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Abstract

Traditional multi-view learning approaches
suffer in the presence of view disagreement,
i.e., when samples in each view do not belong
to the same class due to view corruption, oc-
clusion or other noise processes. In this paper
we present a multi-view learning approach
that uses a conditional entropy criterion to
detect view disagreement. Once detected,
samples with view disagreement are filtered
and standard multi-view learning methods
can be successfully applied to the remain-
ing samples. Experimental evaluation on
synthetic and audio-visual databases demon-
strates that the detection and filtering of view
disagreement considerably increases the per-
formance of traditional multi-view learning
approaches.

1 Introduction

Many problems in machine learning involve datasets
that are naturally comprised of multiple views, e.g,
web pages can be classified from their content or the
content of the pages that point to them, an object
can be categorized from either its color or shape.
In a multi-modal setting, multiple views can be de-
fined from separate sensory modalities, e.g., a person’s
agreement can be classified from their speech utterance
or head gesture. Approaches to multi-view learning
[1, 3, 5, 7, 12, 15, 17, 22] exploit multiple redundant
views to effectively learn from unlabeled data by mutu-
ally training a set of classifiers defined in each view1.
Multi-view learning can be advantageous when com-
pared to learning with only a single view [3, 4, 12],

1Note that the views are redundant in that each class
can be inferred from both views separately. In the idealized
setting each view would be conditionally independent given
the class label (e.g., see [3]).

especially when the weaknesses of one view comple-
ment the strengths of the other.

A common assumption in multi-view learning is that
the samples from each view always belong to the same
class. In realistic settings, datasets are often corrupted
by noise. Multi-view learning approaches have diffi-
culty dealing with noisy observations, especially when
each view has an independent noise processes. For
example, in multi-sensory datasets it is common that
an observation in one view is corrupted while the cor-
responding observations in other views remain unaf-
fected (e.g., the sensor is temporarily in an erroneous
condition before returning back to normal behavior).
Indeed, if the corruption is severe, the class can no
longer be reliably inferred from the corrupted sample.

These corrupted samples can be seen as belonging to
a “neutral” or “background” class that co-occur with
uncorrupted observations in other views. The view
corruption problem is thus a source of view disagree-
ment, i.e., the samples from each view do not always
belong to the same class but sometimes belong to an
additional background class as a result of view cor-
ruption or noise. In this paper we present a method
for performing multi-view learning in the presence of
view disagreement caused by view corruption. Our
approach treats each view as corrupted by a struc-
tured noise process and detects view disagreement by
exploiting the joint view statistics using a conditional
entropy measure.

We are particularly interested in inferring multi-modal
semantics from weakly supervised audio-visual speech
and gesture data. In audio-visual problems view dis-
agreement often arises as a result of temporary view
occlusion, or uni-modal expression (e.g., when express-
ing agreement a person may say ‘yes’ without head
nodding2).

2Note that uni-modal expression is a form of view dis-
agreement since the class label (e.g., ‘yes’ in this example)
cannot be inferred from either view alone.
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Figure 1: Synthetic two-view problem with normally
distributed classes, two foreground and one back-
ground. Each view is 2-D; the two foreground classes
are shown in red and blue. Corrupted samples form
a separate background class (black samples) that co-
occur with uncorrupted samples. For each point in the
left view there is a corresponding point in the right
view. Three point correspondences are shown: a re-
dundant foreground sample, a redundant background
sample and a sample with view disagreement where
view 1 observed an instance of class 1, but view 2
for that sample was actually an observation of the
background class. View disagreement occurs when one
view is occluded and is incorrectly paired with a back-
ground class. Multi-view learning with these pairings
leads to corrupted foreground class models.

The underlying assumption of our approach is that
foreground samples can co-occur with samples of the
same class or background, whereas background sam-
ples can co-occur with samples from any class, a rea-
sonable assumption for many audio-visual problems.
We define new multi-view bootstrapping approaches
that use conditional entropy in a pre-filtering step to
reliably learn in the presence of view disagreement.
Experimental evaluation on audio-visual data demon-
strates that the detection and filtering of view dis-
agreement enables multi-view learning to succeed de-
spite large amounts of view disagreement.

The remainder of this paper is organized as follows. In
the next section, a discussion of multi-view learning
approaches and view disagreement is provided. Our
conditional entropy based criterion for detecting view
disagreement is then outlined in Section 3 and our
multi-view bootstrapping approach is presented in Sec-
tion 4. Experimental results are provided in Section
5. A discussion of related methods and connections
between our work and other statistical techniques is
given in Section 6. Finally, in Section 7 we provide a
summary and discuss future work.

2 Multi-View Learning

Several approaches to multi-view learning have been
proposed in the machine learning literature [1, 3, 5,

12, 15, 17, 22]. In their seminal work, Blum and
Mitchell [3] introduced co-training which bootstraps
a set of classifiers from high confidence labels. Nigam
and Ghani [15] presented a co-EM algorithm that uses
soft label assignment with EM to bootstrap classifiers
from multiple views. Collins and Singer [5] proposed
a co-boost approach that optimizes an objective that
explicitly maximizes the agreement between each clas-
sifier. Similarly, Sindhwani et. al. [17] defined a co-
regularization method that learns a multi-view classi-
fier from partially labeled data using a view consensus-
based regularization term. More recently, Yu et. al.
[22] presented a Bayesian co-training framework that
defines a multi-view kernel for semi-supervised learn-
ing with Gaussian Processes.

Although there exists a wide variety of multi-view
learning algorithms, they all function on the common
underlying principle of view agreement. More for-
mally, let xk = (x1

k, ..., xV
k ) be a multi-view sample

with V views, and let fi : xi → Y be the classifier that
we seek in each view. Multi-view learning techniques
train a set of classifiers {fi} by maximizing their con-
sensus on the unlabeled data, xk ∈ U , for example by
minimizing the L2 norm [17],

min
∑

xk∈U

∑
i�=j

‖fi(xi
k) − fj(x

j
k)‖2

2 (1)

The minimization in Eq. (1) is only applicable to multi-
view learning problems for which the views are suffi-
cient for classification, i.e., that classification can be
performed from either view alone. In practice, how-
ever, it is often difficult to define views that are fully
sufficient. Previous methods for overcoming insuffi-
ciency have addressed the case where both views are
necessary for classification [5, 2, 17]. These methods
formulate multi-view learning as a global optimiza-
tion problem that explicitly maximizes the consensus
between views. Although these approaches allow for
views with partial insufficiency, they still assume that
each view is largely sufficient. In the presence of sig-
nificant view disagreement these approaches would in
general diverge and perform poorly.

In this paper we identify and address a new form
of insufficiency inherent to many real-world datasets,
caused by samples where each view potentially belongs
to a different class, e.g., as a result of view corruption.
We refer to this form of insufficiency as the view dis-
agreement problem. The view disagreement problem
is distinct from the forms of view insufficiency that
have been addressed in the literature—previous meth-
ods for overcoming insufficiency have addressed the
case where both views are necessary for classification
[1, 5, 14, 17], but not the case where the samples from
each view potentially belong to different classes.
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Figure 2: Multi-view learning for synthetic two-view example with varying amounts of view disagreement.
Average performance is shown computed over 10 random splits of the training data into labeled and unlabeled
sets; the error bars indicate ±1 std. devation. Our approach exhibits good performance at all view disagreement
levels while conventional co-training begins to diverge for percent disagreement greater than 40%.

The problem of view disagreement exists in many real-
world datasets. In user agreement recognition from
head gesture and speech [4], people often say ‘yes’
without head nodding and vice versa, and/or the sub-
ject can also become temporary occluded in either the
audio or visual modalities by other speakers or ob-
jects in the scene. In semantic concept detection from
text and video [21], it is possible for the text to de-
scribe a different event than what is being displayed in
the video. Another example is web-page classification
from page and hyper-link content [3], where the hy-
perlinks can often point to extraneous web-pages not
relevant to the classification task.

We illustrate the problem of view disagreement in
multi-view learning with a toy example containing two
views of two foreground classes and one background
class. The samples of each class are drawn from Gaus-
sian distributions with unit variance (see Figure 1).
Figure 2 shows the degradation in performance of con-
ventional co-training [3] for varying amounts of view
disagreement. Here, co-training is evaluated using a
left out test set and by randomly splitting the train-
ing set into labeled and unlabeled datasets. We report
average performance across 10 random splits of the
training data. As shown in Figure 2 co-training per-
forms poorly when subject to significant amounts of
view disagreement (≥ 40%).

In what follows, we present a method for detecting
view disagreement using a measure of conditional view
entropy and demonstrate that when used as a pre-
filtering step, our approach enables multi-view learn-
ing to succeed despite large amounts of view disagree-
ment.

3 Detection and Filtering of View
Disagreement

We consider an occlusion process where an additional
class models background. We assume that this back-
ground class can co-occur with any of the n+1 classes
in the other views3, and that the n foreground classes
only co-occur with samples that belong to the same
class or background, as is common in audio-visual
datasets [4].

In this paper we propose a conditional entropy cri-
terium for detecting samples with view disagreement.
We further assume that background co-occurs with
more than one foreground class; this is a reasonable
assumption for many types of background (e.g., au-
dio silence). In what follows, we treat each view xi,
i = 1, ..., V as a random variable and detect view dis-
agreement by examining the joint statistics of the dif-
ferent views. The entropy H(x) of a random variable
is a measure of its uncertainty [6]. Similarly, the condi-
tional entropy H(x|y) is a measure of the uncertainty
in x given that we have observed y. In the multi-
view setting, the conditional entropy between views,
H(xi|xj), can be used as a measure of agreement that
indicates whether the views of a sample belong to the
same class or event. In what follows, we call H(xi|xj)
the conditional view entropy.

Under our assumptions we expect the conditional view
entropy to be larger when conditioning on background

3Note that background samples can co-occur with the
any of the n foreground classes plus background.
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Figure 3: View disagreement caused by view corrup-
tion. The joint view space of a two-view problem
with view disagreement is displayed. Redundant sam-
ples are highlighted in blue and samples with view
disagreement in black. The conditional distributions
for a sample with view disagreement are shown. The
conditional distribution resulting from conditioning on
background exhibits more peaks and therefore has a
higher uncertainty than when conditioning on fore-
ground.

compared to foreground. Thus, we have ∀p = 1, ...n,

H(xi|xj
k ∈ Cn+1) > H(xi|xj

l ∈ Cp) (2)

where Ci is the set of examples belonging to class i.
A notional example of view corruption is illustrated
in Figure 3. This example contains two, 1-D views of
two foreground classes and one background class. As
before, the samples of each class are drawn from a nor-
mal distribution with unit variance. The conditional
view distributions of a multi-view sample with view
disagreement is displayed. Note that the uncertainty
of view i when conditioning on view j has greater un-
certainty when view j is background.

We delineate foreground from background samples by
thresholding the conditional view entropy. In partic-
ular, we define the threshold in each view using the
mean conditional entropy computed over the unlabeled
data. More formally, let (xi

k, xj
k) be two different views

of a multi-view sample xk = (x1
k, ..., xV

k ). We define an
indicator function, m(·), that operates over view pairs
(xi, xj) and that is 1 if the conditional entropy of xi

conditioned on xj
k is below the mean conditional en-

tropy,

m(xi, xj
k) =

{
1, H(xi|xj

k) < H̄ij

0, otherwise
, (3)

with

H(xi|xj
k) = −

∑
xi∈Ui

p(xi|xj
k)log p(xi|xj

k), (4)

where U i is the ith view of the unlabeled dataset, and
H̄ij is the mean conditional entropy,

H̄ij =
1
M

∑
xk∈U

H(xi|xj
k), (5)

where M is the number of samples in U . m(xi, xj)
is used to detect whether xj belongs to foreground
since under our model foreground samples have a low
conditional view entropy.

A sample xk is a redundant foreground sample if it
satisfies

V∏
i=1

∏
j �=i

m(xi, xj
k) = 1. (6)

Similarly, xk is a redundant background sample if it
satisfies

V∑
i=1

∑
j �=i

m(xi, xj
k) = 0. (7)

A multi-view sample xk is in view disagreement if it is
neither a redundant foreground nor a redundant back-
ground sample.

Definition 1. Two views (xi
k, xj

k) of a multi-view sam-
ple xk are in view disagreement if

m(xi, xj
k) ⊕ m(xj , xi

k) = 1 (8)

where ⊕ is the logical xor operator that has the prop-
erty that a ⊕ b is 1 iff a �= b and 0 otherwise.

Eq. (8) defines our conditional entropy criterion for
view disagreement detection between pairs of views of
a multi-view sample.

In practice, we estimate the conditional probability of
Eq. (4) as

p(xi|xj
k) =

f(xi, xj
k)∑

xi∈Ui f(xi, xj
k)

(9)

where f(x) is a multivariate kernel density estimator4.
In our experiments, the bandwidth of f is set using
automatic bandwidth selection techniques [16].

4Note our approach is agnostic to the choice of proba-
bility model and more sophisticated conditional probability
models can be used, such as [20], that perform better in
high dimensional input spaces.



Algorithm 1 Multi-View Bootstrapping in the Pres-
ence of View Disagreement
1: Given classifiers fi and labeled seed sets Si, i =

1, ..., V , unlabeled dataset U and parameters N and
T :

2: Set t = 1.
3: repeat
4: for i = 1, ..., V do
5: Train fi on Si

6: Evaluate fi on U i

7: Sort U in decreasing order by fi confidence
8: for each xk ∈ U , k = 1, ..., N do
9: for j �= i do

10: if ¬(m(xi, xj
k) ⊕ m(xj, xi

k)) then

11: U j = U j\{xj
k}

12: Sj = Sj ∪ {xj
k}

13: end if
14: end for
15: U i = U i\{xi

k}
16: Si = Si ∪ {xi

k}
17: end for
18: end for
19: Set t = t + 1.

20: until |U | = ∅ or t = T

4 Multi-view Bootstrapping in the
Presence of View Disagreement

In this section we present a new multi-view bootstrap-
ping algorithm that uses the conditional entropy mea-
sure of Eq. (8) in a pre-filtering step to learn from
multi-view datasets with view disagreement.

Multi-view bootstrapping techniques, e.g., co-training,
mutually train a set of classifiers, fi, i = 1, ..., V ,
on an unlabeled dataset U by iteratively evaluating
each classifier and re-training from confidently classi-
fied samples. The classifiers are initialized from a small
set of labeled examples typically referred to as the seed
set, S. During bootstrapping, confidently classified
samples in each view are used to label correspond-
ing samples in the other views. It has been shown
that multi-view bootstrapping is advantageous to self-
training with only a single view [4].

We extend multi-view bootstrapping to function in the
presence of view disagreement. A separate labeled
set, Si, is maintained for each view during bootstrap-
ping and the conditional entropy measure of Eq. (8)
is checked before labeling samples in the other views
from labels in the current view. The parameters to
the algorithm are N , the number of samples labeled by
each classifier during each iteration of bootstrapping,
and T the maximum number of multi-view bootstrap-
ping iterations. The resulting algorithm self-trains
each classifier using all of the unlabeled examples, and
only enforces a consensus on the samples with view
agreement (see Algorithm 1).

Algorithm 2 Cross-Modality Bootstrapping in the
Presence of View Disagreement
1: Given existing classifier f1 and initial classifier f2, un-

labeled dataset U and parameter N :
2:
3: Initialization:
4: Sort U in decreasing order by f1 confidence
5: Define L = {(yk, x2

k)}, k = 1, ..., N
6:
7: Bootstrapping:
8: Set S = ∅
9: for each (yk, x2) ∈ L do

10: if ¬(m(y, x2
k) ⊕ m(x2, yk)) then

11: S = S ∪ {(yk, x2
k)}

12: L = L\{(yk, x2
k)}

13: end if
14: end for

15: Train f2 on S.

Figure 2 displays the result of multi-view bootstrap-
ping for the toy example of Figure 1 using N = 6 and
T was set such that all the unlabeled data was used.
With our method, multi-view learning is able to pro-
ceed successfully despite the presence of severe view
disagreement and is able to learn accurate classifiers
in each view even when presented with datasets that
contain up-to 90% view disagreement.

In audio-visual problems it is commonly the case that
there is an imbalance between the classification diffi-
culty in each view. In such cases, an accurate classifier
can be learned in the weaker view using an unsuper-
vised learning method that bootstraps from labels out-
put by the classifier in the other view. Here, the class
labels output by the classifier in the stronger view can
be used as input to the conditional entropy measure as
they provide a more structured input than the original
input signal.

The resulting cross-modality bootstrapping algorithm
trains a classifier f2 in the second view from an exist-
ing classifier f1 in the first view on a two-view unla-
beled dataset U . The algorithm proceeds as follows.
First f1 is evaluated on U and the N most confidently
classified examples are moved from U to the labeled
set L. The conditional entropy measure is then eval-
uated over each label, sample pair (y, x2) ∈ L, where
y = f1(x1). The final classifier f2 results from training
on the the samples in L that are detected as redundant
foreground or redundant background (see Algorithm
2).

5 Experimental Evaluation

We evaluate the performance of multi-view bootstrap-
ping techniques on the task of audio-visual user agree-
ment recognition from speech and head gesture. Al-



though users often use redundant expression of agree-
ment, it is frequently the case that they say ‘yes’ with-
out head gesturing and viceversa. View disagreement
can also be caused by noisy acoustic environments
(e.g., a crowded room), temporary visual occlusions
by other objects in the scene, or if the subject is tem-
porarily out of the camera’s field of view.

To evaluate our approach we used a dataset of 15 sub-
jects interacting with an avatar in a conversational di-
alog task [4]. The interactions included portions where
each subject answered a set of yes/no questions using
head gesture and speech. The head gesture consisted
of head nods and shakes and the speech data of ‘yes’
and ‘no’ utterances. In our experiments, we simulate
view disagreement in the visual domain using both no
motion (i.e., random noise) and real background head
motion samples from non-response portions of the in-
teraction. Similarly, background in the audio is simu-
lated as babble noise.

The visual features consist of 3-D head rotation veloc-
ities output by a 6-D head tracker [13]. For each sub-
ject, we post-process these observations by computing
a 32 sample windowed Fast Fourier Transform (FFT)
separately over each dimension, with a time window
of 1 second corresponding to the expected length of a
head gesture. The resulting sequence of FFT observa-
tions is then segmented using the avatar’s transcript
which marks the beginning and end of each user re-
sponse.

The FFT spectra of each user response were amplitude
normalized and blurred in space and time to remove
variability to location, duration and rate of head mo-
tion. Principle components analysis (PCA) was then
performed over the vector space resulting from flatten-
ing the FFT spectra corresponding to each response
into a single vector. The resulting 3-D PCA space
captured over 90% of the variance and was computed
over the unlabeled samples of the training set.

The audio features consist of 13-D Mel Frequency Cep-
stral Coefficients (MFCCs) sampled at 100Hz over the
segmented audio sequences corresponding to each user
response, obtained from the avatar’s transcript. The
audio sequences were then converted into single frame
observations using the technique of [11]. In this rep-
resentation, an audio sequence is divided into por-
tions and an average MFCC vector is computed over
each portion. In our experiments, we used propor-
tions equal to (0.3, 0.4, 0.3). The concatenated aver-
ages along with first derivatives and log duration de-
fine a 61-D observation vector. To reduce the dimen-
sionality of this space, PCA was applied retaining 98%
of the variance which resulted in a 9-D, single-frame
audio observation space.

In our experiments we use correct classification rate as
the evaluation metric, defined as:

CCR =
# of examples correctly classified

total # of examples
(10)

We used Bayes classifiers for audio and visual gesture
recognition defined as p(y|x) = p(x|y)P

y p(x|y) , where p(x|y)
is Gaussian. Specifically, Bayes classifiers for p(y|xa)
and p(y|xv) are bootstrapped from semi-supervised
audio-visual data; xa and xv correspond to audio and
visual observations respectively.

5.1 Cross-Modality Bootstrapping

First, we evaluate our cross-modality bootstrapping
approach. For this task, we are interested in perform-
ing semi-supervised learning of visual head gesture by
bootstrapping from labels in the speech (e.g., those
output by an off-the-shelf speech recognizer). We sim-
ulated view disagreement by randomly replacing ob-
servations in the visual modality with background se-
quences, and replacing labels in the audio with the
background label. Redundant background was also
added such that there were an equal number of re-
dundant background samples as there were redundant
foreground samples per class.

We first show results using a “no motion” visual back-
ground modeled as zero mean Gaussian noise in the 3-
D head rotational velocity space with σ = 0.1. Figure
4 displays the result of evaluating the performance of
multi-view bootstrapping (Algorithm 2) with varying
amounts of view disagreement. Performance is shown
averaged over 5 random splits of the data into 10 train
and 5 test subjects. At small amounts of view dis-
agreement (≤ 20%) conventional bootstrapping and
our approach exhibit similar good performance. When
the view disagreement is small the error can be viewed
as classification noise in the audio. For larger amounts
of view disagreement (up to 50%), conventional multi-
view bootstrapping diverges and our algorithm still
succeeds in learning an accurate head gesture recog-
nizer from the audio-visual data. For > 50% view
disagreement, our approach begins to degrade and ex-
hibits a large variance in performance. This high vari-
ability can be a result of poor bandwidth selection,
or a poor choice of threshold. We plan to investi-
gate alternative methods for modeling the conditional
probability and more sophisticated threshold selection
techniques as part of future work.

Figure 4(b) displays average receiver-operator curves
(ROCs) for redundant foreground and background
class detection that result from varying the entropy
threshold of the conditional entropy measure. The
mean conditional entropy defines a point on these
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Figure 4: Bootstrapping a user agreement visual classifier from audio. (a) Performance is shown averaged over
random splits of the data into 10 train and 5 test subjects over varying amounts of simulated view disagreement
using a no motion background class; error bars indicate ± 1 std. deviation. Unlike conventional bootstrapping,
our approach is able to cope with up-to 50% view disagreement. (b) Average view disagreement detection
ROCs are also shown for redundant foreground and background detection. Our approach effectively detects view
disagreement.

curves. As illustrated by the figure, overall our ap-
proach does fairly well in detecting view disagreement.

Next, we consider a more realistic occluding visual
background class generated from randomly selecting
head motion sequences from non-response portions of
each user interaction. In contrast to the “no motion”
class considered above, these segments contain miscel-
laneous head motion in addition to no motion.

Our view disagreement detection approach (Algorithm
2) performs equally well in the presence of the more
challenging real background as is shown in Figure 5.
As before, conventional bootstrapping performs poorly
in the presence of view disagreement. In contrast, our
approach is able to successfully learn a visual classifier
in the presence of significant view disagreement (up to
50%).

5.2 Multi-View Bootstrapping

We evaluated the performance of multi-view boot-
strapping (Algorithm 1) for the task of semi-supervised
learning of audio-visual user agreement classifiers from
speech and head gesture. Figure 6 displays the re-
sult of audio-visual co-training for varying amounts of
view disagreement. Performance is shown averaged
over 5 random splits of the data into 10 train and 5
test subjects and over 10 random splits of the training
data into labeled seed set and unlabeled training set,
with 15 labeled samples, 5 per class. Conventional co-
training and our approach were then evaluated using
N = 6 and T = 100. We chose N such that the classes
are balanced.

For this problem, the initial visual classifier trained
from the seed set is much more accurate than the ini-
tial audio classifier that performs near chance. The
goal of co-training is to learn accurate classifiers in
both the audio and visual modalities. Note, that in
contrast to cross-modality bootstrapping, this is done
without any a priori knowledge as to which modality
is more reliable. For small amounts of view disagree-
ment (≥ 20%), both conventional co-training and our
approach (Algorithm 1) are able to exploit the strong
performance in the visual modality to train an accu-
rate classifier in the audio. For larger amounts of view
disagreement, conventional co-training begins to di-
verge and at the 70% view disagreement level is not
able to improve over the supervised baseline in both
the audio and visual modalities. In contrast, our ap-
proach reliably learns accurate audio-visual classifiers
across all view disagreement levels.

6 Discussion

Recently, Ando and Zhang [1] presented a multi-view
learning approach that instead of assuming a consen-
sus over classification functions assume that the views
share the same low dimensional manifold. This has
the advantage that it can cope with insufficient views
where classification cannot be performed from either
view alone. Still, their approach defines a consensus
between views, and therefore assumes that the sam-
ples in each view are of the same class. View disagree-
ment will violate this assumption and we expect their
method to degrade as multi-view bootstrapping.
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Figure 5: Bootstrapping a user agreement visual classifier from audio with real visual background. Performance
is shown averaged over random splits of the data into 10 train and 5 test subjects over varying amounts of
simulated view disagreement; error bars indicate ± 1 std. deviation. The conventional bootstrapping baseline
performs poorly in the presence of view disagreement. In contrast, our approach is able to (a) successfully learn
a visual classifier and (b) classify views in the presence of significant view disagreement (up to 50%).

Our approach treats each view as corrupted by a struc-
tured noise process and detects view disagreement
by exploiting the joint view statistics. An alterna-
tive method to coping with view disagreement is to
treat each view as belonging to a stochastic process
and use a measure such as mutual information to test
for view dependency [19, 18]. In [18], Siracusa and
Fisher use hypothesis testing with a hidden factoriza-
tion Markov model to infer dependency between audio-
visual streams. It would be interesting to apply such
techniques for performing multi-view learning despite
view disagreement, which we leave as part of future
work.

Our work bears similarity to co-clustering approaches
which use co-occurrence statistics to perform multi-
view clustering [10, 9, 8]. These techniques, however,
do not explore the relationship between co-occurrence
and view sufficiency and would suffer in the presence
of view disagreement since the occluding background
would potentially cause foreground clusters to collapse
into a single cluster.

We demonstrated our view disagreement detection and
filtering approach for multi-view bootstrapping tech-
niques (e.g., [3, 15, 4]). However, our algorithm is gen-
erally applicable to any multi-view learning method
and we believe it will be straightforward to adapt it for
use with other approaches (e.g., [1, 5, 17]). Multi-view
learning methods either implicity or explicitly maxi-
mize the consensus between views to learn from un-
labeled data; view disagreement adversatively affects
multi-view learning techniques since they encourage
agreement between views.

In our experiments, our approach performs well on a
realistic dataset with noisy observations. The success
of our approach on this dataset is predicated on the
fact that foreground and background classes exhibit
distinct co-occurrence patterns, which our algorithm
exploits to reliably detect view disagreement.

7 Conclusions and Future Work

In this paper we have identified a new multi-view
learning problem, view disagreement, inherent to
many real-word multi-view datasets. We presented
a multi-view learning framework for performing semi-
supervised learning from multi-view datasets in the
presence of view disagreement and demonstrated that
a conditional entropy criterion was able to detect view
disagreement caused by view corruption or noise. As
shown in our experiments, for the task of audio-visual
user agreement our method was able to successfully
perform multi-view learning even in the presence of
gross view disagreement (50 − 70%). Interesting av-
enues for future work include the investigation of alter-
native entropy threshold selection techniques, the use
of alternative probability models for computing condi-
tional entropy and modeling redundancy between non-
stationary stochastic processes using measures such as
mutual information.
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Figure 6: Multi-view bootstrapping of audio-visual user agreement classifiers. Performance of (a) audio and
(b) video is displayed averaged over 5 random splits of the data into 10 train and 5 test subjects and over 10
random splits of each training set into labeled seed set and unlabeled dataset; error bars show ±1 std. deviation.
Conventional co-training performs poorly in the presence of significant view disagreement. In contrast, our
approach performs well across all view disagreement levels.

[2] S. Bickel and T. Scheffer. Estimation of mixture mod-
els using co-em. In Proceedings of the European Con-
ference on Machine Learning, 2005.

[3] A. Blum and T. Mitchell. Combining labeled and un-
labeled data with co-training. In COLT, 1998.

[4] C. M. Christoudias, K. Saenko, L.-P. Morency, and
T. Darrell. Co-adaptation of audio-visual speech and
gesture classifiers. In ICMI, November 2006.

[5] M. Collins and Y. Singer. Unsupervised models for
named entity classification. In Proceedings of the Joint
SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora, 1999.

[6] T. Cover and J. Thomas. Elements of Information
Theory. Wiley and Sons, New York, second edtion,
2006 edition, 1991.

[7] S. Dasgupta, M. Littman, and D. Mcallester. PAC
generalization bounds for co-training. In NIPS, 2001.

[8] V. R. de Sa. Spectral clustring with two views. In
Proceedings of the European Conference on Machine
Learning, 2005.

[9] I. S. Dhillon. Co-clustering documents and words us-
ing bipartite spectral graph partitioning. In Knowl-
edge Discovery and Data Mining, pages 269–274, 2001.

[10] I. S. Dhillon, S. Mallela, and D. S. Modha.
Information-theoretic co-clustering. In Proceedings of
The Ninth ACM SIGKDD, pages 89–98, 2003.

[11] A. Halberstadt. Heterogeneous Acoustic Measure-
ments and Multiple Classiers for Speech Recognition.
PhD thesis, MIT, 1998.

[12] S. M. Kakade and D. P. Foster. Multi-view regression
via canonical correlation analysis. In COLT, 2007.

[13] L.-P. Morency, A. Rahimi, and T. Darrell. Adaptive
view-based appearance model. In CVPR, 2003.

[14] I. Muslea, S. Minton, and C. A. Knoblock. Adaptive
view validation: A first step towards automatic view
detection. In ICML, 2002.

[15] K. Nigam and R. Ghani. Analyzing the effectiveness
and applicability of cotraining. In Workshop on In-
formation and Knowledge Management, 2000.

[16] B. W. Silverman. Density Estimation for Statistics
and Data Analysis. Chapman & Hall, 1986.

[17] V. Sindhwani, P. Niyogi, and M. Belkin. A co-
regularization approach to semi-supervised learning
with multiple views. In International Conference on
Machine Learning, 2005.

[18] M. R. Siracusa and J. W. Fisher III. Dynamic depen-
dency tests: Analysis and applications to multi-modal
data association. In AIStats, 2007.

[19] M.R. Siracusa, K. Tieu, A. Ihler, J. Fisher III, and
A.S. Willsky. Estimating dependency and significance
for high-dimensional data. In ICASSP, 2005.

[20] R. Urtasun and T. Darrell. Local probabilistic regres-
sion for activity-independent human pose inference.
In CVPR, 2008.

[21] R. Yan and M. Naphade. Semi-supervised cross fea-
ture learning for semantic concept detection in videos.
In CVPR, June 2005.

[22] S. Yu, B. Krishnapuram, R. Rosales, H. Steck, and
R. B. Rao. Bayesian co-training. In NIPS, 2007.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


