M. Ren, W. Zeng,  R. UrtasunSelf-Supervised Representation Learning from Flow Equivariance [pdf] 
 In International Conference on Computer Vision  (ICCV), October 2021
 
   K. Luo, S. Casas, R. Liao, X. Yan, Y. Xiong, W. Zeng  and  R. UrtasunSafety-Oriented Pedestrian Motion and Scene Occupancy Forecasting  [pdf] 
 In International Conference on Intelligent Robots and Systems  (IROS), Prague, Check Republic, October 2021
   Y. Wang, B. Yang, R. Hu, M. Liang,  and  R. UrtasunPLUME: Efficient 3D Object Detection from Stereo Images [pdf] 
 In International Conference on Intelligent Robots and Systems  (IROS), Prague, Check Republic, October 2021
   A. Sadat, S. Segal, S. Casas, J. Tu, B. Yang,  R. Urtasun  and E. Yumer Diverse Complexity Measures for Dataset Curation in Self-driving [pdf] 
 In International Conference on Intelligent Robots and Systems  (IROS), Prague, Check Republic, October 2021
   Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam, S. Xue, E. Yumer  R. UrtasunGeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [pdf]  (Finalist Best Paper Award)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021
   S. Casas, A. Sadat and  R. UrtasunMP3: A Unified Model to Map, Perceive, Predict and Plan  [pdf]  (Finalist Best  Paper Award)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021
   J. Martinez, J. Shewakramani, T. Wei Liu, A. Barsan, W. Zeng, and  R. UrtasunPermute, Quantize, and Fine-tune: Efficient Compression of Neural Networks  [pdf]  (oral)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021
   J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren,  R. UrtasunAdvSim: Generating Safety-Critical Scenarios for Self-Driving Vehicles [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021
   Z. Yang, S. Wang, S. Manivasagam, Z. Huang, W-C. Ma, X. Yan, E. Yumer  and  R. UrtasunS3: Neural Shape, Skeleton, and Skinning Fields for 3D Human Modeling [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021
   S. Suo, S. Regalado, S. Casas and  R. UrtasunTrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021
   S. Tan, K. Wong, S. Wang, S. Manivasagam, M. Ren  and  R. UrtasunSceneGen: Learning to Generate Realistic Traffic Scenes  [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021
   J. Phillips, J. Martinez, I. A. Bârsan, S. Casas, A. Sadat  and  R. UrtasunDeep Multi-Task Learning for Joint Localization, Perception, and Prediction [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, June 2021
   B. Wei*, M. Ren*, W. Zeng, M. Liang, B. Yang  and R. UrtasunPerceive, attend, and drive: Learning spatial attention for safe self-driving [pdf] 
 In International Conference on Robotics and Automation (ICRA), Xian, China, May 2021
   A. J. Yang, C. Cui, I. A. Barsan,  R. Urtasun and S. Wang Asynchronous Multi-View SLAM [pdf] 
 In International Conference on Robotics and Automation (ICRA), Xian, China, May 2021
   J. Liu, W. Zeng, R. Urtasun and E. YumerDeep Structured Reactive Planning [pdf] 
 In International Conference on Robotics and Automation (ICRA), Xian, China, May 2021
 R. Liao, R. Urtasun and R. ZemelPAC-Bayesian Approach to Generalization Bounds for Graph Neural Networks [pdf] 
 In International Conference on Learning Representations (ICLR), Vienna, Austria, May 2021
 X. Zeng, R. Urtasun, R. Zemel, S. Fidler and R. LiaoNP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation[pdf] 
 In Arxiv preprint, arXiv:2106.13435, June 2021
   B. Yang, M. Bai, M. Liang, W. Zeng  and  R. UrtasunAuto4D: Learning to Label 4D Objects from Sequential Point Clouds [pdf] 
 In Arxiv preprint, arXiv:2101.06586, Jan 2021
   N. Homayounfar, J. Liang, W.-C. Ma  R. UrtasunVideoClick: Video Object Segmentation with a Single Click [pdf] 
 In Arxiv preprint, arXiv:2101.06545, Jan 2021
   M. Bai, S. Wang, K. Wong, E. Yumer  and  R. UrtasunNon-parametric Memory for Spatio-Temporal Segmentation of Construction Zones for Self-Driving [pdf] 
 In Arxiv preprint, arXiv:2101.06865, Jan 2021
   S. Duggal, Z. Wang, W-C Ma, S. Manivasagam, J. Liang, S. Wang  and  R. UrtasunSecrets of 3D Implicit Object Shape Reconstruction in the Wild [pdf] 
 In Arxiv preprint, arXiv:2101.06860, Jan 2021
   W. Zeng, Y. Xiong  and  R. UrtasunNetwork Automatic Pruning: Start NAP and Take a Nap [pdf] 
 In Arxiv preprint, arXiv:2101.06608, Jan 2021
   J. Wang, M. Ren, I. Bogunovic, Y. Xiong  and  R. UrtasunCost-Efficient Online Hyperparameter Optimization [pdf] 
 In Arxiv preprint, arXiv:2101.06590, Jan 2021
 2020
						
						D. Frossard, S. Suo, S. Casas, J. Tu and  R. Urtasun StrObe: Streaming Object Detection from LiDAR Packets [pdf] 
 In Conference on Robot Learning (CoRL), Cambridge, Massachusetts, US, November 2020
 S. Segal, E. Kee, W. Luo, A. Sadat, E. Yumer and  R. Urtasun Universal Embeddings for Spatio-Temporal Tagging of Self-Driving Logs [pdf]  (oral)
 
 In Conference on Robot Learning (CoRL), Cambridge, Massachusetts, US, November 2020
 Z. Yang, S. Manivasagam, M. Liang, B. Yang, W-C. Ma and  R. Urtasun Recovering and Simulating Pedestrians in the Wild [pdf] 
 In Conference on Robot Learning (CoRL), Cambridge, Massachusetts, US, November 2020
 M. Shah, Z. Huang, A. Laddha, M. Langford, B. Barber, S. Zhang, C. Vallespi-Gonzalez and  R. Urtasun LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar Fusion [pdf] 
 In Conference on Robot Learning (CoRL), Cambridge, Massachusetts, US, November 2020
 N. Vadivelu, M. Ren, J. Tu, J. Wang and  R. Urtasun Learning to Communicate and Correct Pose Errors [pdf] 
 In Conference on Robot Learning (CoRL), Cambridge, Massachusetts, US, November 2020
  Y. Xiong, M. Ren  and  R. UrtasunLoCo: Local Contrastive Representation Learning [pdf] 
 In Neural Information Processing Systems (NeurIPS), Vancouver, Canada, December 2020
  S. Biswas, J. Liu, K. Wong, S. Wang   and  R. UrtasunMuSCLE: Multi Sweep Compression of LiDAR using Deep Entropy Models [pdf] 
 In Neural Information Processing Systems (NeurIPS), Vancouver, Canada, December 2020
  J. Martinez, S. Doubov, J. Fan, I. A. Barsan, S. Wang, G. Mattyus  and  R. UrtasunPit30M: A Benchmark for Global Localization in the Age of Self-Driving Cars [pdf coming soon]  (Finalist Best Applicaton Paper Award)
 In International Conference on Intelligent Robots and Systems  (IROS), Las Vegas, Nevada, US, November 2019
  S. Casas, C. Gulino, S. Su  and  R. UrtasunThe Importance of Prior Knowledge in Precise Multimodal Prediction [pdf]  (oral)
 In International Conference on Intelligent Robots and Systems  (IROS), Las Vegas, Nevada, US, November 2019
  L.  Li, B. Yang, M. Liang, W. Zeng, M. Ren, S. Segal  and  R. UrtasunEnd-to-end Contextual Perception and Prediction with Interaction Transformer  [pdf]  (oral)
 In International Conference on Intelligent Robots and Systems  (IROS), Las Vegas, Nevada, US, November 2019
  X. Qi, Z. Liu, R. Liao, P. H. S. Torr, R. Urtasun and J. JiaGeoNet++: Iterative Geometric Neural Network with Edge-Aware Refinement for Joint Depth and Surface Normal Estimation [pdf] 
 In Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2020
  T-H. Wang, S. Manivasagam, M. Liang, B. Yang, W. Zeng and  R. Urtasun V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction [pdf]  (oral)
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
  M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng and  R. Urtasun Learning Lane Graph Representations for Motion Forecasting [pdf]  (oral)
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
  W-C. Ma, S. Wang, J. Gu, S. Manivasagam, A. Torralba and  R. Urtasun Deep Feedback Inverse Problem Solver [pdf]  (spotlight)
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
  J. Gu, W-C. Ma, S. Manivasagam, W. Zeng, Z. Wang, Y. Xiong, Hao Su and  R. Urtasun Weakly-supervised 3D Shape Completion in the Wild [pdf]  (spotlight)
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
 A. Sadat*, S. Casas*, M. Ren, X. Wu, P, Dhawan and R. Urtasun Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable Semantic Representations [pdf] 
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
 W. Zeng, S. Wang, R. Liao, Y. Chen, B. Yang  R. Urtasun DSDNet: Deep Structured self-Driving Network [pdf] 
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
 S. Casas*, C. Gulino*, S. Suo*, K. Luo, R. Liao and   R. Urtasun Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [pdf] 
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
 K. Wong, Q. Zhang, M. Liang, B. Yang, R. Liao, A. Sadat and R. Urtasun Testing the Safety of Self-driving Vehicles by Simulating Perception and Prediction [pdf] 
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
 N. Homayounfar, Y. Xiong, J. Liang, W-C. Ma and  R. Urtasun LevelSet R-CNN: A Deep Variational Method for Instance Segmentation [pdf] 
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
 B. Yang*, R. Guo*, M. Liang, S. Casasn and R. Urtasun RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [pdf] 
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
 J. Liu, S. Wang, W-C. Ma, M. Shah, R. Hu, P. Dhawan and  R. Urtasun Conditional Entropy Coding for Efficient Video Compression [pdf coming soon] 
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
 Z. Yang, Y. Xu, H. Xue, Z. Zhang,  R. Urtasun, Liwei Wang, Stephen Lin and Han Hu Dense RepPoints: Representing Visual Objects with Dense Point Sets [pdf] 
 In European Conference in Computer Vision (ECCV), Glasgow, Scottland, August 2020
   Q. Sykora, M. Ren  and  R. UrtasunMulti-Agent Routing Value Iteration Network [pdf]  (oral)
 In  International Conference in Machine Learning (ICML), Viena, Austria,  July 2020
    C. H. Lim   R. Urtasun and E. Yumer Hierarchical Verification for Adversarial Robustness [pdf]  (oral)
 In  International Conference in Machine Learning (ICML), Viena, Austria,  July 2020
   S. Manivasagam, S. Wang, K. Wong, W. Zeng, B. Yang, S. Tan, M. Sazanovich, W.C. Ma  and  R. UrtasunLidarSIM: Realistic LiDAR Simulation by Leveraging the Real World [pdf]  (oral)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, June 2020
   L. Huang, S. Wang, K. Wong, J. Liu  and  R. UrtasunOctSqueeze: Octree-Structured Entropy Model for LiDAR Compression [pdf]  (oral)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, June 2020
   J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du, F. Cheng  and  R. UrtasunPhysically Realizable Adversarial Examples for LiDAR Object Detection [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, June 2020
   M. Liang*, B. Yang*, W. Zeng, Y. Chen, R. Hu, S. Casas  and  R. UrtasunPnPNet: End-to-End Perception and Prediction with Tracking in the Loop [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, June 2020
   J. Liang, N. Homayounfar, W.C. Ma, Y. Xiong, R. Hu and  R. UrtasunPolyTransform: Deep Polygon Transformer for Instance Segmentation [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, June 2020
   S. Casas, C. Gulino, R. Liao  and  R. UrtasunSpatially-Aware Graph Neural Networks for Relational Behavior Forecasting from Sensor Data [pdf]  (oral)
 In International Conference on Robotics and Automation (ICRA), Paris, France, May 2020
 2019
		
		
		 R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D. Duvenaud, R. Urtasun and R. ZemelEfficient Graph Generation with Graph Recurrent Attention Networks [pdf] 
 In Neural Information Processing Systems (NeurIPS), Vancouver, Canada, December 2019
  K. Wong, S. Wang, M. Ren, M. Liang  and  R. Urtasun Identifying Unknown Instances for Autonomous Driving [pdf]  (spotlight)
 In Conference on Robot Learning (CoRL), Osaka, Japan, November 2019
  A. Jain, S. Casas, R. Liao, Y. Xiong, S. Feng, S. Segal  and  R. Urtasun Discrete Residual Flow for Probabilistic Pedestrian Behavior Prediction [pdf]  (spotlight)
 In Conference on Robot Learning (CoRL), Osaka, Japan, November 2019
   Y. Xiong*, M. Ren*, R. Liao, K. Wong  and  R. UrtasunDeformable Filter Convolution for Point Cloud Reasoning [pdf] 
 In Arxiv preprint, arXiv:1907.13079, July 2019
   A. Sadat*, M. Ren*, A. Pokrovsky, Y. C. Lin, E. Yumer and  R. UrtasunJointly Learnable Behavior and Trajectory Planning for Self-Driving Vehicles [pdf]  (oral)
 In International Conference on Intelligent Robots and Systems  (IROS), Macau, China, November 2019
  W.C Ma*, I. Tartavull*, I. A. Barsan*, S. Wang*, M. Bai, G. Mattyus, N. Homayounfar, S. K. Lakshmikanth, A. Pokrovsky and  R. UrtasunExploiting Sparse Semantic HD Maps for Affordable Localization [pdf]  (oral)
 In International Conference on Intelligent Robots and Systems  (IROS), Macau, China, November 2019
   J. Liu, S. Wang  and  R. UrtasunDeep Stereo Image Compression [pdf]  (oral)
 In International Conference on Computer Vision  (ICCV), Seoul, Korea, October 2019
   N. Homayounfar*, J. Liang*, W. C. Ma, J. Fan, X. Wu and  R. UrtasunDAGMapper: Learning to Map by Discovering Lane Topology [pdf] 
 In International Conference on Computer Vision  (ICCV), Seoul, Korea, October 2019
   S. Duggal, S. Wang, W. C. Ma, R. Hu and  R. UrtasunDifferentiable Deep PatchMatch for Efficient Stereo Matching [pdf] 
 In International Conference on Computer Vision  (ICCV), Seoul, Korea, October 2019
   Y. Chen, M. Liang, B. Yang and  R. UrtasunLearning Joint 2D-3D Representations for Depth Completion [pdf] 
 In International Conference on Computer Vision  (ICCV), Seoul, Korea, October 2019
   X. Zeng, R. Liao, L. Gu, Y. Xiong,  S. Fidler R. UrtasunDMM-Net: Differentiable Mask-Matching Network for Video Instance Segmentation [pdf] 
 In International Conference on Computer Vision  (ICCV), Seoul, Korea, October 2019
  W. Zeng*, W. Luo*, S. Suo, A. Saddat, B. Yang, S. Casas and  R. UrtasunEnd-to-end Interpretable Neural Motion Planner [pdf]  (oral)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, June 2019
  Y. Xiong*, R. Liao*, H. Zhang*, R. Hui, E. Yumer and  R. UrtasunUPSNet: A Unified Panoptic Segmentation Network [pdf]  (oral)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, June 2019
  W.C. Ma, S. Wang, R. Hu, Y. Xiong and  R. UrtasunDeep Structured Scene Flow [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, June 2019
  D. Chen, R. Liao, S. Fidler and  R. UrtasunDARNet: Deep Active Ray Network for Building Segmentation [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, June 2019
  M Liang*, B. Yang*, Y. Chen, R. Hui and  R. UrtasunMulti-Task Multi-Sensor Fusion for 3D Object Detection [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, June 2019
  X. Wei*, S. Wang*, J. Martinez, A. Barsan and  R. UrtasunLearning to Localize through Compressed Binary Maps [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, June 2019
  J. Liang*, N. Homayounfar*, S. Wang, W. C. Ma and  R. UrtasunConvolutional Recurrent Network for Road Boundary Extraction [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, California, June 2019
 D. Frossard, E. Kee and  R. UrtasunDeepSignals: Predicting Intent of Drivers Through Visual Attributes [pdf] 
 In International Conference on Robotics and Automation (ICRA), Montreal, Canada, May 2019
 R. Liao, Z. Zhao,  R. Urtasun and R. ZemelLanczosNet: Multi-Scale Deep Graph Convolutional Networks [pdf] 
 In International Conference on Learning Representations, (ICLR), New Orleans, May 2019
 C. Zhang, M. Ren and  R. UrtasunGraph HyperNetworks for Neural Architecture Search [pdf] 
 In International Conference on Learning Representations, (ICLR), New Orleans, May 2019
 M. T Law, J. Snell, A.Farahmand,   R. Urtasun and R. ZemelDimensionality Reduction for Representing the Knowledge of Probabilistic Models [pdf] 
 In International Conference on Learning Representations, (ICLR), LNew Orleans, May 2019
 2018
		
		L. Zhang, G. Rosenblatt, E. Fetaya, R. Liao, W. E Byrd, R. Urtasun and R. ZemelNeural Guided Constraint Logic Programming for Program Synthesis [pdf] 
 In Neural Information Processing Systems (NeurIPS), Montreal, Canada, December 2018
  S. Casas, W. Luo  and  R. Urtasun IntentNet: Learning to Predict Intention from Raw Sensor Data [pdf] 
 In Conference on Robot Learning (CoRL), Zurich, Switzerland, October 2018
  A. Barsan, S. Wang,   A. Pokrovsky and  R. Urtasun Learning to Localize Using a LiDAR Intensity Map [pdf] 
 In Conference on Robot Learning (CoRL), Zurich, Switzerland, October 2018
  B. Yang, M. Liang  and  R. Urtasun HDNET: Exploiting HD Maps for 3D Object Detection [pdf] 
 In Conference on Robot Learning (CoRL), Zurich, Switzerland, October 2018
  M. Bai, G. Mattyus, N. Homayounfar, S. Wang, S. Kowshika Lakshmikanth and  R. Urtasun Deep Multi-Sensor Lane Detection [pdf] 
 In  International Conference on Intelligent Robots (IROS), Madrid, Spain,  October 2018
  M. Liang, B. Yang, S. Wang and  R. Urtasun Deep Continuous Fusion for Multi-Sensor 3D Object Detection [pdf] 
 In European Conference in Computer Vision (ECCV), Munich, Germanh, September 2018
  J. Liang and  R. Urtasun End-to-End Deep Structured Models for Drawing Crosswalks [pdf] 
 In European Conference in Computer Vision (ECCV), Munich, Germanh, September 2018
   W. Ma, H. Chu, B. Zhou,  R. Urtasun and A. Torralba Single Image Intrinsic Decomposition Without a Single Intrinsic Image [pdf] 
 In European Conference in Computer Vision (ECCV), Munich, Germanh, September 2018
   C. Zhang, W. Luo and  R. Urtasun Efficient Convolutions for Real-Time Semantic Segmentation of 3D Point Clouds [pdf] 
 In International Conference on 3D Vision (3DV), Verona, Italy,  September 2018
   M. Teichmann, M. Weber, M. Zollner, R. Cipolla and  R. Urtasun MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving [pdf]  (best poster award)
 In Intelligent Vehicle Symposium (IV), Changshu, China,  June 2018
  R. Liao, Y. Xiong, E. Fetaya, L. Zhang, K. Yoon, X. Pitkow,   R. Urtasun and R. ZemelReviving and Improving Recurrent Back-Propagation [pdf]  (oral)
 In  International Conference in Machine Learning (ICML), Stockholm, Sweeden,  July 2018
  M. Ren, W. Zeng, B. Yang and    R. Urtasun Learning to Reweight Examples for Robust Deep Learning [pdf]  (oral)
 In  International Conference in Machine Learning (ICML), Stockholm, Sweeden,  July 2018
  W. Luo, B. Yang and  R. Urtasun Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net [pdf]  (oral)
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, US, June 2018
  S. Wang, S. Suo, W.C. Ma, A. Pokrovsky and  R. Urtasun Deep Parametric Continuous Convolutional Neural Networks [pdf]  (spotlight)
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, US, June 2018
  M Ren, A. Pokrovsky, B. Yang  and  R. Urtasun SBNet: Sparse Blocks Network for Fast Inference [pdf]  (spotlight)
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, US, June 2018
 D. Marcos, D. Tuia, B. Kellenberger, L. Zhang, M. Bai, R. Liao and  R. Urtasun Learning deep structured active contours end-to-end [pdf]  (spotlight)
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, US, June 2018
  B. Yang, W. Luo and  R. Urtasun PIXOR: Real-time 3D Object Detection from Point Clouds [pdf] 
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, US, June 2018
  N. Homayounfar, W. C. Ma, S. K. Lakshmikanth and  R. Urtasun Hierarchical Recurrent Attention Networks for Structured Online Maps [pdf] 
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, US, June 2018
  G. Mattyus and  R. Urtasun Matching Adversarial Networks [pdf] 
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, US, June 2018
  X. Qi, R. Liao, Z. Liu,  R. Urtasun and J. Jia GeoNet: Geometric Neural Network for Joint Depth and Surface Normal Estimation[pdf] 
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, US, June 2018
  H. Chu, W.C. Ma, K. Kundu, R. Urtasun and S. Fidler SurfConv: Bridging 3D and 2D Convolution for RGBD Images[pdf] 
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, Utah, US, June 2018
 D. Frossard and  R. Urtasun End-To-End Learning of Multi-Sensor 3D Tracking by Detection[pdf] 
 In International Conference on Robotics and Automation (ICRA), Brisbane, Australia, May 2018
 2017
		
		A. Gomez, M. Ren, R. Urtasun and R. GrosseThe Reversible Residual Network: Backpropagation Without Storing Activations [pdf] 
 In Neural Information Processing Systems (NIPS), Long Beach, California, December 2017
 E. Triantafillou, R. Zemel and R. Urtasun Few-Shot Learning Through an Information Retrieval Lens [pdf] 
 In Neural Information Processing Systems (NIPS), Long Beach, California, December 2017
 X. Qi, R. Liao, J. Ya, S. Fidler and R. Urtasun3D Graph Neural Networks for RGBD Semantic Segmentation [pdf]  (oral)
 In International Conference on Computer Vision (ICCV), Venice, Italy, October 2017
 B. Dai, D. Lin,  R. Urtasun  and S. Fidler Towards Diverse and Natural Image Descriptions via a Conditional GAN [pdf]  (oral)
 In International Conference on Computer Vision (ICCV), Venice, Italy, October 2017
 S. Wang, M. Bai, G. Mattyus, H. Chu, W. Luo, B. Yang, J. Liang, J. Cheverie, S. Fidler and R. UrtasunTorontoCity: Seeing the World with a Million Eyes [pdf]  (spotlight)
 In International Conference on Computer Vision (ICCV), Venice, Italy, October 2017
 S. Liu, J. Ya, S. Fidler and R. UrtasunSequential Grouping Networks for Instance Segmentation [pdf] 
 In International Conference on Computer Vision (ICCV), Venice, Italy, October 2017
 S. Zhu, C. Loy, D. Ling,   R. Urtasun  and S. Fidler Be Your Own Prada: Fashion Synthesis with Structural Coherence [pdf] 
 In International Conference on Computer Vision (ICCV), Venice, Italy, October 2017
 R. Li, M. Tapaswi, R. Liao, J. Jia,  R. Urtasun and S. FidlerSituation Recognition with Graph Neural Networks [pdf] 
 In International Conference on Computer Vision (ICCV), Venice, Italy, October 2017
 G. Mattyus, W. Luo and   R. UrtasunDeepRoadMapper: Extracting Road Topology from Aerial Images [pdf] 
 In International Conference on Computer Vision (ICCV), Venice, Italy, October 2017
 N. Merkle, W. Luo, S. Auer, R. Muller and   R. UrtasunExploiting Deep Matching and SAR Data for the Geo-Localization Accuracy Improvement of Optical Satellite Images [pdf] 
 In Remote Sensing  2017
 M. Law, R. Urtasun and R. ZemelDeep Spectral Clustering Learning  [pdf]   (oral)
 In Internatinal Conference in Machine Learning (ICML), Sydney, Australia, August 2017
  L. Castrejon,  K. Kundu,  R. Urtasun and S. FidlerAnnotating Object Instances with a Polygon-RNN [pdf]  (oral, best paper runner up award)
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, US, July 2017
  M. Bai and  R. UrtasunDeep Watershed Transform for Instance Segmentation [pdf] 
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, US, July 2017
  N. Homayounfar, S. Fidler and R. UrtasunSports Field Localization via Deep Structured Models [pdf] 
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, US, July 2017
  M. Law, Y. Yu, R. Urtasun, R. Zemel and E. XingEfficient Multiple Instance Metric Learning using Weakly Supervised Data [pdf] 
 In  Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, US, July 2017
  X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler and R. Urtasun3D Object Proposals using Stereo Imagery for Accurate Object Class Detection [pdf] 
 In Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2017
 M. Ren, R. Liao,  R. Urtasun, F. H. Sinz and R. ZemelNormalizing the Normalizers: Comparing and Extending Network Normalization Schemes [pdf] 
 In International Conference on Learning Representations, (ICLR), Toulon, France, May 2017
 W. Ma, S. Wang, M. A. Brubaker, S. Fidler and  R. UrtasunFind Your Way
		by Observing the Sun and Other Semantic Cues [pdf]
 In International Conference on Robotics and Automation  (ICRA), Singapore, May 2017
 W. Zeng, W. Luo, S. Fidler and  R. Urtasun Efficient Summarization with Read-Again and Copy Mechanism [pdf] 
 In Arxiv preprint, arXiv:1611.03382, Nov 2016
 H. Chu, R. Urtasun and S. FidlerSong From PI: A Musically Plausible Network for Pop Music Generation [pdf] 
 In Arxiv preprint, arXiv:1611.03477, Nov 2016
 2016
		
		
		S. Wang, S. Fidler and  R. UrtasunProximal Deep Structured Models [pdf]
 In Neural Information Processing Systems (NIPS), Barcelona, Spain, December 2016
 R. Liao, A. Schwing, R. Zemel and  R. UrtasunLearning Deep Parsimonious Representations [pdf]
 In Neural Information Processing Systems (NIPS), Barcelona, Spain, December 2016
 W. Luo, Y. Li,   R. Urtasun and R. ZemelUnderstanding the Effective Receptive Field in Deep Convolutional Neural Networks [pdf]
 In Neural Information Processing Systems (NIPS), Barcelona, Spain, December 2016
 M. Bai, W. Luo, K. Kundu and R. UrtasunExploiting Semantic Information and Deep Matching for Optical Flow  [pdf]  
 In European Conference in Computer Vision (ECCV), Amsterdam, Netherlands, October 2016
 H. Chu, S. Wang, R. Urtasun and S. FidlerHouseCraft: Building Houses from Rental Ads and Street Views  [pdf]  
 In European Conference in Computer Vision (ECCV), Amsterdam, Netherlands, October 2016
 T. Hazan, A. Schwing and R. UrtasunBlending Learning and Inference in Conditional Random Fields  [pdf]  
 In Journal of Machine Learning Research (JMLR), 2016
 Y. Song, A. Schwing, R. Zemel and R. UrtasunTraining Deep Neural Networks via Direct Loss Minimization  [pdf]   (oral)
 In Internatinal Conference in Machine Learning (ICML), New York, US, June 2016
 W. Luo, A. Schwing and R. UrtasunEfficient Deep Learning for Stereo Matching [pdf] [project/Code]  (spotlight)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, US, June 2016
 M. Tapaswi, Y. Zhu, R. Stiefelhagen, R. Urtasun and S. FidlerMovieQA: Understanding Stories in Movies through Question-Answering [pdf][Benchmark]  (spotlight)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, US, June 2016
 G. Mattyus, S. Wang, S. Fidler and R. UrtasunHD Maps: Fine-grained Road Segmentation by Parsing Ground and Aerial Images [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, US, June 2016
 X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. UrtasunMonocular 3D Object Detection for Autonomous Driving [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, US, June 2016
 Z. Zhang, S. Fidler and R. UrtasunInstance-Level Segmentation with Deep Densely Connected MRFs [pdf] 
 In Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, US, June 2016
 I. Vendov, R. Kiros, S. Fidler and R. UrtasunOrder-Embeddings of Images and Language [pdf]  (oral)
 In International Conference on Learning Representations, (ICLR), San Juan, Puerto Rico, May 2016
 Y. Wang, M. Brubaker and R. UrtasunSequential Inference for Deep Gaussian Process [pdf] 
 In International Conference on Artificial Intelligence and Statistics (AISTATS), Cadiz, Spain, May 2016
 M. Brubaker, A. Geiger and  R. UrtasunMap-Based Probabilistic Visual Self-Localization [pdf] 
 In Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2016
 R. Mottaghi, S. Fidler, A. Yuille,  R. Urtasun and Devi ParikhHuman-Machine CRFs for Identifying Bottlenecks in Scene Understanding [pdf] 
 In Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2016
 2015
		
				
						
						P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N. Enright Jerger R. Urtasun and A. MoshovosReduced-Precision Strategies for Bounded Memory in Deep Neural Nets [pdf] 
 In Arxiv preprint, arXiv:1511.05236, Nov 2015
 X. Chen, K. Kundu, Y. Zhu,  A. Berneshawi, H. Ma, S. Fidler and R. Urtasun3D Object Proposals for Accurate Object Class Detection [pdf] 
 In Neural Information Processing Systems (NIPS), Montreal, Canada, December 2015
 R. Kiros, Y. Zhu, R. Salakhutdinov, R. Zemel, A. Torralba,    R. Urtasun and S. FidlerSkip-Thought Vectors [pdf][project/Code] 
 In Neural Information Processing Systems (NIPS), Montreal, Canada, December 2015
 S. Wang, S. Fidler and R. Urtasun Lost Shopping! Monocular Localization in Large Indoor Spaces [pdf]  (oral)
 In International Conference on Computer Vision (ICCV), Santiago, Chile, December 2015
 Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov,   R. Urtasun, A. Torralba and S. FidlerAligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books [pdf][project page]  (oral)
 In International Conference on Computer Vision (ICCV), Santiago, Chile, December 2015
 G. Mattyus, S. Wang, S. Fidler and R. Urtasun Enhancing World Maps by Parsing Aerial Images [pdf] 
 In International Conference on Computer Vision (ICCV), Santiago, Chile, December 2015
 P. Lenz, A. Geiger and R. Urtasun FollowMe: Efficient Online Min-Cost Flow Tracking with Bounded Memory and Computation [pdf] 
 In International Conference on Computer Vision (ICCV), Santiago, Chile, December 2015
 Z. Zhang, A. Schwing, S. Fidler and R. Urtasun Monocular Object Instance Segmentation and Depth Ordering with CNNs [pdf] 
 In International Conference on Computer Vision (ICCV), Santiago, Chile, December 2015
 A. Schwing, T. Hazan, M. Pollefeys and  R. UrtasunDistributed Algorithms for Large Scale Learning and  Inference in  Graphical Models [pdf] 
 In Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2015
 A. Schwing and  R. UrtasunFully Connected Deep Structured Networks [pdf] 
 In  arXiv:1503.02351, March 2015
 D. Lin, C. Kong, S. Fidler and  R. UrtasunGenerating Multi-Sentence Lingual Descriptions of Indoor Scenes [pdf]  (oral)
 In British Machine Vision Conference (BMVC), Swansea, Wales,  September 2015
 L. C. Chen, A. Schwing, A. Yuille and  R. UrtasunLearning Deep Structured Models [pdf]  (oral)
 In International Conference on Machine Learning (ICML), Lille, France,  July 2015
 S. Wang, S.Fidler and  R. UrtasunHolistic 3D Scene Understanding from a Single Geo-tagged Image [pdf]  (oral)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June 2015
 C. Liu, A. Schwing,  K. Kundu,   R. Urtasun and S.FidlerRent3D: Floor-Plan Priors for Monocular Layout Estimation [pdf]  (oral)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June 2015
 Y. Zhu,    R. Urtasun, R. Salakhutdinov and S.FidlersegDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June 2015
 E. Simo,  S. Fidler, F. Moreno-Noguer and   R. Urtasun Neuroaesthetics in Fashion: Modeling the Perception of Beauty [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June 2015
 J. Xu,  A. Schwing  and   R. Urtasun Learning to Segment Under Various Weak Supervisions [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June 2015
 J. Yao,  M. Boben, S. Fidler  and   R. Urtasun Real-Time Coarse-to-fine Topologically Preserving Segmentation [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, June 2015
 J. Yao,  S. Ramalingam, Y. Taguchi, Y. Miki  and   R. Urtasun Estimating Drivable Collision-Free Space from Monocular Video [pdf]
 In Winter Conference on Applications of Computer Vision (WACV), Hawaii,  USA, January 2015
 2014
		
		S. Wang, A. Schwing and  R. UrtasunEfficient Inference of Continuous Markov Random Fields with Polynomial Potentials [pdf]
 In Neural Information Processing Systems (NIPS), Montreal, Canada, December 2014
 J. Zhang, A. Schwing and  R. UrtasunMessage Passing Inference for Large Scale Graphical Models with High Order Potentials [pdf]
 In Neural Information Processing Systems (NIPS), Montreal, Canada, December 2014
 E. Simo, S. Fidler, F. Moreno-Noguer and   R. Urtasun  A High Performance CRF Model for Clothes Parsing [pdf]
 In Asian Conference on Computer Vision (ACCV), Singapore,   November 2014
 K. Yamaguchi, D. McAllester and   R. Urtasun  Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation [pdf][Project/Code]
 In European Conference on Computer Vision (ECCV), Zurich, Switzerland,  September 2014
 Y. Wang, M Brubaker, B. Chaib-draa and   R. Urtasun  Bayesian Filtering with Online Gaussian Process Latent Variable Models [pdf]
 In Conference on Uncertainty in Artificial Intelligence (UAI), Quebec City, Canada,  July 2014
 A. Schwing, T. Hazan, M. Pollefeys and   R. Urtasun  Globally Convergent Parallel MAP LP Relaxation Solver using the Frank-Wolfe Algorithm [pdf]
 In International Conference on Machine Learning (ICML), Beijing, China,  June 2014
 C. Kong,  D. Lin, M. Bansal,  R. Urtasun and S. Fidler  What are you talking about? Text-to-Image Coreference [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 2014
 D. Lin, C. Kong, S. Fidler and   R. UrtasunVisual Semantic Search: Retrieving Videos via Complex Textual Queries [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 2014
 L-C Chen, S. Fidler, A. Yuille and   R. UrtasunBeat the MTurkers: Automatic Image Labeling from Weak 3D Supervision [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 2014
 J. Xu, A. Schwing and   R. UrtasunTell Me What You See and I will Show You Where It Is [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 2014
 R. Mottaghi, X Chen, X Liu, N. Cho, S. Lee, S. Fidler,   R. Urtasun and A. YuilleThe Role of Context for Object Detection and Semantic Segmentation in the Wild [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 2014
 X. Chen, R. Mottaghi, X. Liu,  S. Fidler,   R. Urtasun and A. YuilleDetect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts[pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, USA, June 2014
 S.  Wang, L. Zhang and    R. UrtasunTransductive Gaussian Processes for Image Denoising[pdf]  (oral)
 In International Conference on Computational Photography (ICCP), Santa Clara, California,  May 2014
 2013
						
  		  			  A. Geiger, M. Lauer, C. Wojek, C. Stiller and  R. Urtasun.3D Traffic Scene Understanding from Movable Platforms
 In Pattern Analysis and Machine Intelligence  (PAMI) 2013
 A. Geiger, P. Lenz, C. Stiller and  R. Urtasun.Vision meets Robotics: The KITTI Dataset
 In International Journal of Robotics Research, (IJRR) 2013
 W. Luo, A. Schwing and  R. UrtasunLatent Structured Active Learning [pdf]
 In Neural Information Processing Systems (NIPS), Lake Tahoe, USA, December 2013
 D. Lin,  S. Fidler and  R. UrtasunHolistic Scene Understanding for 3D Object Detection with RGBD cameras [pdf]    (oral)
 In International Conference on Computer Vision (ICCV), Sydney, Australia, December 2013
 A. Schwing, S. Fidler, M. Pollefeys and  R. UrtasunBox In the Box: Joint 3D Layout and Object Reasoning from Single Images [pdf]
 In International Conference on Computer Vision (ICCV), Sydney, Australia, December 2013
 H. Zhang, A. Geiger and  R. UrtasunUnderstanding High-Level Semantics by Modeling Traffic Patterns [pdf]
 In International Conference on Computer Vision (ICCV), Sydney, Australia, December 2013
 J. Zhang, K. Chen, A. Schwing and  R. UrtasunEstimating the 3D Layout of Indoor Scenes and its Clutter from Depth Sensors [pdf]
 In International Conference on Computer Vision (ICCV), Sydney, Australia, December 2013
 M. Brubaker, A. Geiger and  R. Urtasun Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization [pdf]    (oral, Best Paper Runner up Award)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA, June 2013
 K. Yamaguchi, D. McAllester and  R. UrtasunRobust Monocular Epipolar Flow Estimation [pdf] (oral)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA, June 2013
 S. Fidler, R. Mottaghi, A. Yuille and  R. UrtasunBottom-up Segmentation for Top-down Detection [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA, June 2013
 S. Fidler, A. Sharma and  R. UrtasunA Sentence is Worth a Thousand Pixels [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA, June 2013
 R. Mottaghi, S. Fidler, J. Yao,   R. Urtasun and D. ParikhAnalyzing Semantic Segmentation Using Human-Machine Hybrid CRFs [pdf]
 In Conference on Computer Vision and Pattern Recognition (CVPR), Portland, USA, June 2013
 2012 
			  			  S. Fidler, S. Dickinson and  R. Urtasun3D Object Detection and Viewpoint Estimation with a Deformable 3D Cuboid Model
			   (spotlight)
 In Neural Information Processing Systems (NIPS), Lake Tahoe, USA, December 2012
 A. Schwing, T. Hazan, M. Pollefeys and  R. UrtasunGlobally Convergent Dual MAP LP Relaxation Solvers using Fenchel-Young Margins
 In Neural Information Processing Systems (NIPS), Lake Tahoe, USA, December 2012
 K. Yamaguchi, T. Hazan, D. McAllester and  R. UrtasunContinuous Markov Random Fields for Robust Stereo Estimation
			    (oral)
 In European Conference on Computer Vision (ECCV), Florence, Italy, October 2012
 A. Schwing and  R. UrtasunEfficient Exact Inference for 3D Indoor Scene Understanding
 In European Conference on Computer Vision (ECCV), Florence, Italy, October 2012
 M. Salzmann and  R. UrtasunBeyond Feature Points: Structured Prediction for Monocular Non-rigid 3D Reconstruction
 In European Conference on Computer Vision (ECCV), Florence, Italy, October 2012
 A. Schwing, T. Hazan, M. Pollefeys and  R. UrtasunEfficient Structured Prediction with Latent Variables for General Graphical Models
			    (oral)
 In International Conference on Machine Learning (ICML), Edimburgh, Scotland, June 2012
 A. Geiger, P. Lenz and  R. UrtasunAre we ready for autonomous driving? The KITTI Vision Benchmark Suite [pdf] [project page] (oral)
 In Conference on Computer Vision and Pattern Recognition (CVPR), Providence, USA, June 2012
 J. Yao, S. Fidler and  R. UrtasunDescribing the Scene as a Whole: Joint Object Detection, Scene Classification and Semantic Segmentation
 In Conference on Computer Vision and Pattern Recognition (CVPR), Providence, USA, June 2012
 A. Schwing, T. Hazan, M. Pollefeys and  R. UrtasunEfficient Structured Prediction for 3D Indoor Scene Understanding
 In Conference on Computer Vision and Pattern Recognition (CVPR), Providence, USA, June 2012
 A. Varol, M. Salzmann, P. Fua and  R. UrtasunA Constrained Latent Variable Model
 In Conference on Computer Vision and Pattern Recognition (CVPR), Providence, USA, June 2012
 M. Brubaker, M. Salzmann and  R. UrtasunA Family of MCMC Methods on Implicitly Defined Manifolds
 In International Conference on Artificial Intelligence and Statistics (AISTATS), Gran Canaria, Spain, April 2012
 2011 
			  			  A. Geiger, C. Wojek  and  R. UrtasunJoint 3D Estimation of Objects and Scene Layout
			  			  [pdf]
			  			  [supplementary]
			  			  [video]
 In Neural Information Processing Systems (NIPS), Granada, Spain, December 2011
 A. Yao, J. Gall, L. van Gool  and  R. UrtasunLearning Probabilistic Non-Linear Latent Variable Models for Tracking Complex Activities [pdf]
			  			  [video learning]
			  			  [video humaneva]
			  			  [software]
 In Neural Information Processing Systems (NIPS), Granada, Spain, December 2011
 M. Salzmann and  R. UrtasunPhysically-based Motion Models for 3D Tracking: A Convex Formulation
 In International Conference on Computer Vision (ICCV), Barcelona, Spain, November 2011
 T. Hazan and R. UrtasunApproximated Structured Prediction for Learning Large Scale
			  Graphical Models
 Arxiv 1006.2899, June 2010
 J. Peng, T. Hazan, D. McAllester and  R. UrtasunConvex Max-Product over Compact Sets for Protein Folding  (oral)
 In International Conference in Machine Learning (ICML), Bellevue, Washington, June 2011
 A. Geiger, M. Lauer and  R. UrtasunA generative model for 3D urban scene understanding from movable platforms 
			  			  [pdf]
			  			  [talk]
			  			  [slides]
			  			  [data]
			  			  [software]    (oral)
 In Conference of Computer Vision and Pattern Recognition  (CVPR), Colorado Springs, June 2011
 A. Schwing, T. Hazan, M. Pollefeys and  R. UrtasunDistributed Message Passing for Large Scale Graphical Models [pdf] [software]
 In Conference of Computer Vision and Pattern Recognition  (CVPR), Colorado Springs, June 2011
 A. Shyr, T. Darrell, M. Jordan and  R. UrtasunSupervised Hierarchical Pitman-Yor Process for Natural Scene Segmentation
 In Conference of Computer Vision and Pattern Recognition  (CVPR), Colorado Springs, June 2011
 H. Hamer, J. Gall,  R. Urtasun and L. Van GoolData-Driven Animation of Hand- Object Interaction  (oral)
 In Face and Gesture Recognition  (FGR), Santa Barbara, April 2011
 2010 
							
							A. Kapoor, K. Grauman, R. Urtasun and T. Darrell.Gaussian Processes for Object Categorization
 In International Journal in Computer Vision, (IJCV) 2010
 T. Hazan and  R. UrtasunA Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction
 In Neural Information Processing Systems (NIPS), Vancouver, December 2010
 M. Salzmann and  R. UrtasunImplicitly Constrained Gaussian Process Regression for Monocular Non-Rigid Pose Estimation
 Inn Neural Information Processing Systems (NIPS), Vancouver, December 2010
 T. Kim, G. Shakhnarovich and R. UrtasunSparse coding for learning interpretable spatio-temporal primitivesIn Neural Information Processing Systems (NIPS), Vancouver, December 2010
 A. Geiger, M. Roser and R. Urtasun Efficient Large-Scale Stereo Matching  
	  			   [pdf] [talk] [software]  (oral)
 In Asian Conference in Computer Vision (ACCV), Queenstown, New Zealand, November 2010
 C. M. Christoudias, R. Urtasun, M. Salzmann and T. DarrellLearning to Recognize  Objects from Unseen Modalities 
	  			    [pdf] [project page][software]
 In European Conference in Computer Vision (ECCV), Crete, September 2010
 M. Salzmann and R. UrtasunCombining Discriminative and Generative Methods for 3D Deformable Surface and Articulated Pose Reconstruction [pdf]  [supplementary]   (oral)
 In Conference in Computer Vision and Pattern Recognition (CVPR), San Francisco, June 2010
 A. Shyr, R. Urtasun and M. I. JordanSufficient Dimensionality Reduction for Visual Sequence Classification
 In Conference in Computer Vision and Pattern Recognition (CVPR), San Francisco, June 2010
 M. Salzmann, C. Ek, R. Urtasun and T. DarrellFactorized Orthogonal Latent Spaces
 In International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy, May 2010
   M. Salzmann, C. H. Ek, R. Urtasun and T. Darrell FOLS: Factorized Orthogonal Latent Spaces.
 In Learning Workshop (Snowbird)  Snowbird, Utah, April 2010
 
   M. Salzmann and R. Urtasun A Constrained Combination of Discriminative and Generative Methods.
 In Learning Workshop (Snowbird)  Snowbird, Utah, April 2010
 
 2009 
							N. D. Lawrence and R. Urtasun Non-linear Matrix Factorization with Gaussian Processes 
								  [pdf]  [software]   (oral)
 In International Conference in Machine Learning (ICML), Montreal June 2009
 A. Geiger, R. Urtasun and  T. Darrell Rank Priors for Continuous Non-Linear Dimensionality Reduction 
								  [pdf]  [video]
 In Conference in Computer Vision and Pattern Recognition (CVPR), Miami June 2009
 C. M. Christoudias, R. Urtasun, A. Kapoor and  T. Darrell Co-training with noisy perceptual observations
 In Conference in Computer Vision and Pattern Recognition (CVPR), Miami June 2009
   C. M. Christoudias, R. Urtasun and T. Darrell Bayesian Localized Multiple Kernel 
	  Learning.
 In Learning from Multiple Sources with Applications to Robotics Workshop at 
	  NIPS, Whister, Canada, December 2009
 
   R. Urtasun Non-Parametric Latent Variable Models for Shape and Motion Analysis.
 Invited talk in MIRAGE
	                              Versailles, France, May 2009
 
   N. D. Lawrence and R. Urtasun Non-Linear Matrix Factorization.
 In Learning Workshop (Snowbird) 
	                              Clearwater, Florida, April 2009
 
 R. Urtasun, A. Geiger and T. Darrell Rank Priors for Continuous Non-Linear Dimensionality Reduction.
 In Learning Workshop (Snowbird) 
	                              Clearwater, Florida, April 2009
 
 C. M. Christoudias, R. Urtasun, A. Kapoor and T. Darrell Co-training with Noisy Perceptual Observations.
 In Learning Workshop (Snowbird) 
	                              Clearwater, Florida, April 2009
 
 2008 
							C. M. Christoudias, R. Urtasun and  T. Darrell Multi-View Learning in the Presence of View Disagreement
							  [pdf]  [talk]   (oral)
 In Conference on Uncertainty in Artificial Intelligence (UAI) Helsinki, Finland, July 2008
 R. Urtasun, D. J. Fleet, A. Geiger, J. Popovic, T. Darrell and N. D. Lawrence. Topologically-Constrained Latent Variable Models. 
                            [pdf]  [video] [talk]   (oral)
 In International Conference in Machine 
                          Learning (ICML) Helsinki, Finland, July 2008
 R. Urtasun and 
                            T. DarrellLocal Probabilistic Regression for Activity-Independent Human Pose Inference
 In  Conference in Computer Vision and Pattern Recognition (CVPR) Anchorage, Alaska, June 2008
 M. Salzmann,  R. Urtasun and 
                            P. Fua Local Deformation Models for Monocular 3D Shape Recovery 
                             (oral)
 In  Conference in Computer Vision and Pattern Recognition (CVPR) Anchorage, Alaska, June 2008
  C. M. Christoudias, R. Urtasun and 
                            T. DarrellUnsupervised Distributed Feature Selection for Multi-view Object Recognition
 In  Conference in Computer Vision and Pattern Recognition (CVPR) Anchorage, Alaska, June 2008
 R. Urtasun and T. Darrell Local Probabilistic Regression for Activity-Independent Human Pose Inference.
 In Learning Workshop (Snowbird) 
                              Snowbird, Utah, April 2008
 
 R. Urtasun, A. Quattoni, N. D. Lawrence and T. Darrell Transfering Nonlinear Representations using Gaussian Processes with a Shared Latent Space.
 In Learning Workshop (Snowbird) 
                              Snowbird, Utah, April 2008
 
 
							R. Urtasun, A. Quattoni, N. Lawrence and T. DarrellTransferring Nonlinear Representations using
	Gaussian Processes with a Shared Latent Space
 MIT technical report, 2008
 2007 
                            A. Kapoor, K. Grauman, R. Urtasun and 
                              T. DarrellActive Learning with Gaussian Processes for Object Categorization
 In International Conference in Computer Vision (ICCV) Rio de Janeiro, October 2007
 R. Urtasun and 
                              T. DarrellDiscriminative 
                              Gaussian Process Latent Variable Models for Classification (oral)
 International Conference in Machine 
                              Learning (ICML) Oregon, June 2007
 R. Urtasun,  D. J. Fleet and N. D. Lawrence Modeling human locomotion with topologically constrained latent variable models.
 In ICCV Workshop on Human Motion: Understanding, Modeling, Capture and Animation,
                              Rio de Janeiro, Brazil, October 2007
 
 200620052004 
                            R. Urtasun, P. 
                              Glardon, R. Boulic, D. Thalmann and P. Fua. Style-based 
                              Motion Synthesis.    [pdf]  [video]
 In Computer Graphics Forum (CGF), 
                              Vol. 23, number 4 pp 799-812. December 2004
 R. Urtasun, P. 
                              Fua. 3D 
                              Human Body Tracking using Deterministic Motion Models.
 In European Conference on Computer Vision (ECCV), 
                              Prague, Czech Republic, May 2004
 L.Herda, R. Urtasun, 
                              P. Fua. Hierarchical 
                              Implicit Surface Joint Limits to Constrain Video-Based 
                              Motion Capture.
 In European Conference on Computer Vision (ECCV), 
                              Prague, Czech Republic, May 2004
 R. Urtasun, P. 
                              Fua. 3D 
                              Tracking for Gait Characterization and Recognition.  (oral)
 In Proceeding of the 6th International Conference 
                              on Automatic Face and Gesture Recognition (FGR), 
                              Seoul, Korea, May 2004. IEEE Computer Society.
 
							R. Urtasun M. Salzmann and P. Fua3D Morphing without User Interaction
 EPFL technical report, 2004
 2003 
                            L.Herda, R.Urtasun, 
                              P.Fua, A.Hanson. Automatic 
                              Determination of Shoulder Joint Limits using Quaternion 
                              Field Boundaries.
 International Journal of Robotics Research (IJRR), 
                              22(6): 419 - 436, 2003.
 P. Dokladal, 
                              I. Bloch, M. Couprie, D. Ruijters, R. Urtasun 
                              and L. Garnero. Topologically 
                              Controlled Segmentation of 3D Magnetic Resonance Images 
                              of the Head by using Morphological Operators.
 Pattern Recognition, 36(10):2463 - 2478, 2003.
 200220012000 
						
                        R. UrtasunAutomatic segmentation 
                          of a fix number of markers (apply to the cerebellum 
                          and brainstem)
 Telecom Paris technical report, 2000
 R. UrtasunSegmentation of 
                          a Guinea pig using mathematical morphology
 Telecom Paris technical report, 2000
 R. UrtasunImplementation 
                          of a tool to Visualize Protocol Design and Processing
 Eurecom's technical report, 2000
 | 
 
 
						Prof. Raquel 
                            Urtasun
 
 Address:
 Department of Computer Science
 University of Toronto
 6 King's College Rd
 Toronto, Ontario, M5S 3G4
 Canada
 
 Phone: +1 (416) 946-8482  Email: urtasun (at) cs (dot) toronto (dot) edu
                          Fax: TBD
 
    |