
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 1

Distributed Algorithms for Large Scale
Learning and Inference in Graphical Models

Alexander G. Schwing, Tamir Hazan, Marc Pollefeys, Fellow, IEEE and
Raquel Urtasun, Member, IEEE

Abstract—Over the past few years we have witnessed an increasing popularity in the use of graphical models for applications in
computational biology, computer vision and natural language processing. Despite the large body of work, most existing learning
and inference algorithms can neither cope with large scale problems which require huge amounts of memory and computation,
nor can they effectively parallelize structured learning with a small number of training instances. In this paper, we propose a
family of model-parallel learning and inference algorithms which exploit distributed computation and memory storage to handle
large scale graphical models as well as a small number of training instances. Our algorithms combine primal-dual methods and
dual decomposition to preserve the same theoretical guarantees (and for certain parameter choices the same solution) as if they
were run on a single machine. We demonstrate the capabilities of our algorithms in a wide variety of scenarios, showing the
advantages and disadvantages of model-parallelization.

Index Terms—graphical models, big data, sample parallelism, model parallelism

F

1 INTRODUCTION

MOST real-world applications are structured, i.e.,
they are composed of multiple random vari-

ables which are related. For example, in natural lan-
guage processing, we might be interested in parsing
sentences syntacticly. In computer vision, we might
want to predict the depth of each pixel, or its semantic
category. In computational biology, given a sequence
of proteins (e.g., lethal and edema factors, protective
antigen) we might want to predict the 3D docking of
the anthrax toxin. While individual variables could be
considered independently, it has been demonstrated
that taking dependencies into account improves pre-
diction performance significantly.

Prediction in structured models is typically per-
formed by maximizing a scoring function over the
space of all possible outcomes, an NP-hard task
for general graphical models. Notable exceptions are
graphical models with sub-modular energies or low
tree-width structure where inference is performed
exactly in polynomial time. Unfortunately, most real-
world problems do not belong to this category and
only approximate solutions can be obtained.

A wide variety of approaches have been proposed
to obtain approximate solutions to the general infer-
ence problem, e.g., via sampling [1] or via iterative
algorithms that solve a max-flow problem [2]. While

• A. G. Schwing and R. Urtasun are with the Computer Science
Department, University of Toronto, Canada.
E-mail: see http://alexander-schwing.de

• T.Hazan and M. Pollefeys are with University of Haifa, Israel and
ETH Zurich, Switzerland.

Fig. 1. 283 label disparity map computed from a
12 MPixel stereo pair.

aforementioned approaches generally consider the
problem more globally, message passing approaches
are interesting due to the local structure. While ef-
fective in the case of small inference problems, most
approaches assume that the graphical model and the
involved variables fit into memory. This is an issue
as the size of real-world graphical models is growing
rapidly when operating with “big data.” These days,
cameras for example have several mega-pixels, even
in low-cost cellphones. Holistic approaches on the
other hand aim at solving multiple related tasks,
hence the complexity also grows with the number
of jointly considered problems. But the challenge of
large-scale models is not only related to memory
consumption but also to computational complexity.
Typical message passing algorithms for example scale
with the number of dimensions involved in the largest
function, e.g., they are already inherently quadratic for
graphical models involving pairwise connections.

Learning with these models is typically done in the
context of regularized risk minimization, where a log-
linear model is employed, and a convex surrogate loss

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 2

is optimized. Most learning algorithms have the same
limitations as inference techniques, since they perform
inference for each parameter update step. On the one
hand, max-margin Markov networks (M3Ns) or struc-
tured SVMs (SSVMs) [3], [4] minimize the structured
hinge-loss, and perform a loss-augmented inference
using cutting plane optimization. Conditional random
fields (CRFs) [5] on the other hand, minimize the log-
loss, and thus require the computation of the nor-
malizer of a probability distribution, i.e., the partition
function, during each iteration. Primal-dual methods,
such as [6], [7], have the advantage of interleaving
learning and inference. As a consequence they do not
require convergence of the inference task in order to
update the weights. While this results in reduced com-
putational complexity, they assume, just like CRFs,
SSVMs and M3Ns, that the graphical model and the
messages can be stored on a single computer. More-
over training with mini-batches containing a small
number of training instances is increasingly popular
these days. However, the predominant data-parallel
scheme is not very effective for this setting. This
again limits the applicability of learning algorithms
for large-scale problems and/or small mini-batch size.

To overcome these issues, in this work we propose
a family of learning and inference algorithms which
exploit distributed computation and memory storage
to handle large scale graphical models like the one
involved in the disparity computation illustrated in
Fig. 1. Our algorithms combine primal-dual methods
and dual decomposition to preserve the same theoret-
ical guarantees (and for certain choices of parameters
the same solution) as if they were run on a single
machine. For the learning task we make use of inter-
leaving previously suggested in [6], [7]. All in all the
presented work extends [8], [9] to region graphs and
provides a unified implementation. We demonstrate
the capabilities of our algorithms in a wide variety of
scenarios, showing the advantages and disadvantages
of model-parallelization.

In the remainder, we first review both non-
distributed inference and non-distributed learning al-
gorithms. Afterwards we discuss a dual decomposi-
tion approach for parallelization of both task before
describing some features of our publicly available
implementation. We then illustrate the applicability
of the proposed approaches via experiments before
discussing related work.

2 REVIEW: INFERENCE AND LEARNING

In this section we review inference and learning algo-
rithms that employ message passing techniques. We
first define the general setting.

Let x ∈ X be the input data, e.g., images or
sentences, and s ∈ S the output elements, e.g., image
segmentations or parse trees. We assume the output
space elements s to lie within a discrete product space,

i.e., s = (s1, s2, . . .) ∈ S =
∏
i Si with Si = {1, . . . , |Si|}.

Let φ : X × S → RF be a feature mapping which
projects from the object and output product space to
an F -dimensional feature space.

During inference, we are interested in finding the
most likely output s∗ ∈ S given some data x ∈ X . To
this end we maximize a distribution p̃ ranging over all
output symbols. We model p̃ to be log-linear in some
weights w ∈ RF , i.e.,

p̃(s | x,w) ∝ exp
(
w>φ(x, s)/ε

)
. (1)

We introduced the temperature ε to adjust the smooth-
ness of the distribution, e.g., for ε = 0 the distribu-
tion is concentrated on the maximizers of the score
w>φ(x, s), often also referred to as ‘negative energy.’

The learning task is concerned with finding the
“best” parameters w, given sample pairs (x, s)
containing data symbol x and its corresponding
groundtruth output s. In the following we briefly
review both, inference and learning in greater detail,
and provide the intuitions necessary to follow the
derivations of the distributed algorithms.

2.1 Inference
During inference, we are interested in finding the
most likely output space configuration s∗ ∈ S given
data x ∈ X . More formally we aim at solving

s∗ = arg max
s∈S

w>φ(x, s). (2)

This task is generally intractable, i.e., NP-hard, given
the exponentially many configurations within S.

To overcome this issue, we follow a variational
approach and approximate the distribution over out-
comes with a simpler factorized distribution. Towards
this goal, we rephrase the task as the one of finding a
distribution p̃(s) which minimizes the KL-divergence
DKL(p̃ | exp(w>φ(x, s)/ε)) between the modeled dis-
tribution p̃(s | x,w) given in Eq. (1) and p̃(s). The
corresponding program is equivalent to

max
p̃∈∆

∑
s∈S

p̃(s)θ(s | x) + εH(p̃), (3)

with score θ(s | x) = w>φ(x, s), the entropy H(p̃) =
−
∑
s p̃(s) ln p̃(s) and ∆ the probability simplex of

corresponding dimension. Note that the task given
in Eq. (3) is identical to the program given in
Eq. (2) when ε = 0 since the distribution p̃ ∈ ∆
will be any distribution over the set of maximizers
arg maxs∈S θ(s | x). However, we introduce smooth-
ness via ε > 0 which admits optimality guarantees of
approximations that are easier to achieve [10], [11].

The exponentially sized output spaces render the
optimization of even the smooth objective intractable
in general, and assumptions as well as approxima-
tions are required. For many applications a single
measurement φk, k ∈ {1, . . . , F}, i.e., an element of
the feature vector φ, consists of functions that depend

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 3

s1 s2 s3

s{1,2}

s{1,2,3}

Fig. 2. Hasse diagram of a distribution that cannot be
visualized by a factor graph. Note the sets of regions
with R = {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}.

only on a fraction of the output variables. We refer to
a subset of output space variables sr using the index
set r. Formally, sr = (si)i∈r is a restriction of an output
space object s to a subset of its variables. We assume
the k-th measurement to be computable via

φk(x, s) =
∑
r∈Rk

φk,r(x, sr),

where the set Rk subsumes all the index sets, sub-
sequently also referred to as regions, required to
compute the feature. Note that theoretically this is not
a strong assumption since Rk may contain an element
that refers to all variables.

Taking this decomposition into account we obtain

θ(s | x) =
∑

r∈R,k:r∈Rk

wkφk,r(x, sr) =
∑
r∈R

θr(sr | x),

with the set of all unique regions being denoted R =⋃
kRk, and the potential for region r referred to via

θr(sr | x) =
∑

k:r∈Rk

wkφk,r(x, sr).

For clarity of the presentation we subsequently ne-
glect the dependence of the potential on the input
data, i.e., we abbreviate θr(sr | x) with θr(sr).

Employing the aforementioned regions r, inference
as defined in Eq. (3) is equivalently expressed as

max
p̃∈∆,p̃r

∑
r,sr

p̃r(sr)θr(sr) + εH(p̃) s.t. p̃r(sr) =
∑
s\sr

p̃(s),

with p̃r(sr) being the true marginals arising from the
distribution p̃(s). This program remains intractable
because of the exponentially sized summations in-
curring for computation of the entropy and the con-
straints. Typically we make use of fractional en-
tropies [12] and approximate H(p̃) via a sum of
tractable, local entropies while introducing count-
ing numbers cr as hyper-parameters, i.e., H(p̃) ≈∑
r crH(p̃r). In addition we relax the constraint space

such that the true marginals p̃r(sr) are no longer
required to be globally consistent. To highlight this
change from the marginal polytope to a local poly-
tope, we use local beliefs br(sr) to refer to marginals
that are no longer required to arise from a single joint
distribution p̃(s). The regions that we require to be

consistent upon convergence are given by a parent-
child relationship, i.e., all the parents P (r) of a region
r are required to marginalize to the local belief br,
i.e.,

∑
sp\sr bp(sp) = br(sr) has to hold ∀r, sr, p ∈ P (r).

Note that the set of parents P (r) denotes a subset of
those regions that strictly contain all elements of the
set r. In addition to the set of parents we refer to the
set of children of a region via C(r) = {c : P (c) = r}.
Depicting regions as nodes in a graph, this parent-
child relationship generalizes factor graphs. This is
illustrated in Fig. 2 via a Hasse diagram for a simple
approximation that cannot be depicted by common
factor graphs.

Taking the decomposition assumption as well as the
entropy and marginal polytope approximation into
account, our resulting inference task reads as

max
b

∑
r∈R,sr

br(sr)θr(sr) +
∑
r

εcrH(br) (4)

s.t.
∀r br ∈ ∆
∀r, sr, p ∈ P (r)

∑
sp\sr bp(sp) = br(sr).

Note that the local beliefs br are generally not con-
strained to arise from a joint distribution over all the
involved variables. Enforcing such a global constraint
is however possible at the expense of exponential
complexity, by including a region that covers all the
variables. It is generally sufficient to only include
regions of size up to the tree-width of the problem
when interested in finding the globally optimal so-
lution, which corresponds to employing the junction
tree algorithm. Hence the junction tree algorithm is
part of the algorithms presented within this work.

Importantly, possible convergence guarantees de-
pend on the users choice of counting numbers cr.
Letting cr ≥ 0 ensures concavity of the approximated
primal program given in Eq. (4), and convexity of its
corresponding dual to be illustrated below. In this case
convergence to a global optimum can be guaranteed
if care is taken regarding the method of optimization.
This is known as convex belief propagation [13], [14],
[15], [16]. Another choice for the counting numbers,
not necessarily positive, is commonly referred to as
loopy belief propagation [17] or generalized loopy belief
propagation [18]. In this case cr = 1−

∑
a∈A(r) ca where

A(r) is the set of ancestors of region r. Note the
difference between the set of parents P (r) and the
set of ancestors A(r), e.g., P ({1}) = {{1, 2}}, while
A({1}) = {{1, 2}, {1, 2, 3}} for the example illustrated
in Fig. 2. Due to neither concavity nor convexity of
the primal loopy belief propagation program given in
Eq. (4), convergence to the global optimum cannot be
guaranteed for general graphs.

To leverage the structure of the program encoded
within the constraints, more specifically the sparse
parent-child relationship, it is beneficial to consider
the dual problem if counting numbers admit. In any
other case we can follow the steps to obtain the mes-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 4

Algorithm: Message Passing Inference
Repeat until convergence
Iterate over r:

∀p ∈ P (r), sr µp→r(sr) = εcp ln
∑
sp\sr

exp
θp(sp)−

∑
p′∈P (p) λp→p′(sp) +

∑
r′∈C(p)\r λr′→p(sr′)

εcp

∀p ∈ P (r), sr λr→p(sr) ∝ cp
cr +

∑
p∈P (r) cp

θr(sr) +
∑

c∈C(r)

λc→r(sc) +
∑

p∈P (r)

µp→r(sr)

− µp→r(sr)
Fig. 3. A block-coordinate descent algorithm for the inference task.

min
w,λ

∑
(x,s),r

εcr ln
∑
ŝr

exp

(
φ̃(x,s),r(x, ŝr)−

∑
p∈P (r) λ(x,s),r→p(ŝr) +

∑
c∈C(r) λ(x,s),c→r(ŝc)

εcr

)
− w>d+

C

2
‖w‖22

Fig. 4. The approximated learning task.

sage passing updates while noting that convergence
is not guaranteed and typical primal-dual relations do
not hold. The cost function of the dual is obtained by
considering the Lagrangian of the program given in
Eq. (4). To this end we introduce Lagrange multipliers
λr→p(sr) for the marginalization constraints of the
beliefs, i.e., we introduce a variable corresponding
to the constraint

∑
sp\sr bp(sp) = br(sr) for every

region r, every element sr of its domain and all its
parents p ∈ P (r). Taking into account the relationships
encoded within the Hasse diagram we obtain the
Lagrangian

∑
r

∑
sr

br(sr)

θr(sr)−∑
p∈P (r)

λr→p(sr) +
∑

c∈C(r)

λc→r(sc)

+ εcrH(br)) .

Maximizing the Lagrangian w.r.t. br(sr) indepen-
dently for reach restriction r using the primal-dual
relationship between the logarithm of the parition
function and the entropy (cf ., [19]) yields the dual
objective

∑
r

εcr ln
∑
sr

exp

θr(sr)−
∑

p∈P (r)

λr→p(sr) +
∑

c∈C(r)

λc→r(sc)

εcr
,

which we aim at minimizing w.r.t. the Lagrange
multipliers λ. In order to optimize this objective, we
follow [16], [20] to derive a block-coordinate descent
algorithm, where a region r is chosen iteratively, and
the Lagrange multipliers λr→p(sr) ∀p ∈ P (r), sr are
updated via a minimization computable in closed
form. For completeness we summarize the update
rules in Fig. 3.

Given the Lagrange multipliers λ, we recover the
beliefs

br(sr) ∝ exp

θr(sr)−
∑

p∈P (r)

λr→p(sr) +
∑

c∈C(r)

λc→r(sc)

εcr

if εcr > 0. For εcr = 0 the beliefs nonzero domain is
determined by the maximizing elements

S∗r = arg max
sr

θr(sr)−∑
p∈P (r)

λr→p(sr) +
∑

c∈C(r)

λc→r(sc)

(5)

(cf . Danskin’s theorem in, e.g., [21]).

2.2 Learning
To derive common learning algorithms, let D =
{(x(i), s(i))Ni=1} be the training set composed of data-
output pairs, and let `(s, ŝ) be a task loss, which
compares any output space configuration ŝ ∈ S
with the ground truth labeling s, and returns a large
number for estimates that are very different. Note that
generally the task loss can be sample dependent, but
we subsequently neglect this dependence for clarity of
the exposition, i.e., we let `(s, ŝ) = `(x,s)(s, ŝ) ∀(x, s).

We follow [5], [3], [4] and frame learning as comput-
ing the maximum likelihood or max-margin estimator
of the data. Let the loss-augmented likelihood of an
estimate ŝ given the data sample (x, s) be

q(x,s)(ŝ | w) ∝ exp

(
w>φ(x, ŝ) + `(s, ŝ)

ε

)
.

We use the data-groundtruth pair (x, s) as an
index rather than conditioning in order to
avoid a cluttered notation. The negative log-
likelihood of a data set with independently and
identically distributed elements is expressed
as − ln

(
p̃(w)

∏
(x,s)∈D q(x,s)(s | w)

)
. Plugging in

definitions for the prior p̃(w) and the loss-augmented
data likelihood q(x,s)(s | w), the cost function equals

C

2
‖w‖22 +

∑
(x,s)∈D

ε ln
∑
ŝ∈S

exp

(
w>φ(x, ŝ) + `(s, ŝ)

ε

)
− w>d

(6)
if we let p̃(w) ∝ exp

(−C
2ε ‖w‖

2
2

)
, while the vector

d =
∑

(x,s)∈D φ(x, s) refers to the sum of empirical

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 5

Algorithm: Convex Structured Prediction
Repeat until convergence

1) Iterate over all samples (x, s) and regions r:

∀p ∈ P (r), sr µ(x,s),p→r(sr) = εcp ln
∑
sp\sr

exp

φ̃(x,s),p(sp)−
∑

p′∈P (p)

λ(x,s),p→p′(sp) +
∑

r′∈C(p)\r
λ(x,s),r′→p(sr′)

εcp

∀p ∈ P (r), sr λ(x,s),r→p(sr) ∝
cp

cr +
∑

p∈P (r)

cp

φ̃(x,s),r(sr) +
∑

c∈C(r)

λ(x,s),c→r(sc) +
∑

p∈P (r)

µ(x,s),p→r(sr)

− µ(x,s),p→r(sr)

2) Weight vector update with stepsize α determined to ensure the Armijo rule

w ← w − α

 ∑
(x,s),r

(∑
ŝr

b(x,s),r(ŝr)φ(x,s),r(ŝr)− φ(x,s),r(sr)

)
+ Cw

Fig. 5. A block-coordinate descent algorithm for the learning task.

measurements. The second term of the cost function
given in Eq. (6) arises from the partition function of
the loss-augmented data log-likelihood q(x,s)(s | w).
Moreover we assumed the loss of the groundtruth to
equal zero, i.e., `(s, s) ≡ 0. This term is commonly
referred to as a soft-max function which smoothly
approximates the max-function for ε → 0. For ε = 0,
the cost function given in Eq. (6) reads as

C

2
‖w‖22 +

∑
(x,s)∈D

max
ŝ∈S

(
w>φ(x, ŝ) + `(s, ŝ)

)
− w>d, (7)

which linearly penalizes all configurations ŝ for which
maxŝ∈S

(
w>φ(x, ŝ) + `(s, ŝ)

)
≥ w>φ(x, s), i.e., the op-

timization penalizes outputs with score larger than
the ground truth configuration. Note the similarity to
M3Ns [3] and SSVMs [4].

To our advantage, Eq. (6) is convex in w. However,
the difficulty arises from the fact that we need to
consider an exponentially sized output space S. Mini-
mizing the above cost function is therefore intractable
in general and we reside to approximations.

In short, we can transform the primal learning
program given in Eq. (6) to the dual domain. Due
to the primal-dual relationship between the logarithm
of the partition function and the entropy we obtain
an intractable entropy ranging over the entire do-
main of the output space. To approximate we em-
ploy the decomposition assumption outlined when
reviewing inference. In addition we use again the
fractional entropy concept as well as local beliefs.
Transforming the approximated dual back to the pri-
mal domain yields the program illustrated in Fig. 4.
We let φ̃(x,s),r(ŝr) =

∑
k:r∈Rk wkφ(x,s),k,r(x, ŝr) +

`(x,s),r(ŝr, sr), while assuming – just like for inference
– that the k-th feature vector element for every sample
decomposes into a sum of regions Rk, i.e., φ(x,s),k =∑
r∈Rk φ(x,s),k,r(x, ŝr).
Comparing the original learning task given in

Eq. (6) with the approximation provided in Fig. 4,
we observe that counting numbers cr approximate the

joint soft-max function, i.e., the logarithm of the par-
tition function, via a sum of local soft-max functions
ranging over small subsets of output space variables
sr. To enforce consistency between the individual
subsets of a sample (x, s), messages λ(x,s),r→p(sr) ex-
change information between a region r and its parents
P (r).

Note that the cost function given in Fig. 4 is con-
vex when ε, cr ≥ 0 and convergence is guaranteed
when employing a block-coordinate descent approach
which iterates between updating the weights w and
the Lagrange multipliers λ. Even more importantly
and to increase efficiency, convexity permits to inter-
leave updates for the Lagrange multipliers λ and gra-
dient steps w.r.t. the parameters w [6], [7]. It is useful
to compute the gradient w.r.t. w without requiring
convergence of the message passing.

Following [6], the resulting convex structured pre-
diction algorithm is summarized in Fig. 5. While the
first step gives the block-coordinate descent steps for
the Lagrange multipliers λ, the second part illustrates
the gradient update using beliefs

b(x,s),r(sr) ∝ exp

(φ̃(x,s),r(x, ŝr)−
∑

p∈P (r)

λ(x,s),r→p(ŝr)+

+
∑

c∈C(r)

λ(x,s),c→r(ŝc)
)
/(εcr)

if εcr > 0. Following the inference schema, the beliefs
nonzero domain is given by the set of maximizing
states for εcr = 0, i.e., analogous to Eq. (5). We want
to emphasize the similarity between the algorithm
for message passing inference given in Fig. 3 and
the first step within the convex structured prediction
algorithm summarized in Fig. 5.

3 DISTRIBUTED INFERENCE

The learning and inference algorithms described in
the previous section do not scale well to large prob-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 6

1 2 3 4

5 6 7 8

κ1 κ2

Fig. 6. The distributed architecture: partitioning the 8
variables onto two computers κ1 and κ2.

κ1 κ2

s{2,3}

s{6,7}

Fig. 7. The junction graph of the example in Fig. 6 for
sending consistency messages ν between computers.

lems, as they require to store both the graphical model
and the messages in memory. Moreover paralleliza-
tion w.r.t. samples during learning is not very effective
given only few examples. Furthermore, solving the
approximate inference problem is computationally de-
manding, as it scales with the number of dimensions
involved in the largest region, i.e., they are already
inherently quadratic for graphical models involving
pairwise connections. This is a tremendous limitation
for a wide variety of applications, where one is faced
with very large graphical models with millions of
nodes and many examples.

If we consider shared memory environments, e.g.,
current standard multi-core computers, one strategy
is application of a graph coloring of the Hasse dia-
gram by making sure that regions within the Markov
blanket are assigned different colors. Messages of all
nodes having the same color are then computable in
parallel. Considering large graphs, we can minimize
the number of idle cores while directly optimizing the
considered problem. Note that for densely coupled
graphical models this strategy results in a large num-
ber of colors with few regions per color. The reader
may keep in mind that graph coloring can potentially
reduce convergence speed of inference since informa-
tion might not propagate as quickly.

Computer clusters are however a cheaper alterna-
tive for large-scale computation when memory is the
main limiting factor. In this setting, one can leverage
the computational resources by distributing the prob-
lem onto all the available machines. Since we deal
with distributed memory that is connected via local
area networks, relatively slow compared to direct
memory accesses, we cannot neglect the latency for
transmitting messages between different computers.
Therefore, we want to minimize the communication
between computers while maintaining convergence
guarantees particularly for strictly convex problems

(e.g., strictly positive counting numbers).
Towards this goal, we partition the output space
S. Note that this induces a partitioning of the region
graph. We highlight that the likelihood of a region
being assigned to multiple computers increases with
the degree of the region, i.e., the number of involved
variables. It is therefore crucial to choose a suitable
problem dependent partitioning. Since most of the
considered tasks are not decoupled by nature, there
are always regions assigned to multiple resources.

Our intuition is illustrated in Fig. 6 for a graphical
model with 8 random variables and pairwise regions.
The output space is partitioned onto two computers
κ1 and κ2, and the edges divided onto two machines
are highlighted using two parallel lines depicted with
blue and red color. In order to guarantee convergence
to the optimum of the approximated problem, we
are required to enforce that the regions divided onto
multiple machines are consistent upon convergence.

More formally let M(r) be the set of machines that
region r is assigned to, and let R(κ) be the set of
regions that are partitioned on machine κ. A region is
assigned to a machine if at least one of its variables is
assigned to computer κ. Let the potentials and count-
ing numbers be distributed equally across machines,
i.e., θ̂r(sr) = θr(sr)/|M(r)| and ĉr = cr/|M(r)|. In
addition we introduce a junction graph GP with circu-
lar nodes representing the computers and rectangular
vertices representing the regions shared between at
least two machines. The junction graph for the exam-
ple in Fig. 6 is illustrated in Fig. 7.

We employ dual decomposition and obtain the
following distributed program:

max
br,bκr∈∆

∑
κ,r,sr

bκr (sr)θ̂r(sr) +
∑
κ,r

εĉrH(bκr) (11)

s.t.
∀κ, r ∈ R(κ), sr, p ∈ P (r)

∑
sp\sr

bκp(sp) = bκr (sr)

∀κ, r ∈ R(κ), sr bκr (sr) = br(sr).

Importantly, this program is equivalent to the task
given in Eq. (4). The latter constraint is introduced
to enforce consistency between the regions assigned
to multiple computers. Note that this is the only con-
straint that couples the individual problems between
different computers.

To leverage the structure within the constraint set
we change to the dual domain and derive a block-
coordinate descent algorithm. We refer the reader to
the supplementary material for the detailed derivation
and a formal statement regarding the convergence
properties. The resulting algorithm is provided in
Fig. 8. The procedure to solve the distributed program
given in Eq. (11) is divided into two parts: (1) a
standard message passing, local on every machine
and hence easily parallelizable using graph-coloring,
and (2) an exchange of information between differ-
ent computers enforcing the consistency constraints.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 7

Algorithm: Distributed Message Passing Inference
Repeat until convergence

1) For every κ in parallel: iterate over r:

∀p ∈ P (r), sr µp→r(sr) = εĉp ln
∑
sp\sr

exp

θ̂p(sp)−
∑

p′∈P (p)

λp→p′(sp) +
∑

r′∈C(p)∩κ\r
λr′→p(sr′) + νκ→p(sp)

εĉp
(8)

∀p ∈ P (r), sr λr→p(sr) ∝
ĉp

ĉr +
∑
p∈P (r) ĉp

θ̂r(sr) +
∑

c∈C(r)∩κ

λc→r(sc) + νκ→r(sr) +
∑

p∈P (r)

µp→r(sr)

− µp→r(sr) (9)

2) Iterate over r ∈ GP

∀κ ∈M(r) νκ→r(sr) =
1

|M(r)|
∑

c∈C(r)

λc→r(sc)−
∑

c∈C(r)∩κ

λc→r(sc) +
∑

p∈P (r)

λr→p(sr)−
1

|M(r)|
∑

κ∈M(r),p∈P (r)

λr→p(sr)(10)

Fig. 8. A block-coordinate descent algorithm for the distributed inference task.

min
w

∑
κ,(x,s),r

εĉr ln
∑
ŝr

exp

˜̂
φ(x,s),r(x, ŝr)−

∑
p∈P (r)

λ(x,s),r→p(ŝr) +
∑

c∈C(r)

λ(x,s)c→r(ŝc) + ν(x,s),κ→r(ŝr)

εĉr

−w>d+C2 ‖w‖22
Fig. 9. The distributed and approximated learning task.

This exchange of information corresponds to message
passing on the junction graph GP .

The messages ν of the distributed algorithm which
are sent between different computers are Lagrange
multipliers which arise from the consistency con-
straint enforcing the beliefs on different machines to
be identical upon convergence.

Our distributed algorithm maintains the conver-
gence guarantees irrespective of how frequently we
exchange information. The frequency of the exchange
only has an impact on the speed of convergence.
We expect faster convergence (in terms of number of
iterations) if we exchange information at every single
iteration. This will however not lead to the best con-
vergence speed in terms of time, due to the communi-
cation overhead between computers. Transmission la-
tency will significantly slow down the algorithm. The
best tradeoff depends on both, the network latency
and the graph structure, as the latter determines the
number of messages to be exchanged. Importantly if
we choose ε, ĉr > 0, the distributed program remains
strictly concave. Consequently the dual is smooth and
the employed block-coordinate descent methods of
both the distributed and the original task converge
to the identical solution.

4 DISTRIBUTED STRUCTURED PREDICTION
Before deriving a distributed learning algorithm we
note that it is trivially possible to parallelize the
common max-margin or maximum likelihood learn-
ing task w.r.t. the number of samples. However, this
approach does neither scale to large graphical models
requiring large amounts of memory nor is it applica-
ble in a transductive learning setting nor is it effective

when using mini-batches containing a small number
of samples.

We obtain a distributed learning algorithm by com-
bining the procedure described for deriving the stan-
dard learning program with distributed inference.
Intuitively, we transform the learning task given in
Eq. (6) to the dual domain where we apply the
aforementioned decomposition as well as approxi-
mations for the entropy and the constraint set. In
addition we partition the output space S of every
sample onto different computers κ. This imposes a
partitioning of the regions r and hence local beliefs
bκ(x,s),r if a region is assigned to machine κ. Analo-
gously to the distributed inference approach we are
required to enforce consistency between regions upon
convergence. This consistency constraint is the only
coupling between the different computers, hence we
decomposed the dual into almost separable parts.
Note that we distribute the counting numbers, the
loss and the features equally between the computers,
i.e., ĉr = cr/|M(r)|, ˆ̀

(x,s),r = `(x,s),r/|M(r)| and
φ̂(x,s),k,r = φ(x,s),k,r/|M(r)|.

Following aforementioned ideas we again aim
at leveraging the structure given within the con-
straint set of the decomposed dual. We therefore
transform the decomposed approximated dual back
to the primal domain. The resulting cost func-
tion to be optimized is illustrated in Fig. 9 where
we let ˜̂

φ(x,s),r(x, ŝr) =
∑
k:r∈Rk wkφ̂(x,s),k,r(ŝr) +

ˆ̀
(x,s),r(ŝr, sr).

The important differences to standard approximate
convex learning originally derived in [6], [7] and illus-
trated in Fig. 5 are the summation over the computers

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 8

Algorithm: Distributed Convex Structured Prediction
Repeat until convergence

1) For every κ, (xs) in parallel: iterate over r: ∀p ∈ P (r), sr

µ(x,s),p→r(sr) = εĉp ln
∑
sp\sr

exp

˜̂
φ(x,s),p(sp)−

∑
p′∈P (p)

λ(x,s),p→p′(sp) +
∑

r′∈C(p)∩κ\r
λ(x,s),r′→p(sr′) + ν(x,s),κ→p(sp)

εĉp

λ(x,s),r→p(sr)∝
ĉp

ĉr +
∑

p∈P (r)

ĉp

˜̂
φr(sr) +

∑
c∈C(r)∩κ

λ(x,s),c→r(sc) + ν(x,s),κ→r(sr) +
∑

p∈P (r)

µ(x,s),p→r(sr)

− µ(x,s),p→r(sr)

2) Iterate over r ∈ GP : ∀κ ∈M(r)

ν(x,s),κ→r(sr) =
1

|M(r)|
∑

c∈C(r)

λ(x,s),c→r(sc)−
∑

c∈C(r)∩κ

λ(x,s),c→r(sc) +
∑

p∈P (r)

λ(x,s),r→p(sr)−
1

|M(r)|
∑

κ∈M(r),p∈P (r)

λ(x,s),r→p(sr)

3) Weight vector update with stepsize α determined to ensure the Armijo rule

w ← w − α

 ∑
(x,s),r

(∑
ŝr

b(x,s),r(ŝr)φ(x,s),r(ŝr)− φ(x,s),r(sr)

)
+ Cw

 (12)

Fig. 10. A block-coordinate descent algorithm for the distributed learning task.

κ and an additional consistency message ν(x,s),κ→r(ŝr)
to be transferred from machine κ to region r. As for
inference, the additional messages ν correspond to
Lagrange multipliers for the consistency constraints
enforcing distributed region beliefs to agree upon
convergence.

In a subsequent step we derive a block-coordinate
descent algorithm for the distributed approximated
primal problem. Neglecting minor modifications, the
updates w.r.t. λ and w are identical to the non-
distributed algorithm. To update the Lagrange mul-
tipliers ν an additional step is introduced and the-
oretically only required to be performed occasionally
in order to ensure convergence. Given some messages
we compute the beliefs

b(x,s),r(sr)∝ exp

 ˜̂
φ(x,s),r(x, ŝr)−

∑
p∈P (r)

λ(x,s),r→p(ŝr)

+
∑

c∈C(r)

λ(x,s)c→r(ŝc) + ν(x,s),κ→r(ŝr)

 /(εcr)

if εcr > 0. For εcr = 0 the beliefs nonzero domain
is again given by the maximizing states, analogously
to Eq. (5) but employing corresponding messages and
potentials. The complete algorithm is summarized in
Fig. 10 and we refer the reader to the supplementary
material for the derivations and statements regarding
convergence guarantees. In short and analogously
to inference we obtain an identical solution if the
learning task is strictly convex.

Convex approximations of the learning task benefit
from interleaving the gradient computation and the
line-search while maintaining the convergence guar-
antees. This is also true when dividing the model

onto separate resources and it is required to only
transfer information between computers occasionally.
Note also that the amount of data to be transmitted
between machines depends on the graphical model,
i.e., particularly the size of the linking factors, and
the number of learned parameters. User attention is
required to obtain an efficient procedure. We will
show empirically that a model-parallel scenario is on
par with sample-parallel training even in the small-
scale setting.

5 IMPLEMENTATION DETAILS

Together with this submission we release a software
package called distributed Structured Prediction (dSP).
Note that all the experiments within this submission
were conducted with the published framework. We
briefly describe the currently implemented features in
the following.
Support for higher order regions: Arbitrary Hasse
diagrams are taken as input for both learning and
inference. Therefore dSP supports junction tree op-
timization just like ordinary message passing on a
factor graph. In addition and at the expense of expo-
nential complexity, models can be manually tightened
up to the tree-width.
Support for arbitrary counting numbers: The user
is free to specify the counting numbers. Therefore,
non-convex Bethe approximations are supported just
like convex belief propagation. Parameters determine
whether updates for the Lagrange multipliers are
interleaved with gradient steps for the model param-
eters.
Suitable for conditional random fields or structured
support vector machines: Changing the parameter ε
allows optimization of the SSVM or M3N objective

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 9

(max-margin formulation) for ε = 0 just like the CRF
cost function (max-likelihood) for ε = 1.
Support for high performance computing: The pack-
age contains modules that parallelize learning w.r.t.
samples on a single machine or w.r.t. the graph
coloring of the Hasse diagram. In addition, learn-
ing for distributed memory environments supports
parallelization by dividing the model or by dividing
the samples. Similarly, parameters determine whether
inference processes multiple samples concurrently or
whether the model is partitioned onto multiple com-
puters. To suit large clusters we utilize standard
message passing libraries like OpenMPI or MPICH.
To save time for the transmission, we also merge
messages of different regions into a single package.
Different input formats: We designed both a textual
as well as a binary input file format. While the first
is suitable for debugging purposes, the latter targets
large scale data sets. Besides file formats a Matlab mex
function provides direct access to the modules.
Latent variable models: Although not content of
this submission we provide a module to learn from
weakly labeled data, i.e., we support latent SSVMs [22]
just like hidden CRFs [23] by following [24], [25].
Parallelization w.r.t. samples and by graph coloring
is also supported for latent variable models.

6 EXPERIMENTS

We employed the hybrid approach which uses graph
coloring for the learning and inference sub-tasks that
are sent by our distributed algorithm to each ma-
chine. This allow us to exploit both the advantages of
distributed and shared memory architectures within
a single algorithm. Counting numbers equal one
throughout all experiments.

6.1 Inference
We illustrate the advantages of our approach in the
problem of stereo estimation using 16 8-core com-
puters. Towards this goal, we employ the Tsukuba
image consisting of 288 × 369 pixels from the Mid-
dlebury data set [26]. The respective Hasse diagram
is composed of approximately 315, 000 regions having
a label space size of 16 or 256 for unary and pair-
wise regions respectively. Subsequently we investigate
the time required for the iterations before providing
results regarding the frequency of transmission of
messages between computers. Afterwards we also
illustrate the primal-dual gap and visually investigate
the results of distributing a task without exchanging
messages between computers. We conclude the exper-
iments for inference with a large scale example.
Time per iteration: We investigate the time required
for a certain number of iterations. Fig. 11(a) – (c)
shows timings for different values of ε. Note that
the solid magenta line illustrates the baseline algo-
rithm that parallelizes the inference task only onto

50 25 10 5 2 1
0 16.60 15.74 14.95 13.51 10.48 7.67

0.01 15.57 15.27 14.34 13.19 10.87 8.32
0.10 15.38 15.10 14.23 13.24 10.76 8.24

TABLE 1
Inference speedup after 200 iterations for different ε
(rows) and information exchange rates (columns).

the available eight cores of a single computer, while
the solid lines illustrate the time for a certain number
of iterations for the distributed algorithm run on 16
machines and exchanging information only every 1, 2,
5, 10, 25 or 50 iterations. Note that the distributed al-
gorithm is significantly faster than the single machine
shared memory counterpart. The speedups are given
in Tab. 1. Due to computational benefits of finding
the maximum within a vector rather than computing
the soft-max we also note that inference with ε = 0 is
slightly faster.
Frequency of transmission: We next again use the
distributed approach which divides the graph into 16
equally sized partitions, and investigate how often to
transmit information between the different comput-
ers. Fig. 12(a) – (c) illustrates the dual energy w.r.t.
time. Depending on ε and for the investigated data
it is beneficial to transfer messages between different
computers only every two or only every five itera-
tions. We note that this obviously depends largely on
the problem at hand and on the connectivity between
the computers being in our case a 4-connected grid
graph and a standard local area network connection.
Primal-dual gap: The primal and dual scores for
different ε ∈ {0, 0.01, 0.1} are illustrated in Fig. 13(a) –
(c). Note that our distributed block-coordinate descent
algorithm guarantees the monotonicity of the dual
energy. This is generally not the case for the primal
energy. We emphasize that due to only 200 iterations
the primal-dual gap is not yet necessarily 0, even for
ε > 0.
Simple distributed baseline: We refer the reader to
Fig. 14 for visual results comparing the exchange
of information with an approach that distributes the
problem without exchanging information. For this
experiment we divided a disparity computation task
for the image of a tree onto nine computers. We
observe clear artifacts when not exchanging messages
between the sub-problems.
Large scale graphs: To illustrate the large scale be-
havior we perform disparity map estimation with 283
labels on the 12 MPixel image illustrated in Fig. 1.
The Hasse diagram consists of more than 36, 000, 000
regions with 12 million regions having about 250
disparity levels while 24 million regions have more
than 80, 000 states. Note that the considered pairwise
Markov random field has a complexity quadratic in
the disparity labels.
Scaling: In a next experiment we evaluate the scaling
of the general inference implementation with suc-
cessively larger input. We start with disparity map

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 10

0 50 100 150 200
0

20

40

60

80

100
50
25
10
5
2
1
ND

Iterations

Ti
m

e
[s

]

(a) ε = 0

0 50 100 150 200
0

20

40

60

80

100
50
25
10
5
2
1
ND

Iterations

Ti
m

e
[s

]

(b) ε = 0.01

0 50 100 150 200
0

20

40

60

80

100
50
25
10
5
2
1
ND

Iterations

Ti
m

e
[s

]

(c) ε = 0.1

Fig. 11. Comparing the time of non-distributed (‘ND’) inference (magenta) with the distributed inference algorithm
exchanging information at different frequencies when considering a given number of iterations.

Time [s]

D
ua

l

(a) ε = 0
Time [s]

D
ua

l

(b) ε = 0.01
Time [s]

D
ua

l

(c) ε = 0.1

Fig. 12. Dual of the distributed inference algorithm over time with information exchange at different frequencies.

Time [s]

Sc
or

e

(a) ε = 0
Time [s]

Sc
or

e

(b) ε = 0.01
Time [s]

Sc
or

e

(c) ε = 0.1

Fig. 13. Primal and dual scores of the inference algorithm for different ε.

estimation for an image of 26k pixels each having 10
states and increase it to more than 2 megapixels each
having 116 states. We compare the distributed im-
plementation (‘Dist’) tiling the images into 9 roughly
equally sized partitions while running on 9 equally
powerful machines to a non-distributed approach
running on a single computer (‘Sing’). The results are
visualized in a double-logarithmic plot in Fig. 15. We
observe that our approach obviously does not change
the algorithmic complexity. However the distributed
method is increasingly faster for larger problems.
From about twice faster for 26k sized images to almost
7 times faster for 0.5 megapixels. The observations are
consistent across our tests for ε ∈ {0, 0.01, 0.1, 1}.

6.2 Learning
We are interested in answering similar questions
when considering the distributed learning task. To

this end we consider a denoising problem. We are
given a 4 bit ground truth image, i.e., 16 gray scale
levels, and a set of noisy observations as illustrated for
one example in Fig. 16. Our two dimensional feature
vector measures on the one hand the difference of the
noisy observation to the 16 gray scale levels. On the
other hand we encode smoothness by employing a
truncated linear pairwise potential. We aim at learning
a linear combination of those two features.

We want to emphasize again that there are two
main paradigms for distributed learning, data paral-
lelism and model parallelism. Both are supported by
the provided library since the preferable method ob-
viously depends on the particularities of the data and
the corresponding graphical model. E.g., if we work
in a transductive setting or if the number of samples
(in a mini-batch) is small compared to the model size,
we typically prefer model parallelism. Note that this

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 11

c d

e f

(a)

c d

e f

(b)

(c) (d) (e) (f)
Fig. 14. (a) Disparity map when solving nine indepen-
dent sub-problems. Frame boundaries are depicted.
(b) Disparity map when exchanging messages every
10 iterations. (c)-(f) zoomed view of the highlighted
parts in (a) (bottom) and (b) (top).

10
4

10
5

10
6

10
7

10
−1

10
0

10
1

10
2

10
3

Dist
Sing

Problem Size [pixels]

Ti
m

e
pe

r
It

er
at

io
n

[s
]

Fig. 15. Comparing inference using the general dis-
tributed approach (‘Dist’) to a single computer imple-
mentation (‘Sing’) for ε = 1.

is for example the case when combining deep learning
techniques with structured prediction [27], [28]. In
contrast, if the graphical models are small but the
number of samples is abundant, we recommend usage
of data parallelism. To demonstrate this effect we first
investigate the tradeoff between data parallelism and
model parallelism more carefully before we take a
closer look at the effects of the message exchange
frequency on the primal value as well as the speed-
ups in a second experiment.
Data parallelism vs. model parallelism: This section
is dedicated to answer under which circumstances one
form of parallelism outperforms the other. To clarify
the tradeoffs we compare a data parallel setting where
the samples are distributed onto 9 machines each
having 8 cores with a model parallel setting where
each grid-graph is partitioned into 9 sub-graphs, each
being assigned to one of our 9 machines. In the model
parallel setting the samples are processed sequentially
while message passing is parallelized using a graph-

Fig. 16. A 4 bit ground truth image and one of the noisy
observation given for training.

1 2 5 10 25
0.00 0.58 0.51 0.47 0.45 0.45
0.10 0.62 0.55 0.50 0.48 0.48
1.00 0.68 0.64 0.57 0.55 0.54

TABLE 2
Time ratio of model parallelism over sample

parallelism for different exchange frequencies and
temperature parameter ε using 100 training samples of

size 128× 128.

coloring technique. In Fig. 17(a) we illustrate the time
ratio of 50 training iterations of model parallelism
over sample parallelism for a temperature parameter
ε = 0. The number of training instances is specified on
the x-axis. A number smaller than 1 indicates prefer-
ence for model parallelism. The solid lines correspond
to graphical models of size 128×128 while the dashed
lines illustrate the results for model sizes of 64 × 64.
The colors indicate the number of message passing
iterations before exchanging messages between the 9
computers. As expected we observe model parallelism
to be beneficial for less frequent message exchanges,
larger sized samples and fewer training instances.
The latter is particularly useful when considering
stochastic gradient descent training with mini-batches
typically containing around or less than 100 samples.
Note also that model parallelism is not only beneficial
if we cannot fit a single example into memory, e.g., we
are better off using model parallelism when process-
ing 100 samples of size 128× 128, independent of the
message exchange frequency.

In a next experiment we investigate the influence of
the temperature parameter ε on the tradeoff between
data parallelism and model parallelism. The results
are provided in Fig. 17. We observe the trends to be
very robust. This is also apparent when quantitatively
investigating the ratios for 100 training samples of size
128× 128 given in Tab. 2.
Frequency of transmission: In a next experiment we
investigate the occurring effects when exchanging in-
formation between machines at different frequencies
for different values of ε. We use a training set of
100 samples each of size 128 × 128 for this experi-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 12

10
0

10
1

10
2

0

0.5

1

1.5

1
2
5
10
25

Training instances

Ti
m

e
ra

ti
o

(a) ε = 0

10
0

10
1

10
2

0

0.5

1

1.5

1
2
5
10
25

Training instances

Ti
m

e
ra

ti
o

(b) ε = 0.01

10
0

10
1

10
2

0

0.5

1

1.5

1
2
5
10
25

Training instances

Ti
m

e
ra

ti
o

(c) ε = 1.0

Fig. 17. Time ratio of model parallelism over sample parallelism for a different number of training instances
having size 64× 64 (dashed) or 128× 128 (solid), exchange frequencies and temperature parameter ε.

0 1000 2000 3000

5

10

15

x 10
5

SampP
1
2
5
10
25

Time [s]

Pr
im

al

(a) ε = 0

0 1000 2000 3000

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

6

SampP
1
2
5
10
25

Time [s]

Pr
im

al

(b) ε = 0.01

0 1000 2000 3000

1.1

1.15

1.2

1.25

1.3

x 10
7

SampP
1
2
5
10
25

Time [s]

Pr
im

al

(c) ε = 1.0

Fig. 18. Primal over time for different exchange frequencies and temperature parameter ε.

ment. The results are provided in Fig. 18. Depend-
ing on the choice of the temperature parameter ε
we observe different message exchange frequencies
to be beneficial. We also compare the primal value
obtained using model parallel optimization to the one
achieved with sample parallelism which we refer to
using the abbreviation ‘SampP.’ Note that the pri-
mal value corresponds to the annealed log-likelihood,
hence illustrating the model fit to training data. We
observe model parallelism to be very beneficial for
the temperature parameter ε = 0.

To conclude the experimental section we showed
the benefits and disadvantages when distributing a
given problem onto multiple machines. An additional
notable advantage for model parallelism are the dis-
tributed resource requirements. Since only part of the
task is stored on a machine, memory requirements per
computer are lower.

7 DISCUSSION

For over a decade now, much effort has been de-
voted to finding efficient, yet (provably) convergent
inference algorithms for graphical models. Graph-
cuts and message-passing algorithms are amongst the
most popular inference techniques that have been
applied to solve computer vision problems. Sub-
modular functions have been constructed to target
these problems, as graph-cuts are exact in this setting.
We refer the reader to [2] for a detailed description
on optimality conditions. To solve multi-label prob-
lems, techniques that rely on selecting a set of moves
that solve at each step a binary problem have been
proposed, e.g., α-expansion [29] or fusion moves [30].
However, while the individual moves can be solved

to optimality, the algorithm is not guaranteed to find
the global optimum.

Several approaches have also been developed
to parallelize and distribute graph-cut algorithms.
Strandmark and Kahl [31] and Shekhovtsov and
Hlavac [32] proposed a parallel and distributed
graph-cut approach using dual decomposition. Their
method facilitates computation of larger problems by
partitioning the model onto multiple machines. Simi-
lar to their intention we aim at assigning the inference
task to multiple computers. Contrasting their work,
we presented a decomposition method for message-
passing algorithms to ensure applicability for non-
submodular potentials. This is important since non-
submodular potentials arise in applications such as
image editing [33] and segmentation [34].

Message passing algorithms like belief propagation
(BP) are exact when the underlying graphical model is
a tree without regard of the type of potentials [17]. To
allow for faster computation, Felzenszwalb et al. [35]
proposed a red-black graph coloring algorithm for
parallelizing BP on grid structures. Here, we extend
this strategy to general graphs and Hasse diagrams
using a greedy graph coloring algorithm, and employ
this extension for local computations within each
machine. The main drawback of the BP algorithm is
that it is not guaranteed to converge in many cases of
interest.

Convexity was extensively utilized in recent years
to develop message passing algorithms that are guar-
anteed to converge [36], [37], [38], [39], [40], [41], [16],
[15], [20]. However, as any other message-passing
algorithm, the main limitations are memory require-
ments and computational complexity. Although all

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 13

these algorithms can be trivially used in a parallel or
distributed manner (also referred as “inherently par-
allel”) they lose their convergence guarantees. There-
fore, [14] introduced a parallel convex sum-product
algorithm, which provably gives the optimal solution
for strictly concave entropies. This algorithm differs
from ours in important aspects: it propagates a (1/n)-
fraction of information through its messages, where
n is the number of nodes in the graph. It therefore
converges slowly even for small graphs, e.g., if n =
100, and it is numerically unstable for large graphs
which are the focus of this work. In contrast, we use
consistency messages to propagate a constant fraction
of the information. Moreover, this work is a natural
extension of the distributed inference algorithm in [8]
to the more general region graphs visualized by Hasse
diagrams.

A few years ago, Low et al. [42] presented
GraphLab, a framework for efficient and provably
convergent parallel algorithms. They show impressive
results on typical machine learning tasks such as belief
propagation by improving on the MapReduce abstrac-
tion. Unfortunately, their original implementation as-
sumed that all the data is stored in shared-memory,
which made it infeasible to apply an early version of
GraphLab to large scale problems. For example if we
were to use this early version for the largest example
shown in this paper we will need a computer with 50
gigabyte of memory. The shared memory assumption
is severe as it does not allow efficient distribution of
the task at hand to multiple machines. In contrast, we
distribute the memory requirements such that this is
no longer a burden.

More recently Low et al. [43] and Gonzalez et al. [44]
also presented algorithms for distributed memory
environments which are now part of Dato. Their
methodology does not take into account the differ-
ences between variables on the same computer and
variables that can only be reached via a slow network.
In contrast we employ dual decomposition to min-
imize the required transmissions between different
computers while maintaining convergence guaran-
tees.

Learning structured predictors has played a sig-
nificant role in computer vision. CRFs were first
described in [5] and SSVMs, M3Ns were developed
in [45], [3], [4]. These algorithms are “inherently par-
allel” as they can all partition the different training
instances to different computing nodes. In contrast,
our work also provides the means to distribute the
inference process of individual training instances.

In short the presented algorithms also extend [8],
[9] in that we now support the more general Hasse
diagrams. We further extend [6] in distributing the
problem to minimize transmission overhead when
considering distributed memory environments.

8 CONCLUSION

We have derived a distributed message passing algo-
rithm that is able to do inference in large scale graphical
models by dividing the computation and memory re-
quirements onto multiple machines. Importantly, the
convergence and optimality guarantees and proper-
ties of convex belief propagation are preserved by
introducing new types of messages that are sent be-
tween the different machines. We have demonstrated
the effectiveness of our approach in the task of stereo
reconstruction from high-resolution imagery as well
as denoising. The main benefit of our approach arises
from the use of multiple computers. Thus we expect
that running our algorithm within even larger clus-
ters, such as Amazon EC2, will result in orders of
magnitude further speed up.

While this work assumes the user to provide a
partitioning of the problem, we leave the task of
finding the best partitioning to future research.

To reproduce the experiments within this submis-
sion on your own set of computers we released
dSP sources and all the data on http://alexander-
schwing.de.

REFERENCES
[1] S. Brooks, A. Gelman, G. L. Jones, and X. Meng, Handbook of

Markov Chain Monte Carlo. Chapman & Hall, 2011.
[2] V. Kolmogorov and R. Zabih, “What energy functions can be

minimized via graph cuts?” PAMI, 2004.
[3] B. Taskar, C. Guestrin, and D. Koller, “Max-Margin Markov

Networks,” in Proc. NIPS, 2003.
[4] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun,

“Large Margin Methods for Structured and Interdependent
Output Variables,” JMLR, 2005.

[5] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling se-
quence data,” in Proc. ICML, 2001.

[6] T. Hazan and R. Urtasun, “A Primal-Dual Message-Passing
Algorithm for Approximated Large Scale Structured Predic-
tion,” in Proc. NIPS, 2010.

[7] O. Meshi, D. Sontag, T. Jaakkola, and A. Globerson, “Learning
Efficiently with Approximate inference via Dual Losses,” in
Proc. ICML, 2010.

[8] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun, “Dis-
tributed Message Passing for Large Scale Graphical Models,”
in Proc. CVPR, 2011.

[9] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun, “Dis-
tributed Structured Prediction for Big Data,” in NIPS Workshop
on Big Learning, 2012.

[10] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun,
“Globally Convergent Dual MAP LP Relaxation Solvers using
Fenchel-Young Margins,” in Proc. NIPS, 2012.

[11] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun, “Glob-
ally Convergent Parallel MAP LP Relaxation Solver using the
Frank-Wolfe Algorithm,” in Proc. ICML, 2014.

[12] W. Wiegerinck and T. Heskes, “Fractional belief propagation,”
in Proc. NIPS, 2003.

[13] Y. Weiss, C. Yanover, and T. Meltzer, “MAP Estimation, Lin-
ear Programming and Belief Propagation with Convex Free
Energies,” in Proc. UAI, 2007.

[14] T. Hazan and A. Shashua, “Convergent message-passing al-
gorithms for inference over general graphs with convex free
energy,” in Proc. UAI, 2008.

[15] T. Meltzer, A. Globerson, and Y. Weiss, “Convergent message
passing algorithms - a unifying view,” in Proc. UAI, 2009.

[16] T. Hazan and A. Shashua, “Norm-Product Belief Propa-
gation: Primal-Dual Message-Passing for LP-Relaxation and
Approximate-Inference,” Trans. on Information Theory, 2010.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH Z 14

[17] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers, 1988.

[18] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-
energy approximations and generalized belief propagation
algorithms,” Trans. on Information Theory, 2005.

[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge University Press, 2004.

[20] T. Hazan, J. Peng, and A. Shashua, “Tightening Fractional
Covering Upper Bounds on the Partition Function for High-
Order Region Graphs,” in Proc. UAI, 2012.

[21] D. P. Bertsekas, Nonlinear Programming - Second Edition.
Athena Scientific, 1999.

[22] C.-N. Yu and T. Joachims, “Learning Structural SVMs with
Latent Variables,” in Proc. ICML, 2009.

[23] A. Quattoni, S. Wang, L.-P. Morency, M. Collins, and T. Darrell,
“Hidden-state Conditional Random Fields,” PAMI, 2007.

[24] A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun, “Effi-
cient Structured Prediction with Latent Variables for General
Graphical Models,” in Proc. ICML, 2012.

[25] A. G. Schwing, “Inference and learning algorithms with appli-
cations to 3D indoor scene understanding,” Ph.D. dissertation,
ETH Zurich, 2014.

[26] D. Scharstein and R. Szeliski, “A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms,” IJCV,
2002.

[27] L.-C. Chen∗, A. G. Schwing∗, A. L. Yuille, and R. Urtasun,
“Learning Deep Structured Models,” in Proc. ICML, 2015, ∗
equal contribution.

[28] A. G. Schwing and R. Urtasun, “Fully Connected
Deep Structured Networks,” 2015, available on
http://arxiv.org/abs/1503.02351.

[29] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” PAMI, 2001.

[30] V. Lempitsky, C. Rother, and A. Blake, “Logcut-efficient graph
cut optimization for Markov random fields,” in Proc. ICCV,
2007.

[31] P. Strandmark and F. Kahl, “Parallel and distributed graph
cuts by dual decomposition,” in Proc. CVPR, 2010.

[32] A. Shekhovtsov and V. Hlavac, “A Distributed Min-
cut/Maxflow Algorithm Combining Path Augmentation and
Push-Relabel,” in Proc. EMMCVPR, 2011.

[33] Y. Pritch, E. Kav-Venaki, and S. Peleg, “Shift-map image
editing,” in Proc. ICCV, 2010.

[34] P. Kohli, L. Ladickỳ, and P. H. S. Torr, “Robust higher order
potentials for enforcing label consistency,” IJCV, 2009.

[35] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief
propagation for early vision,” IJCV, 2006.

[36] V. Kolmogorov, “Convergent tree-reweighted message passing
for energy minimization,” PAMI, 2006.

[37] T. Heskes, “Convexity arguments for efficient minimization of
the Bethe and Kikuchi free energies,” J. of AI Research, 2006.

[38] A. Globerson and T. S. Jaakkola, “Fixing max-product: con-
vergent message passing algorithms for MAP relaxations,” in
Proc. NIPS, 2007.

[39] N. Komodakis and N. Paragios, “Beyond loose LP-relaxations:
Optimizing MRFs by repairing cycles,” in Proc. ECCV, 2008.

[40] N. Komodakis, N. Paragios, and G. Tziritas, “MRF Energy
Minimization & Beyond via Dual Decomposition,” PAMI,
2010.

[41] T. Werner, “A linear programming approach to max-sum
problem: A review,” PAMI, 2007.

[42] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein, “Graphlab: A new parallel framework for
machine learning,” in Proc. UAI, 2010.

[43] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin,
and J. M. Hellerstein, “Distributed GraphLab: A Framework
for Machine Learning and Data Mining in the Cloud,” PVLDB,
2012.

[44] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed Graph-Parallel Computation on
Natural Graphs,” in Proc. OSDI, 2012.

[45] M. Collins, “Discriminative training methods for hidden
markov models: Theory and experiments with perceptron
algorithms,” in Proc. ACL, 2002.

Alexander G. Schwing is a postdoctoral fel-
low in the Computer Science department at
University of Toronto and also supported by
the Fields Institute. In 2014 he completed his
PhD at ETH Zurich which awarded his thesis
with the ETH medal. His area of research is
inference and learning algorithms for struc-
tured distributions.

Tamir Hazan received his PhD from the
Hebrew University of Jerusalem (2010) and
he is currently an assistant professor at the
University of Haifa, Israel. Tamir Hazans re-
search describes efficient methods for rea-
soning about structured models.

Marc Pollefeys is a full professor in the Dept.
of Computer Science of ETH Zurich since
2007. Before that he was on the faculty at the
University of North Carolina at Chapel Hill.
He obtained his PhD from the KU Leuven in
Belgium in 1999. His main area of research
is computer vision, but he is also active
in robotics, machine learning and computer
graphics. Dr. Pollefeys has received several
prizes for his research, including a Marr
prize, an NSF CAREER award, a Packard

Fellowship and a European Research Council Grant. He is the author
or co-author of more than 250 peer-reviewed publications. He was
the general chair of ECCV 2014 in Zurich and program chair of CVPR
2009. He is a fellow of the IEEE.

Raquel Urtasun is an assistant professor at
the Dept. of Computer Science, University of
Toronto. From 2009-2014 she was an assis-
tant professor at TTI-Chicago, a philanthrop-
ically endowed academic institute located in
the campus of the University of Chicago. She
was a visiting professor at ETH Zurich during
the spring semester of 2010. Previously, she
was a postdoctoral research scientist at UC
Berkeley and ICSI and a postdoctoral asso-
ciate at the Computer Science and Artificial

Intelligence Laboratory (CSAIL) at MIT. Raquel Urtasun completed
her PhD at the Computer Vision Laboratory, at EPFL, Switzerland
in 2006 working with Pascal Fua and David Fleet at the University
of Toronto. She has been area chair of multiple machine learning
and vision conferences (i.e., NIPS, UAI, ICML, CVPR, ECCV, ICCV),
she is on the editorial board of the International Journal of Computer
Vision (IJCV), and served in the committee of numerous international
conferences. She has won multiple awards including the best paper
runner up at CVPR 2013, the Connaught New Researcher Award
in 2014 and the Google Faculty Research Award and the Ministry
of Research & Innovation Early Research Award in 2015. Her
major interests are statistical machine learning, computer vision and
robotics, with a particular interest in structured prediction and its
application to autonomous driving.

