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Abstract. In this paper we investigate the problem of exploiting mul-
tiple sources of information for object recognition tasks when additional
modalities that are not present in the labeled training set are available for
inference. This scenario is common to many robotics sensing applications
and is in contrast with the assumption made by existing approaches that
require at least some labeled examples for each modality. To leverage the
previously unseen features, we make use of the unlabeled data to learn a
mapping from the existing modalities to the new ones. This allows us to
predict the missing data for the labeled examples and exploit all modal-
ities using multiple kernel learning. We demonstrate the effectiveness of
our approach on several multi-modal tasks including object recognition
from multi-resolution imagery, grayscale and color images, as well as im-
ages and text. Our approach outperforms multiple kernel learning on
the original modalities, as well as nearest-neighbor and bootstrapping
schemes.

1 Introduction

Recent advances in object recognition have shown that exploiting multiple sources
of information could significantly improve recognition performance. This is the
case when relying either on different image features [1–3], or on multiple modal-
ities such as images and text [4–6]. Typically, the different inputs are combined
either via kernels (i.e., multiple kernel learning) [1–3, 7] or by voting schemes
[8, 9]. While these techniques have proven successful, they assume that all the
modalities (features) are present during both training and inference.

However, this assumption is often violated in more dynamic scenarios where
new modalities are added during inference. This is common in robotics appli-
cations, where a robot can be equipped with new sensors (e.g., high resolution
cameras, laser range finders). Even though existing techniques can handle a cer-
tain degree of missing data, they all require some labeled examples for each
modality. As a consequence, the only way for them to exploit these new modal-
ities is to manually label some examples and re-train the classifier.

In this paper, we tackle the problem of exploiting novel modalities that are
present only at test time for which no labeled samples are provided (see Fig. 1).
This scenario is particularly challenging since the number of unlabeled exam-
ples might be small. To be able to leverage the previously unseen features, we
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Fig. 1. Exploiting unseen modalities: In this paper we propose a new object recog-
nition approach that can leverage additional modalities that are fully unlabeled. The
example above illustrates how additional unlabeled high-resolution images let us sig-
nificantly boost the classification performance over the low-resolution feature channel.
Similar behavior is shown in our experiments when adding unlabeled color images to
grayscale ones, and when using text in conjunction with images.

assume that the conditional distribution of the new modalities given the exist-
ing ones is stationary. This is similar in spirit to the assumption typically made
by semi-supervised learning techniques that the labeled and unlabeled examples
are drawn from the same distribution. This lets us exploit the unlabeled data to
learn a non-linear mapping from the existing modalities to the novel ones. From
the resulting mapping, we “hallucinate” the missing data on the labeled training
examples. This allows us to exploit the full potential of multiple kernel learning
by using both old and new modalities.

As a result, our classifier improves over the original one by effectively making
use of all the available modalities while avoiding the burden of manually label-
ing new examples. This is of crucial importance to make recognition systems
practical in applications such as personal robotics, where we expect the users to
update their robot, but cannot expect them to label a set of examples each time
a new sensor is added.

We demonstrate the effectiveness our approach on a variety of real-world
tasks: we exploit unlabeled high-resolution images to improve webcam object
recognition, we utilize unlabeled color images for grayscale object recognition,
we use unlabeled text to improve visual classification, and we exploit unlabeled
images for sense disambiguation in the text domain. In all these scenarios we
show that our method significantly outperforms multiple kernel learning on the
labeled modalities, as well as nearest-neighbor and bootstrapping schemes.

2 Related work

Many techniques have been proposed that exploit multiple feature cues or in-
formation sources for performing object recognition. A popular approach is to
use multiple kernel learning (MKL) either in an SVM framework [1, 3] or in a
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Gaussian processes probabilistic framework [2]. Voting schemes have also been
proposed for multi-feature object recognition [9, 8]. In [9] the implicit shape
model (ISM) was extended to include multiple features, while in [8] a naive-Bayes
nearest-neighbor classifier within a voting-based scheme was utilized. These mul-
tiple feature recognition approaches have been shown to be highly beneficial and
lead to state-of-the-art performance on several challenging problems [7]. How-
ever, these approaches have focused on supervised or semi-supervised scenarios
where at least some labels are provided for each modality, and cannot exploit
additional unsupervised modalities available only at test time.

Semi-supervised multi-view learning approaches have been used to exploit
both labeled and unlabeled data. In [10] co-training was used to learn an ob-
ject detector. Bayesian co-training was explored in [11] for instance-level object
recognition. Similarly, multi-view bootstrapping schemes where used in [12] to
transcribed speech and video features for video concept detection, and in [13] to
learn audio-visual speech and gesture classifiers. Still, most of these approaches
make the assumption that at least some labels are provided for each modality.
The exception being cross-modal bootstrapping [13] that can leverage a classi-
fier from a single view to learn a multi-view classifier. However, as demonstrated
in our experiments this approach does not take full advantage of the unlabeled
modalities.

Methods for learning a joint latent space from multiple modalities have also
been proposed. In [4, 5] latent Dirichlet allocation (LDA) was used to perform vi-
sual sense disambiguation using unsupervised text and images. In [14] a transfer
learning approach was proposed to learn a discriminatively trained latent space
over images and their captions. Such methods can be seen as complementary
to our approach in that we also exploit a form of information transfer between
modalities to infer the missing ones. Yet, to our knowledge, no previous approach
has considered the problem of having modalities for which no labeled examples
are provided, and this is the first attempt to do so.

The most related work to ours is probably [6] where they employ a nearest-
neighbor approach to infer text histograms from images using a large external
collection of images and text captured from the web. This is different from our
approach in that their method is specifically designed to infer text and assumes
that a very large dataset (i.e., hundreds of thousands of examples) is available. As
evidenced by our experiments, our approach significantly improves over nearest-
neighbor inference across a wide range of problems.

3 Exploiting unseen modalities

In this section, we present our approach to exploiting new modalities at test
time even though there is no labeled data for them. Towards this end, we show
how to hallucinate the missing modalities for the labeled examples by learning
a mapping from the old modalities to the new ones from the unlabeled data.
Given these hallucinated modalities, we propose a framework that combines the
different sources of information using probabilistic multiple kernel learning. We
then introduce a representation of the novel modalities that lets us exploit the full
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potential of non-linear kernels recently developed for object recognition, while
still making regression possible. Finally, we present a bootstrapping algorithm
that further improves the performance of our classifier.

3.1 “Hallucinating” the missing modalities

To leverage the availability of fully unsupervised modalities for classification, we
propose to infer these missing modalities for the labeled examples and use them
in conjunction with the old modalities in a probabilistic multiple kernel learning
framework. In this section we show how to hallucinate the missing modalities.

More formally, let X = [X(1), · · ·X(D)] be the set of training inputs for the
D modalities present in both the labeled and unlabeled datasets, with X(i) =

[x
(i)
1 , · · ·x(i)

Ntrain
]T the Ntrain training points for the i-th modality, and let X̄ =

[X̄(1), · · · X̄(D)] be the test examples, with X̄(i) = [x̄
(i)
1 , · · · x̄(i)

Ntest
]T . Let Z̄ =

[Z̄(1), · · · Z̄(M)] be the M new modalities present only in the unlabeled test set,

such that Z̄(i) = [z̄
(i)
1 , · · · z̄(i)Ntest

]T .
In order to exploit the new modalities that are only present at test time and

for which we do not have any labeled examples, we assume that the conditional
distribution of the new modalities given the labeled ones is stationary, i.e., the
same at training and inference. This is similar in spirit to the standard assump-
tions of semi-supervised learning techniques, and lets us rely on the concept of
mean imputation typically used when dealing with missing data. However, here
we assume that only a small amount of unlabeled data is available to learn the
mapping from the known modalities x to the new modalities z. This makes the
problem more challenging, since simple methods such as nearest-neighbors (NN)
require large collections of examples for accurate prediction.

To overcome this issue, we rely on Gaussian processes (GPs) which have
proven effective when trained from a small number of examples [15]. This is due
to the fact that they marginalize among all possible non-linear mappings defined
by the kernel function. In particular, we utilize a GP to learn the mapping from
the known modalities to the missing ones. Note that unlike for the classification
task, when hallucinating the new modalities the unlabeled examples are used as
training data, since for those both Z̄ and X̄ are known. Under this model, the
likelihood can be expressed as

p(Z̄|X̄) =

M∏
m=1

Sm∏
i=1

p(Z̄
(m)
:,i |X̄) =

M∏
m=1

Sm∏
i=1

N (Z̄
(m)
:,i ; 0,Kx) , (1)

where Sm is the dimensionality of the m-th new modality. The elements of
the kernel associated with the labeled modalities Kx are computed by kernel
combination as

Kx
i,j =

D∑
m=1

αmk
x(x̄

(m)
i , x̄

(m)
j ) , (2)

where αm are hyper-parameters of the model. In order to capture the correlations
between the different output dimensions and modalities, we share kernel hyper-
parameters across the different predictors.
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Given the known modalities xi for a labeled example, the predictive distribu-
tion under the Gaussian process is also Gaussian and can be computed in closed
form, i.e., p(zi|xi, X̄, Z̄) = N (µ(xi), σ(xi)), with mean and variance

µ(xi) = kx
i (Kx)−1Z̄ (3)

σ(xi) = kx(xi,xi)− kx
i (Kx)−1kx

i
T , (4)

where kx
i is the vector obtained by evaluating the kernel function of Eq. (2) be-

tween X̄ and xi. For each labeled example, we hallucinate the missing modalities
by taking them as the mean prediction of the learned GP. The resulting halluci-
nated modalities predicted by the GP can then be used in conjunction with the
labeled ones in the probabilistic multiple kernel learning framework described
in the following section. Note that here we have made the assumption that the
mapping between the old and new modalities is unimodal, i.e., can be modeled
with a GP. As suggested by our results, this assumption is reasonable for a wide
range of problems. In more challenging scenarios, it can easily be relaxed by
using a mixture of local predictors [16].

3.2 Probabilistic multiple kernel learning

To exploit all available sources of information for classification, we combine the
hallucinated modalities and the old ones within a probabilistic multiple kernel
learning framework. In particular, we employ GPs to learn the mapping from
(x, z) to the labels y. This has been shown to perform similarly to SVM-based
MKL approaches while being computationally more efficient [2]. This yields the
likelihood p(y|X,Z) = N (y; 0,K), where y = [y1, · · · , yN ]T are the labels for
the training examples and the elements of K are computed as

Ki,j = Kx
i,j +

M∑
m=1

βmk
z(z

(m)
i , z

(m)
j ) , (5)

with kz(·, ·) the kernel function for the unsupervised modalities.
Given new input observations (x̄, z̄), we use the mean prediction of the GP to

assign a class label to the example. For multi-class problems we used a one-vs-all
strategy that selects the class having the largest positive mean prediction. Note
that we use a Gaussian noise model which has been shown to perform similarly
to more complex noise models (e.g., probit, logit) [17].

3.3 A general representation of the novel modalities

While for some representations of z (e.g., histograms) the above framework could
be effective, we would like our MKL algorithm to be able to exploit complex non-
linear kernels (e.g., Pyramid Match Kernel (PMK) [18], Spatial Pyramid [19])
that have proven successful for object recognition tasks. Note that, with these
kernels, z would correspond to the high-dimensional feature map which cannot
be computed in practice.
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Fig. 2. Robotics dataset: We consider the scenario where only low-resolution webcam
images are labeled and an additional unlabeled high-resolution modality is available at
test time using the dataset of [21]. (left) Comparison of our approach against several
baselines as a function of the number of labeled examples, Approach BS is our approach
with bootstrapping. (right) Accuracy as a function of K-PCA dimensionality for Q =
10. Note in both cases our approach outperforms the baselines. Error bars indicate ±
1 std.

We overcome this difficulty by learning a representation of the unlabeled
modalities that is able to exploit complex non-linear kernels. To this end, we
rely on Kernel PCA [20], which computes a low-dimensional representation of
the possibly infinite dimensional input space by performing the eigendecompo-
sition of the (centered) kernel matrix Kz evaluated on the unlabeled data. This
representation is interesting since it is low-dimensional and allows us to use any
Mercer kernel to represent the new modalities. Our approach then proceeds as
follows: First, we compute K-PCA on the new modalities and retain the first
d dimensions. We then regress from the old modalities to the K-PCA represen-
tation of the new ones to hallucinate the missing data. Given the hallucinated
data, we perform probabilistic multiple kernel learning with all the modalities,
using a kernel computed in the K-PCA embedding for the new modalities.

3.4 Bootstrapping

To make further use of the unlabeled examples, we propose to use a bootstrap-
ping strategy. At first, our multiple kernel classifier is trained on all the modali-
ties using the hallucinated data. We then evaluate it on the unlabeled data and
add the B most confident predictions per class to the set of labeled examples.
For the confidence measure, we rely on the distance from the mean prediction to
the predicted class label. This is similar to the concept of margin in SVMs. Note
that other criteria used for active learning could be employed, e.g., uncertainty
[2]. Given the old and new labeled examples, we train a new classifier and repeat
the process T times.

4 Experimental evaluation

We evaluated our approach on a broad range of object recognition domains where
modalities that are available at test time may not be present in the labeled train-
ing set. In particular, we first show how we can classify high-resolution images
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Fig. 3. Most confident images in the robotics application: For each class, the
top row shows the most confident images returned by the low-resolution only classifier,
and the bottom row depicts similar images for our classifier trained with additional
unlabeled high-resolution images. Our approach significantly improves the results for
some of the classes and has less impact on others. Nonetheless, even for these classes
it reduces the ambiguity, e.g., to only two different labels.

when only low-resolution webcam images are labeled. We then show how ex-
ploiting unlabeled color images in conjunction with intensity-only labeled data
improves classification performance. Finally, we address the problem of classifi-
cation of text and image datasets, where only either text or images are labeled.
Across all of these real-world problem domains, our approach achieves a sig-
nificant performance boost by exploiting the additional test modalities without
requiring any new labeled samples. The paper code and databases are available
online at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/

msorec/.

Baselines: On each dataset we compare against two baselines. The first one
employs k nearest-neighbor (k-NN) to infer the missing modalities by averaging
across the k neighbors. This approach is akin to [6] where they rely on k-NN
to infer text features from a large collection of web images. On each dataset
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Fig. 4. Using unlabeled color images for grayscale object recognition: For
each dataset, we show (left,middle) the performance of our approach using only a single
intensity feature, and (right) using both of the available intensity features. Note that
our approach achieves a significant performance boost over intensity-only performance
and outperforms the other baselines. Performance is shown across different training
sizes with d = 200. The error bars indicate ± 1 std.

we chose the k that gave the best performance. Note that the baseline makes
use of the test data to select the best parameter k, while our approach does
not. The second baseline (Bootstrap) exploits the additional test modalities by
cross-modal bootstrapping analogous to [13]; an initial seed set is formed by
labeling Binit examples per class using the single-view classifier, and the same
bootstrapping strategy used by our approach is then applied. We also show
single-view and oracle performance for each dataset, where the oracle makes use
of the ground-truth features on the missing modalities for the labeled training
set.

Experimental setup: For the bootstrapping baseline and our approach, we
used B = 2, and T = 10 across all datasets, and Binit = 10 for the baseline. We
used RBF kernels whose bandwidths were set to the mean squared distance over
the dataset to compute K-PCA and for GP regression. Additionally, we set the
Gaussian noise variance to 0.01. For all but the Mouse dataset, we used d = 200.
For this dataset we used d = 20, since the number of examples is much smaller
than in the other datasets. In the case of multiple kernel classifiers, we set αm
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Fig. 5. Using unlabeled color images for grayscale object recognition: Classi-
fication error as a function of the K-PCA dimensionality for Q = 10. The plots show the
performance using a single labeled intensity feature (left,middle) and using both avail-
able intensity features (right) to classify the color images. Our approach is insensitive
to the choice of dimensionality and improves over the baselines.

and βm to be 1/V where V is the total number of views. We did not optimize
αm and βm, since it has been shown that averaging the kernels yields similar
performance [2, 22]. We ran each experiment on 5 random splits of the data into
training and test sets where for each split we used Q labeled examples per class.
The performance of each approach was evaluated using the Correct Classification
Rate (CCR) defined as the total number of correctly classified examples divided
by the total number of examples.

4.1 Multi-sensor object recognition

We first consider a multiple sensor robotics scenario and show that our approach
lets us leverage the better quality of high resolution images even though only low
resolution images were labeled. We used a subset of the images from the dataset
of [21] yielding 783 low resolution and 486 high resolution images of 30 office
object categories captured using a webcam and a DSLR camera. We split the
dataset into webcam-only images and webcam+DSLR image pairs that depict
an object from similar viewpoints. This resulted in a total of 368 webcam images
used as labeled examples and 415 webcam+DSLR image pairs that we treated
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Fig. 6. Using unlabeled text to improve visual classification: We focus on a
recognition task that exploits an additional text modality that is only present at test
time (no labeled data is available) to improve the performance of a visual classifier. We
used the dataset of [5] that consists of a set of noisily labeled images obtained from an
online keyword search. Using unlabeled text features our approach is able to signifi-
cantly improve performance over the weakly supervised image classifier. Performance is
shown across different training set sizes with d = 200 (left) and across different K-PCA
dimensions with Q = 10 (right). Error bars indicate ±1 std.

as our unlabeled set. For each sensor type, we used PHOG features [23] with 4
pyramid levels and 8 histogram bins per cell over 360 degrees. We then applied
PCA to those vectors and retained 95% of the variance to form the final feature
vector.

This dataset is fairly challenging as it consists of a wide variety of object
categories and appearances taken from a sparse set of varying viewpoints. Fig. 2
(left) depicts performance as a function of the training set size. For this dataset,
at most Q labeled examples were retained per class as some classes had fewer
than Q webcam images across the different training set sizes. Since the number
of unlabeled examples is fairly small in this dataset, the performance of the k-
NN baseline is poor. For similar reasons, the cross-modality bootstrap baseline
is unable to improve over the weak performance of the webcam-only classifier.
In contrast, our approach that infers the missing DSLR modality on the labeled
training set results in a stronger multi-view classifier. Fig. 2 (right) depicts per-
formance with varying K-PCA dimensionality for Q = 10 training samples per
class. Our approach proves to be fairly insensitive to the choice of d and out-
performs the baselines across a wide range of dimensionalities of the embedding.
In Fig. 3, we compare the most confident images returned by the webcam-only
classifier and by our approach. As can be observed from the images, our classifier
is able to avoid some of the mistakes of the webcam-only baseline.

4.2 Using unlabeled color images for grayscale object recognition

We now illustrate how our approach is capable of exploiting the additional in-
formation contained in unlabeled color images to improve the performance of a
grayscale object classifier, when only grayscale examples are labeled. This is a
plausible scenario in robotics applications where robots are equipped with high-
performance (e.g., hyperspectral) cameras. For this task we used three datasets
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Fig. 7. Using unlabeled images for sense disambiguation in text classifica-
tion: We tackle the problem of sense disambiguation from a labeled set of text ex-
amples and a set of unlabeled images that are available only at test time. We used the
dataset of [4] to disambiguate the two meanings of the word mouse that pertain to the
animal and the computer device classes. Our approach is able to significantly improve
over a text-only classifier, k-NN and bootstrap baselines using only unlabeled images.
Performance is shown across different training set sizes with d = 20 (right) and across
different dimensions with Q = 10 (left). Error bars indicate ±1 std.

of natural object categories, where color features are relevant for classification.
The first dataset is the Oxford Flowers dataset [3] that is comprised of 80 images
of 17 flower categories. For this dataset, the authors have provided χ2 distance
matrices over three visual feature channels: Color, Shape and Texture. The other
two datasets are comprised of butterfly and bird image categories respectively
[24, 25]. The Birds dataset contains 6 classes with 100 images per class and the
Butterflies dataset has 619 images of 7 classes. For these datasets we extracted
dense SIFT [26], PHOG [23] and HSV color features [3]. Images were compared
using χ2 distances for SIFT and HSV features and L2 distance for PHOG.

Fig. 4 displays performance on the three datasets as a function of the training
set size. Note that unlike k-NN, our approach is able to obtain a good estimate of
the missing color modality from few training samples, and significantly improves
over grayscale-only performance. The conventional bootstrapping baseline is also
unable to achieve a significant improvement and often underperforms grayscale-
only performance. In contrast, an even greater improvement is achieved with
our approach when used in combination with bootstrap (Approach BS) that
often matches or even improves upon the supervised oracle. Fig. 5 depicts per-
formance for the three datasets as a function of the dimensionality of the K-PCA
embedding for Q = 10. Note that the performance of our approach is relatively
insensitive to the choice of dimensionality.

For completeness of our evaluation, we compared our approach and the base-
lines over all the possible feature combinations, even though these combinations
do not necessarily represent real-world scenarios, e.g., having HSV and PHOG
at test time but only labeled SIFT. Similar performance as to that of the above
cases was observed. These plots are available at the project webpage listed above.
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Fig. 8. Most confident images in sense disambiguation: As in Fig. 3, the top
row of each class shows the most confident images returned by the classifier built from
labeled text features, and the bottom row depicts the result of our classifier when using
images as an additional unsupervised modality. Note that, for the animal meaning, both
approaches perform similarly whereas our classifier outperforms the text-only one on
the computer sense.

4.3 Using unlabeled text to improve visual classification

Next, we focused on the task of leveraging unlabeled text features to improve
over image-only object categorization. Our labeled set consists of a set of images
collected using keyword search from an image search engine. Such a dataset can
be considered as weakly supervised in that many images returned for a given
object keyword can be only very loosely related to the target category. In the
test set each image is accompanied with text (e.g., extracted from the webpage).
We used the Office dataset of [5] that consists of text and images for 10 object
categories. As this dataset is fairly large, we considered a subset of the data and
randomly chose 200 examples per class to form our evaluation set. We used the
same features as [5], which consists of histograms of SIFT features and word
histograms. The histograms were compared using χ2 distances.

Fig. 6 depicts performance as a function of the training set size for d = 200,
and as a function of the dimensionality of the K-PCA embedding for Q = 10.
As expected, due to the large amount of noise, performance using images alone
is fairly weak. In contrast, our approach is able to leverage the additional unla-
beled text modality and significantly improves recognition performance over the
weakly supervised image classifier. When combined with bootstrapping, it nearly
matches oracle performance. Both the k-NN and the cross-modality bootstrap
baselines are also able to improve over image-only performance, although they
do not perform as well as our method. Similarly as before, we can see that our
approach is rather insensitive to the choice of d.
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4.4 Using unlabeled images for sense disambiguation in text

We now consider the problem of exploiting unlabeled images to disambiguate the
sense of classes described by labeled text features only. Sense disambiguation is
important when each object category can pertain to multiple visual senses [4, 5].
For example, the keyword MOUSE can pertain to the animal or the computer
device. Our goal is to use unsupervised images to improve the performance of
a text-only classifier to discriminate polysemous object categories. We used a
subset of the dataset of [4] that consists of about 100 examples per class, selected
to contain images only of the target senses. Each image is represented using a
histogram of dense SIFT features and each text document is summarized into a
word histogram. Histograms are compared using the χ2 distance.

Fig. 7 depicts performance as a function of the training set size for d = 200
and of the dimensionality of the embedding for Q = 10. Although performance
with text-only features is fairly good, the addition of the unlabeled visual modal-
ity significantly improves performance. Once again our approach outperforms the
k-NN and cross-modality bootstrap baselines. Fig. 8 depicts some of the most
confident images obtained for each class by either the text-only classifier, or by
our approach. Note that our approach is able to avoid some of the mistakes made
by the text-only classifier.

5 Conclusion

In this paper we have investigated the problem of exploiting multiple sources
of information when some of the modalities do not have any labeled examples,
i.e., are only present at test time. Assuming that the conditional distribution of
novel modalities given old ones is stationary, we have shown how to make use
of the unlabeled data to learn a non-linear mapping that hallucinates the new
modalities for the labeled examples. Furthermore, we have shown how to learn
low-dimensional representations that allow us to exploit complex non-linear ker-
nels developed for object recognition. Finally, our approach is able to employ
multiple kernel learning with all the modalities as well as a bootstrapping strat-
egy that further improved performance. We have demonstrated the effectiveness
of our approach on several tasks including object recognition from intensity and
color cues, text and images, and multi-resolution imagery. In the future we plan
to investigate complementary techniques for inferring the missing views that
include learning a shared latent space and the use of local GPs to cope with
multi-modal output spaces.
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