

Efficient Large-Scale Stereo Matching

Andreas Geiger*, Martin Roser* and Raquel Urtasun**

*KARLSRUHE INSTITUTE OF TECHNOLOGY **TOYOTA TECHNOLOGICAL INSTITUTE AT CHICAGO

Contents

Motivation and Related Work

Efficient Large-Scale Stereo Matching

Experimental Evaluation

Summary and Future Work

Contents

Motivation and Related Work

- 2 Efficient Large-Scale Stereo Matching
- 3 Experimental Evaluation

Summary and Future Work

Motivation

Why is 3D from Stereo hard?

- Ambiguities
- Textureless regions
- Sensor saturation
- Non-Lambertian surfaces
- \$\Delta z\$ grows quadratically
 Computational burden

Why is 3D from Stereo hard?

- Ambiguities
- Textureless regions
- Sensor saturation
- Non-Lambertian surfaces
- \$\Delta z\$ grows quadratically
 Computational burden

Why is 3D from Stereo hard?

- Ambiguities
- Textureless regions
- Sensor saturation
- Non-Lambertian surfaces
- Δz grows quadratically
- Computational burden

focal length baseline

Related Work: Local Methods

Local Methods

Winner-takes-All

Examples

- Block matching (Scharstein 02)
- Adaptive windows (Kanade 94, Yoon 06)
- Plane-sweep (Collins 96, Gallup 07)

Problems

- Small matching ratios
- Border bleeding

Global Methods

Related Work: Global Methods

• Minimize 1D/2D energy $E(d) = E_{data}(d) + \lambda E_{smooth}(d)$

Examples

- Graph cuts, Belief propagation (Kolmogorov 02, Felzenszwalb 06)
- Variational methods (Pock 07, Zach 09)
- Fusion moves (Woodford 08, Bleyer 10)

Problems

- Computational and memory requirements
- Pairwise potentials can not model planarity

Related Work: Seed-and-Grow

Seed-and-Grow Methods

Grow disparity components from random seeds

Examples

- (Cech 07)
- (Sara 03)

Problems

- Slanted/textureless surfaces
- No dense disparity maps

Contents

2

Efficient Large-Scale Stereo Matching

Summary and Future Work

Idea

Assumption: rectified images

- Image pairs contain 'easy' and 'hard' correspondences
- Robustly match 'easy' correspondences on regular grid
- Build prior on dense search space \Rightarrow dense matching

- Assumption: rectified images
- Image pairs contain 'easy' and 'hard' correspondences
- Robustly match 'easy' correspondences on regular grid
- Build prior on dense search space \Rightarrow dense matching

Idea

- Assumption: rectified images
- Image pairs contain 'easy' and 'hard' correspondences
- Robustly match 'easy' correspondences on regular grid
- Build prior on dense search space ⇒ dense matching

- Assumption: rectified images
- Image pairs contain 'easy' and 'hard' correspondences
- Robustly match 'easy' correspondences on regular grid
- Build prior on dense search space \Rightarrow dense matching

Efficient Large-Scale Stereo

Notation

- Robust support points $\mathbf{S} = {\mathbf{s}_1, ..., \mathbf{s}_M}$ with $\mathbf{s}_m = (u_m \ v_m \ d_m)^T$
- **Disparity** $d_n \in \mathbb{N}$
- Observations $\mathbf{o}_n = (u_n \ v_n \ \mathbf{f}_n)^T$

Local image features f_n

Algorithm

- Split image domain into support points **S** and dense pixels
- Assume factorization of distribution over disparity, observations and support points into ...

Efficient Large-Scale Stereo

Notation

- Robust support points $\mathbf{S} = {\mathbf{s}_1, ..., \mathbf{s}_M}$ with $\mathbf{s}_m = (u_m \ v_m \ d_m)^T$
- **Disparity** $d_n \in \mathbb{N}$
- Observations $\mathbf{o}_n = (u_n \ v_n \ \mathbf{f}_n)^T$
- Local image features f_n

Algorithm

- Split image domain into support points S and dense pixels
- Assume factorization of distribution over disparity, observations and support points into ...

Efficient Large-Scale Stereo

Notation

- Robust support points $\mathbf{S} = {\mathbf{s}_1, ..., \mathbf{s}_M}$ with $\mathbf{s}_m = (u_m \ v_m \ d_m)^T$
- Disparity $d_n \in \mathbb{N}$
- Observations $\mathbf{o}_n = (u_n \ v_n \ \mathbf{f}_n)^T$
- Local image features f_n

Algorithm

- Split image domain into support points S and dense pixels
- Assume factorization of distribution over disparity, observations and support points into ...

Model

Model

Prior and Likelihood

Prior $p(d_n|\mathbf{S}, \mathbf{o}_n^{(l)})$

- Support pt. triangulation
- Piecew. linear manifold
- Local extrapolation

Likelihood $p(\mathbf{o}_n^{(r)}|\mathbf{o}_n^{(l)},d_n)$

- Laplace distribution
- 5 × 5 block window
- 3 × 3 Sobel filter

Prior and Likelihood

Prior $p(d_n|\mathbf{S}, \mathbf{o}_n^{(l)})$

- Support pt. triangulation
- Piecew. linear manifold
- Local extrapolation

Likelihood $p(\mathbf{o}_n^{(r)}|\mathbf{o}_n^{(l)}, d_n)$

- Laplace distribution
- 5 × 5 block window
- 3 × 3 Sobel filter

Sampling from the model

Left image

Sample mean

Sampling from the model

Left image

Sample mean

Right image

Contents

2 Efficient Large-Scale Stereo Matching

Summary and Future Work

900 x 750 pixels, ground truth

900 x 750 pixels, 0.4 seconds

1300 x 1100 pixels, ground truth

1300 x 1100 pixels, 1 second

Accuracy (on cones image pair)

Running times (on cones image pair)

[For more details see: Geiger et al., ACCV 2010]

3D Reconstruction: Brussels

2 seconds

[http://cvlab.epfl.ch/data/strechamvs/]

3D Face Reconstruction

[http://www.fujifilm.com/products/3d]

Urban Scene Reconstruction

Contents

2 Efficient Large-Scale Stereo Matching

Summary and Future Work

Simple prior based on sparse feature matches

- Reduced ambiguities and run-time
- Takes into account slanted surfaces
- Real-time 3D reconstruction of static scenes on CPU
- C++ / MATLAB code available at http://cvlibs.net

- Simple prior based on sparse feature matches
- Reduced ambiguities and run-time
- Takes into account slanted surfaces
- Real-time 3D reconstruction of static scenes on CPU
- C++ / MATLAB code available at http://cvlibs.net

- Simple prior based on sparse feature matches
- Reduced ambiguities and run-time
- Takes into account slanted surfaces
- Real-time 3D reconstruction of static scenes on CPU
- C++ / MATLAB code available at http://cvlibs.net

- Simple prior based on sparse feature matches
- Reduced ambiguities and run-time
- Takes into account slanted surfaces
- Real-time 3D reconstruction of static scenes on CPU
- C++ / MATLAB code available at http://cvlibs.net

- Simple prior based on sparse feature matches
- Reduced ambiguities and run-time
- Takes into account slanted surfaces
- Real-time 3D reconstruction of static scenes on CPU
- C++ / MATLAB code available at http://cvlibs.net

Develop better priors

Incorporate segmentation / global reasoning on lines

GPU implementation (goal: 20 fps at 1-2 megapixels)

■ Employ as unitary potentials on global methods ⇒ smaller label sets

- Develop better priors
- Incorporate segmentation / global reasoning on lines
- GPU implementation (goal: 20 fps at 1-2 megapixels)
- Employ as unitary potentials on global methods
 ⇒ smaller label sets

- Develop better priors
- Incorporate segmentation / global reasoning on lines
- GPU implementation (goal: 20 fps at 1-2 megapixels)
- Employ as unitary potentials on global methods
 - \Rightarrow smaller label sets

- Develop better priors
- Incorporate segmentation / global reasoning on lines
- GPU implementation (goal: 20 fps at 1-2 megapixels)
- Employ as unitary potentials on global methods
 - \Rightarrow smaller label sets