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Abstract
In this paper we exploit natural sentential descriptions

of RGB-D scenes in order to improve 3D semantic parsing.
Importantly, in doing so, we reason about which particular
object each noun/pronoun is referring to in the image. This
allows us to utilize visual information in order to disam-
biguate the so-called coreference resolution problem that
arises in text. Towards this goal, we propose a structure
prediction model that exploits potentials computed from text
and RGB-D imagery to reason about the class of the 3D ob-
jects, the scene type, as well as to align the nouns/pronouns
with the referred visual objects. We demonstrate the effec-
tiveness of our approach on the challenging NYU-RGBD v2
dataset, which we enrich with natural lingual descriptions.
We show that our approach significantly improves 3D de-
tection and scene classification accuracy, and is able to re-
liably estimate the text-to-image alignment. Furthermore,
by using textual and visual information, we are also able to
successfully deal with coreference in text, improving upon
the state-of-the-art Stanford coreference system [15].

1. Introduction
Imagine a scenario where you wake up late on a Satur-

day morning and all you want is for your personal robot to
bring you a shot of bloody mary. You could say “It is in the
upper cabinet in the kitchen just above the stove. I think it is
hidden behind the box of cookies, which, please, bring to me
as well.” For a human, finding the mentioned items based
on this information should be an easy task. The description
tells us that there are at least two cabinets in the kitchen, one
in the upper part. There is also a stove and above it is a cab-
inet holding a box and the desired item should be behind it.
For autonomous systems, sentential descriptions can serve
as rich source of information. Text can help us parse the
visual scene in a more informed way, and can facilitate for
example new ways of active labeling and learning.

Understanding descriptions and linking them to visual
content is fundamental to enable applications such as se-
mantic visual search and human-robot interaction. Using
language to provide annotations and guide an automatic

Figure 1. Our model uses lingual descriptions (a string of depen-
dent sentences) to improve visual scene parsing as well as to de-
termine which visual objects the text is referring to. We also deal
with coreference within text (e.g., pronouns like “it” or “them”).

system is key for the deployment of such systems. To date,
however, attempts to utilize more complex natural descrip-
tions are rare. This is due to the inherent difficulties of both
natural language processing and visual recognition, as well
as the lack of datasets that contain such image descriptions
linked to visual annotations (e.g., segmentation, detection).

Most recent approaches that employ text and images fo-
cus on generation tasks, where given an image one is inter-
ested in generating a lingual description of the scene [8, 12,
21, 2], or given a sentence, retrieving related images [29].
An exception is [9], which employed nouns and preposi-
tions extracted from short sentences to boost the perfor-
mance of object detection and semantic segmentation.

In this paper we are interested in exploiting natural lin-
gual descriptions of RGB-D scenes in order to improve 3D
object detection as well as to determine which particular
object each noun/pronoun is referring to in the image. In
order to do so, we need to solve the text to image alignment
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problem, as illustrated with the arrows in Fig. 1. Towards
this goal, we propose a holistic model that reasons jointly
about the visual scene and as well as text that accompanies
the image. Our model is a Markov Random Field (MRF)
which reasons about the type of scene, 3D detection as well
as to which visual concept each noun/pronoun refers to. We
demonstrate the effectiveness of our approach in the chal-
lenging NYU-RGBD v2 dataset [27] which we enrich with
natural lingual descriptions. Our model is able to signif-
icantly improve 3D detection and scene classification ac-
curacy over the visual-only baseline. Furthermore, it suc-
cessfully deals with the text to image alignment problem, as
well as with coreference resolution in text, improving over
the state-of-the-art Stanford coreference system [15].

2. Related Work
There has been substantial work in automatic caption-

ing or description generation of images [12, 13, 14] and
video [2]. Text has also been used as a form of weak
supervision to learn visual models. In [35], representa-
tions for word meanings are learned from short video clips
paired with sentences by learning the correspondence be-
tween words and video concepts in an unsupervised fash-
ion. Ramanathan et al. [23] use textual descriptions of
videos to learn action and role models. Matuszek et al. [19]
jointly learn language and perception models for grounded
attribute induction. In [10], prepositional relations and
adjectives are used to learn object detection models from
weakly labeled data. Natural descriptions have also recently
been used as semantic queries for video retrieval [17].

Very little work has been devoted to exploiting text to
improve semantic visual understanding beyond simple im-
age classification [22], or tag generation [7, 3]. Notable
exceptions are [16, 28], which exploit weak labels in the
form of tags to learn models that reason about classifica-
tion, annotation as well as segmentation. The work closest
to us is [9], where short sentences are parsed into nouns
and prepositions, which are used to generate potentials in
a holistic scene model [34]. However, the approach does
not identify which instance the sentence is talking about,
and for example whenever a sentence mentions a “car”, the
model boosts all car hypotheses in the image. In contrast,
here we are interested in aligning nouns and pronouns in
text with the referred objects in the image. Further, in our
work we use complex natural descriptions composed of sev-
eral sentences, as opposed to single sentences used in [9],
where additional challenges such as coreference emerge.

Only a few datasets contain images and text. The UIUC
dataset [8] augments a subset of PASCAL’08 with 3 inde-
pendent sentences (each by a different annotator) on aver-
age per image, thus typically not providing very rich de-
scriptions. Other datasets either do not contain visual labels
(e.g., Im2Text [21]) or tackle a different problem, e.g., ac-

tion recognition. We expect the dataset we collect here to
be of great use to both the NLP and vision communities.

3. Text to Image Alignement Model
Our input is an RGB-D image of an indoor scene as well

as its multi-sentence description. Out goal is to jointly parse
the 3D visual scene and the text describing the image, as
well as to match the text to the visual concepts, perform-
ing text to image alignment. We frame the problem as the
one of inference in a Markov Random Field (MRF) which
reasons about the type of scene, 3D detection as well as for
each noun/pronoun of interest which visual concept it cor-
respond to. To cope with the exponentially many detection
candidates we use bottom-up grouping to generate a smaller
set of “objectness” cuboid hypothesis, and restrict the MRF
to reason about those. In the following, we describe how
we parse the text in Sec. 3.1, generate 3D object candidates
in Sec 3.2, and explain our MRF model in Sec. 3.3.

3.1. Parsing Textual Descriptions

We extract part of speech tags (POS) of all sentences in
a description using the Stanford POS Tagger for English
language [31]. Type dependencies were obtained using [6].
Nouns: We extract nouns from the POS, and match them
to the object classes of interest. In order to maximize the
number of matched instances, we match nouns not only to
the name of the class, but also to its synonyms and plural
forms. We obtain the synonyms via WordNet as well as
from our text ground-truth (GT). In particular, we add to
our list of synonyms all words that were annotated as object
class of interest in the training split of the text GT.
Attributes: To get attributes for a noun we look up all
amod and nsubj that modify a noun of interest in Stan-
ford’s parser dependency information. Here amod means
an adjectival modifier, e.g., amod(brown, table), and nsubj
is a nominal subject, e.g. for “The table is brown” we
have nsubj(brown,table). The parser can handle multiple
attributes per noun, which we exploit.
Pronouns: Since the sentences in our descriptions are not
independent but typically refer to the same entity multiple
times, we are faced with the so-called coreference resolu-
tion problem. For example, in “A table is in the room. Next
to it is a chair.”, both table and it refer to the same ob-
ject and thus form a coreference. To address this, we use
the Stanford coreference system [15] to predict clusters of
coreferrent mentions. This is a state-of-the-art, rule-based
and sieve-based system which works well on out-of-domain
data. We generate multiple coreference hypotheses1 in or-
der to allow the MRF model to correct for some of the coref-
erence mistakes using both textual and visual information.

1We ran [15] with different values of maxdist parameter which is the
maximum sentence distance allowed between two mentions for resolution.



“Living room with two blue 
sofas next to each other and a 
table in front of them. By the 
back wall is a television stand.” 
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Figure 2. Our model. Black nodes and arrows represent visual
information [18], blue are text and alignment related variables.

Pronouns are tagged as PRP by the Stanford parser. We
take all PRP occurrences that are linked to a noun of interest
in our coreference clusters. We extract attributes for each
such pronoun just as what we do for a noun.

3.2. Visual Parsing

Our approach works with a set of object candidates rep-
resented as 3D cuboids and reasons about the class of each
cuboid within our joint visual and textual MRF model. We
follow [18] to get cuboid candidates by generating ranked
3D “objectness” regions that respect intensity and occlusion
boundaries in 3D. To get the regions we use CPMC [5] ex-
tended to 3D [18]. Each region is then projected to 3D via
depth and a cuboid is fit around it by requiring the horizon-
tal faces to be parallel to the ground. In our experiments,
we vary the number K of cuboid hypotheses per image.

3.3. Our Joint Visual and Textual Model

We define a Markov Random Field (MRF) which rea-
sons about the type of scene, 3D detection as well as for
each noun/pronoun of interest which visual concept it cor-
respond to. More formally, let s ∈ {1, . . . , S} be a ran-
dom variable encoding the type of scene, and let yi ∈
{0, · · · , C}, with i = 1, · · · ,K, be a random variable asso-
ciated with a candidate cuboid, encoding its semantic class.
Here yi = 0 indicates that the cuboid is a false positive.
Let T be the textual information and let I be the RGB-D
image evidence. For each noun/pronoun corresponding to
a class of interest we generate an indexing random variable
aj ∈ {0, · · · ,K} that selects the cuboid that the noun refers
to. The role of variables {aj} is thus to align text with visual
objects. Note that aj = 0 means that there is no cuboid cor-
responding to the noun. This could arise in cases where our
set of candidate cuboids does not contain the object that the
noun describes, or the noun refers to an virtual object that is
in fact not visible in the scene. For plural forms we generate
as many a variables as the cardinality of the (pro)noun. Our

MRF energy sums the energy terms exploiting the image
and textual information while reasoning about the text to
image alignment. The graphical model is depicted in Fig. 2.
We now describe the potentials in more detail.

3.3.1 Visual Potentials
Our visual potentials are based on [18] and we only briefly
describe them here for completeness.

Scene Appearance: To incorporate global information
we define a unary potential over the scene label, computed
by means of a logistic on top of a classifier score [33].

Cuboid class potential: We employ CPMC-o2p [4] to
obtain detection scores. For the background class, we use
a constant threshold. We use an additional classifier based
on the segmentation potentials of [24], which classify su-
perpixels. To compute our cuboid scores, we compute the
weighted sum of scores for the superperpixels falling within
the convex hull of the cuboid in the image plane.

Object geometry: We capture object’s geometric proper-
ties such as height, width, volume, as well as its relation to
the scene layout, e.g., distance to the wall. We train an SVM
classifier with an RBF kernel for each class, and use the re-
sultant scores as unary potentials for the candidate cubes.

Semantic context: We use two co-occurrence relation-
ships: scene-object and object-object. The potential values
are estimated by counting the co-occurrence frequencies.

Geometric context: We use two potentials to exploit the
spatial relations between cuboids in 3D, encoding close-to
and on-top-of relations. The potential values are simply the
empirical counts for each relation.

3.3.2 Text-to-Image Alignment Potentials
A sentence describing an object can carry rich information
about its properties, as well as 3D relations within the scene.
For example, a sentence “There is a wide wooden table by
the left wall.” provides size and color information about the
table as well as roughly where it can be found in the room.
We now describe how we encode this in the model.

Scene from Text: In their description of the image, peo-
ple frequently provide information about the type of scene.
This can be either direct, e.g., “This image shows a child’s
bedroom.”, or indirect “There are two single beds in this
room”. We encode this with the following potential:

φscene(s = u|T ) = γu, (1)

where γu is the score of an SVM classifier (RBF kernel). To
compute its features, we first gathered occurrence statistics
for words in the training corpus and took only words that
exceeded a minimum occurrence threshold. We did not use
stop words such as and or the. We formed a feature vec-
tor with an 0/1 entry for each word, depending whether the



mantel counter toilet sink bathtub bed headb. table shelf cabinet sofa chair chest refrig. oven microw. blinds curtain board monitor printer
% mentioned 41.4 46.4 90.6 78.2 55.6 79.4 9.2 53.4 32.9 27.7 51.2 31.6 45.7 55.7 31.4 56.0 26.2 23.0 28.6 66.7 44.3

# nouns 19 948 120 219 84 547 7 1037 240 1105 375 631 131 68 57 46 41 74 64 226 58
# of coref 3 71 28 49 11 145 0 212 27 129 80 57 8 7 7 11 1 2 8 29 8

Table 1. Dataset statistics. First row: Number of times an object class is mentioned in text relative to all visual occurrences of that class.
Second row: The number of noun mentions for each class. Third row: Number of coreference occurrences for each class.

description contained the word or not. For nouns referring
to scene types we merged all synonym words (e.g., “dining
room”, “dining area”) into one entry of the feature vector.

Alignment: This unary potential encodes the likelihood
that the j-th relevant noun/pronoun is referring to the i-th
cuboid in our candidate set. We use the score of a classifier,

φalignao (aj = i|I, T ) = score(aj , i), (2)

which exploits several visual features representing the i-th
cuboid, such as its color, aspect ratio, distance to wall, and
textual features representing information relevant to aj’s
noun, such as “wide”, “brown”, “is close to wall”. On the
visual side, we use 10 geometric features to describe each
cuboid (as in Sec. 3.3.1), as well as the score of a color clas-
sifier for six main colors that people most commonly used
in their descriptions (white, blue, red, black, brown, bright).
To exploit rough class information we also use the cuboid’s
segmentation score (Sec. 3.3.1). Since people typically de-
scribe more salient objects (bigger and image centered), we
use the dimensions of the object’s 2D bounding box (a box
around the cuboid projected to the image), and its x and y
image coordinates as additional features. We also use the
center of the cuboid in 3D to capture the fact that people
tend to describe objects that are closer to the viewer.

On the text side, we use a class feature which is 1 for aj’s
noun’s class and 0 for other object classes of interest. We
also use a color feature, which is 1 if the noun’s adjective
is a particular color, and 0 otherwise. To use information
about the object’s position in the room, we extract 9 geo-
metric classes from text: next-to-wall, in-background, in-
foreground, middle-room, on-floor, on-wall, left-side-room,
right-side-room, in-corner-room, with several synonyms for
each class. We form a feature that is 1 if the sentence with
aj mentions a particular geometric class, and 0 otherwise.
We train an SVM classifier (RBF kernel) and transform the
scores via a logistic function (scale 1) to form the potentials.

Size: This potential encodes how likely the j-th relevant
noun/pronoun refers to the i-th cuboid, given that it was
mentioned to have a particular physical size in text:

φsizeao (aj = i|I, T , size(j) = sz) = scoresz(class(j), i)
(3)

We train a classifier for two sizes, big and small, using geo-
metric features such as object’s width and height in 3D. We
use several synonyms for both, including e.g. double, king,
single, typical adjectives for describing beds. Note that size
depends on object class: a “big cabinet” is not of the same
physical size as a “big mug”. Since we do not have enough

training examples for (size,class) pairs, we add another fea-
ture to the classifier which is 1 if the noun comes from a
group of big objects (e.g., bed, cabinet) and 0 otherwise.
Text-cuboid Compatibility: This potential ensures that
the class of the cuboid that a particular aj selects matches
the aj’s noun. We thus form a noun-class compatibility po-
tential between aj and each cuboid:

φcompat.
ao (aj = i, yi = c) = stats(class(j), c) (4)

When aj corresponds to a pronoun we find a noun from
its coreference cluster and take its class. We use empiri-
cal counts as our potential rather than a hard constraint as
people confuse certain types of classes. This is aggravated
by the fact that our annotators were not necessarily native
speakers. For example people would say “chest” instead of
“cabinet”. These errors are challenges of natural text.
Variety: Notice that our potentials so far are exactly the
same for all aj corresponding to the same plural mention,
e.g., “Two chairs in the room.” However, since they are re-
ferring to different objects in the scene we encourage them
to point to different cuboids via a pairwise potential:

φvarietya,a (aj , ak|T ) =

{
−1 if aj = ak

0 otherwise
(5)

3.4. Learning and Inference

Inference in our model is NP-hard. We use distributed
convex belief propagation (DCBP) [25] to perform approx-
imate inference. For learning the weights for each potential
in our MRF, we use the primal-dual method of [11], specif-
ically, we use the implementation of [26].

We define the loss function as a sum of unary and pair-
wise terms. In particular, we define a 0-1 loss over the scene
type, and a 0-1 loss over the cuboid detections [18]. For the
assignment variables aj we use a thresholded loss:

∆a(aj , âj) =

{
1 if IOU(aj , âj) ≤ 0.5

0 otherwise
(6)

which penalizes alignments with cuboids that have less than
50% overlap with the cuboids in the ground-truth align-
ments. For plural forms, the loss is 0 if aj selects any of
the cuboids in the noun’s ground-truth alignment. In order
to impose diversity, we also use a pairwise loss requiring
that each pair (aj , ak), where aj and ak correspond to dif-
ferent object instances for a plural noun mention, needs to
select two different cuboids:

∆plural(aj , ak) =

{
1 if aj = ak

0 otherwise
(7)



# sent # words min # sent max sent min words max words
3.2 39.1 1 10 6 144

# nouns of interest # pronouns # scene mentioned scene correct
3.4 0.53 0.48 83%

Table 2. Statistics per description.
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Figure 3. Scene classif. accuracy with respect to NYU annotation.
We evaluate acc. only when a scene is mentioned in a description.

4. RGB-D Dataset with Complex Descriptions

Having rich data is important in order to enable auto-
matic systems to properly ground language to visual con-
cepts. Towards this goal, we took the NYUv2 dataset [27]
that contains 1449 RGB-D images of indoor scenes, and
collected sentential descriptions for each image. We asked
the annotators (MTurkers) to describe an image to someone
who does not see it to give her/him a vivid impression of
what the scene looks like. The annotators were only shown
the image and had no idea of what the classes of interest
were. For quality control, we checked all descriptions, and
fixed those that were grammatically incorrect, while pre-
serving the content. The collected descriptions go beyond
current datasets where typically only a short sentence is
available. They vary from one to ten sentences per anno-
tator per image, and typically contain rich information and
multiple mentions to objects. Fig. 6 shows examples.

We collected two types of ground-truth annotations. The
first one is visual, where we linked the nouns and pronouns
to the visual objects they describe. This gives us ground-
truth alignments between text and images. We used in-
house annotators to ensure quality. We took a conservative
approach and labeled only the non-ambiguous referrals. For
plural forms we linked the (pro)noun to multiple objects.

The second annotation is text based. Here, the anno-
tators were shown only text and not the image, and thus
had to make a decision based on the syntactic and seman-
tic textual information alone. For all nouns that refer to the
classes of interest we annotated which object class it is, tak-
ing into account synonyms. All other nouns were marked
as background. For each noun we also annotated attributes
(i.e., color and size) that refer to it. We also annotated co-
referrals in cases where different words talk about the same
entity by linking the head (representative) noun in a descrip-
tion to all its noun/pronoun occurrences. We annotated at-

precision recall F-measure
object class 94.7% 94.2% 94.4%

scene 85.7% 85.7% 85.7%
color 64.2% 93.0% 75.9%
size 55.8% 96.0% 70.6%

Table 3. Parser accuracy (based on Stanford’s parser [31])

MUC B3

Method precision recall F1 precision recall F1

Stanford [15] 61.56 62.59 62.07 75.05 76.15 75.59
Ours 83.69 51.08 63.44 88.42 70.02 78.15

Table 4. Co-reference accuracy of [15] and our model.

tributes for the linked pronouns as well. Our annotation
was semi-automatic, where we generated candidates using
the Stanford parser [31, 15] and manually corrected the mis-
takes. We used WordNet to generate synonyms.

We analyze our dataset next. Table 2 shows simple statis-
tics: there are on average 3 sentences per description where
each description has on average 39 words. Descriptions
contain up to 10 sentences and 144 words. A pronoun be-
longing to a class of interest appears in every second de-
scription. Scene type is explicitly mentioned in half of the
descriptions. Table 1 shows per class statistics, e.g. percent-
age of times a noun refers to a visual object with respect to
the number of all visual objects of that class. Interestingly, a
“toilet” is talked about 91% of times it is visible in a scene,
while “curtains” are talked about only 23% of times. Fig. 4
shows size histograms for the mentioned objects, where
size is the square root of the number of pixels which the
linked object region contains. We separate the statistics into
whether the noun was mentioned in the first, second, third,
or fourth and higher sentence. An interesting observation
is that the sizes of mentioned objects become smaller with
the sentence ID. This is reasonable as the most salient (typ-
ically bigger) objects are described first. We also show a
plot for sizes of objects that are mentioned more than once
per description. We can see that the histogram is pushed
to the right, meaning that people corefer to bigger objects
more often. As shown in Fig. 5, people first describe the
closer and centered objects, and start describing other parts
of the scene in later sentences. Finally, in Fig. 3 we evaluate
human scene classification accuracy against NYU ground-
truth. We evaluate accuracy only when a scene is explicitly
mentioned in a description. While “bathroom” is always a
“bathroom”, there is confusion for some other scenes, e.g. a
“playroom” is typically mentioned to be a “living room”.

5. Experimental Evaluation
We test our model on the NYUv2 dataset augmented

with our descriptions. For 3D object detection we use the
same class set of 21 objects as in [18], where ground-truth
has been obtained by robust fitting of cuboids around object
regions projected to 3D via depth. For each image NYU
also has a scene label, with 13 scene classes altogether.



17 41 65 89 114 138 162 186 211 235
0

200

400

600

800

1000

Size of objects (sent 1)
oc

cu
re

nc
e

17 41 65 89 114 138 162 186 211 235
0

200

400

600

800

1000

1200

Size of objects (sent 2)

oc
cu

re
nc

e

17 41 65 89 114 138 162 186 211 235
0

100

200

300

400

Size of objects (sent 3)

oc
cu

re
nc

e

17 41 65 89 114 138 162 186 211 235
0

20

40

60

80

100

120

Size of objects (sent 4)

oc
cu

re
nc

e

17 41 65 89 114 138 162 186 211 235
0

50

100

150

200

250

300

Size of multiple mentioned obj

oc
cu

re
nc

e

Figure 4. Statistics of sizes of described object regions give the sequential sentence number in a description.
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Figure 5. Top: Location statistics of mentioned objects given
which sentence mentions them. Bottom: Statistics of mentioned
objects in 3D. We translate each scene to have the ground at y = 0.

5.1. Performance metrics
Cuboid: An object hypotheses is said to be correct if it
overlaps with a ground-truth object (of the same class) more
than 50% IOU. Detector’s performance is then measured in
terms of the F-measure averaged across the classes.
Text-cuboid alignment: We say that an alignment aj = i
is correct if IOU between the i-th candidate cuboid and the
cuboid in aj’s GT alignment is higher than 50%. For plural
nouns with several {ajk}, we take an union of all cuboids ik
in the inferred alignments: ajk = ik. We compute IOU be-
tween this union and the union of cuboids in the GT align-
ment for this noun. We evaluate via F-measure. We use
two metrics, one for all alignments in our GT, including
nouns/pronouns, and one for only the alignment of nouns.
Scene: Accuracy is computed as the average along the di-
agonal of the confusion matrix.
Text parser: In order to understand the performance of
our model, it is important to sanity check the performance
of the Stanford-based text parser in our setting. The results
are shown in Table 3 in terms of F-measure. We can see that
while the object and scene performance is relatively good,
parsing of the attributes is legging behind.
Coreference metrics: We evaluate the predicted corefer-
ence clusters with MUC [32] and B3 [1] metrics. MUC
is a link-based metric that measures how many predicted
mention clusters need to be merged to cover the gold (GT)
clusters. B3 is a mention-based metric which computes pre-
cision and recall for each mention as the overlap between
its predicted and gold cluster divided by the size of the pre-
dicted and gold cluster, respectively. As shown by previ-

ous work [20], the MUC metric is somewhat biased towards
large clusters, whereas the B3 metric is biased towards sin-
gleton clusters. We thus report both metrics simultaneously,
so as to ensure a fair and balanced evaluation. To compute
the metrics we need a matching between the GT and pre-
dicted mentions. We consider a GT and predicted mention
to be matched if the GT’s head-word is contained in the pre-
diction’s mention span.2 All unmatched mentions (GT and
predicted) are penalized appropriately by our metrics.3

5.2. Results

To examine the performance of our model in isolation,
we first test it on the GT cuboids. In this way, the errors
introduced in the detection stage are not considered. We
measure the performance in terms of classification accu-
racy, i.e., the percentage of correctly classified objects. We
consider various configurations of our model that incorpo-
rate different subsets of potentials, so as to analyze their
individual effect. The results are presented in Table 5. By
“+” we denote that we added a potential to the setting in the
previous line. Here “a coref” denotes that we used the a
variables also for the coreferred words (see Sec. 3.1) as op-
posed to just for the explicit noun mentions. We can observe
that overall our improvement over the visual-only model is
significant, 14.4% for scene classification and 6.4% for ob-
ject detection. Further, the full model improves 2.3% over
the unary-based alignment when evaluating nouns only (de-
noted with align N in the Table) as well as for both nouns
and pronouns (denoted with align N+P).

For real cuboids, we test our performance by varying the
number K of cuboid hypotheses per scene. The results are
shown in Table 5 showing that performance in all tasks im-
proves more than 5% over the baseline. The joint model
also boosts the text to cuboid alignment performance over
unary only (which can be considered as an intelligent text-
visual baseline), most notably for K = 15. Performance
for each class is shown in Table 6, showing a big boost in
accuracy for certain classes. Note that for GT cuboids, Ta-
ble 5 shows classification accuracy, while Table 6 shows
F-measure. For real cuboids both tables show F-measure.

Note that our model can also re-reason about coreference
in text by exploiting the visual information. This is done via

2This is because we start with “visual” head-words as the gold-standard
mentions. In case of ties, we prefer mentions which are longer (if they have
the same head-word) or closer to the head-word of the matching mention.

3We use a version of the B3 metric called B3all, defined by [30] that
can handle (and suitably penalize) unmatched GT and predicted mentions.



Ground-truth cuboids our cuboids (K = 8) our cuboids (K = 15)
scene object align. N align N+P scene object align N align N+P scene object align N align N+P

[18] 58.1 60.5 – – 38.1 44.3 – – 54.4 37.3 – –
random assign. – – 15.8 15.3 – – 5.9 5.7 – – 4.7 4.6
assign. to bckg. – – 7.5 7.3 – – 7.7 7.5 – – 7.7 7.5
+ scene text 67.1 60.7 – – 62.4 44.3 – – 61.6 37.3 – –
+ a unary 67.1 60.6 51.4 49.7 62.5 44.3 20.4 19.8 60.9 37.3 20.4 19.7
+ a size 67.1 60.6 51.6 49.9 62.5 44.3 20.4 19.7 60.9 37.3 20.4 19.8
+ a-to-cuboid 72.2 66.8 53.2 51.5 67.0 49.1 24.0 23.2 61.9 43.5 24.8 24.0
+ a coref 72.3 67.1 53.6 51.8 67.1 48.8 23.5 22.7 61.9 43.4 24.9 24.1
+ a variability 72.5 67.0 53.7 52.0 67.1 48.7 23.5 22.8 61.6 44.1 25.1 24.3

Table 5. Results with the baseline and various instantiations of our model. Here assign N means noun-cuboid assignment accuracy (F
measure), and assign N+P where we also evaluate assignment of pronouns to cuboids. K means the number of cuboid candidates used.

the inferred {aj} variables: each aj in our MRF selects a
cuboid which the corresponding (pro)noun talks about. We
then say that different a variables selecting the same cuboid
form a coreference cluster. Table 4 shows the accuracy of
the Stanford’s coreference system [15] and our approach.
Note that in our evaluation we discard (in Stanford’s and
our output) all predicted clusters that contain only non-gold
mentions. This is because our ground-truth contains coref-
erence annotation only for 21 classes of interest, and we do
not want to penalize precision outside of these classes, espe-
cially for the Stanford system which is class agnostic. Our
results show that we can improve over a text-only state-of-
the-art system [15] via a joint text-visual model. This is, to
the best of our knowledge, the first result of this kind.

6. Conclusions
We proposed a holistic MRF model which reasons about

3D object detection, scene classification and alignment
between text and visual objects. We showed a significant
improvement over the baselines in challenging scenarios in
terms of both visual scene parsing, text to image alignment
and coreference resolution. In future work, we plan to em-
ploy temporal information as well, while at the same time
reasoning over a larger set of objects, stuff and verb classes.

Ack.: This work was partially supported by ONR N00014-13-1-0721.
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