
Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion

Forecasting with a Single Convolutional Net

Wenjie Luo, Bin Yang and Raquel Urtasun

Uber Advanced Technologies Group

University of Toronto

{wenjie, byang10, urtasun}@uber.com

Abstract

In this paper we propose a novel deep neural network

that is able to jointly reason about 3D detection, track-

ing and motion forecasting given data captured by a 3D

sensor. By jointly reasoning about these tasks, our holis-

tic approach is more robust to occlusion as well as sparse

data at range. Our approach performs 3D convolutions

across space and time over a bird’s eye view representa-

tion of the 3D world, which is very efficient in terms of

both memory and computation. Our experiments on a new

very large scale dataset captured in several north american

cities, show that we can outperform the state-of-the-art by a

large margin. Importantly, by sharing computation we can

perform all tasks in as little as 30 ms.

1. Introduction

Modern approaches to self-driving divide the problem

into four steps: detection, object tracking, motion forecast-

ing and motion planning. A cascade approach is typically

used where the output of the detector is used as input to

the tracker, and its output is fed to a motion forecasting

algorithm that estimates where traffic participants are go-

ing to move in the next few seconds. This is in turn fed

to the motion planner that estimates the final trajectory of

the ego-car. These modules are usually learned indepen-

dently, and uncertainty is usually rarely propagated. This

can result in catastrophic failures as downstream processes

cannot recover from errors that appear at the beginning of

the pipeline.

In contrast, in this paper we propose an end-to-end

fully convolutional approach that performs simultaneous

3D detection, tracking and motion forecasting by exploiting

spatio-temporal information captured by a 3D sensor. We

argue that this is important as tracking and prediction can

help object detection. For example, leveraging tracking and

prediction information can reduce detection false negatives

Figure 1: Overview of our approach: Our FaF net-

work takes multiple frames as input and performs detection,

tracking and motion forecasting.

when dealing with occluded or far away objects. False pos-

itives can also be reduced by accumulating evidence over

time. Furthermore, our approach is very efficient as it shares

computations between all these tasks. This is extremely im-

portant for autonomous driving where latency can be fatal.

We take advantage of 3D sensors and design a network

that operates on a bird-eye-view (BEV) of the 3D world.

This representation respects the 3D nature of the sensor

data, making the learning process easier as the network can

exploit priors about the typical sizes of objects. Our ap-

proach is a one-stage detector that takes a 4D tensor created

from multiple consecutive temporal frames as input and per-

forms 3D convolutions over space and time to extract ac-

curate 3D bounding boxes. Our model produces bounding

boxes not only at the current frame but also multiple times-

tamps into the future. We decode the tracklets from these

predictions by a simple pooling operation that combine the

evidence from past and current predictions.

We demonstrate the effectiveness of our model on a very

large scale dataset captured from multiple vehicles driving

in North-america and show that our approach significantly

13569

outperforms the state-of-the-art. Furthermore, all tasks take

as little as 30ms.

2. Related Work

2D Object Detection: Over the last few years many

methods that exploit convolutional neural networks to pro-

duce accurate 2D object detections, typically from a sin-

gle image, have been developed. These approaches typi-

cally fell into two categories depending on whether they ex-

ploit a first step dedicated to create object proposals. Mod-

ern two-stage detectors [24, 8, 4, 11], utilize region pro-

posal networks (RPN) to learn the region of interest (RoI)

where potential objects are located. In a second stage the fi-

nal bounding box locations are predicted from features that

are average-pooled over the proposal RoI. Mask-RCNN [8]

also took this approach, but used RoI aligned features ad-

dressing theboundary and quantization effect of RoI pool-

ing. Furthermore, they added an additional segmentation

branch to take advantage of dense pixel-wise supervision,

achieving state-of-the-art results on both 2D image detec-

tion and instance segmentation. On the other hand one-

stage detectors skip the proposal generation step, and in-

stead learn a network that directly produces object bound-

ing boxes. Notable examples are YOLO [23], SSD [17] and

RetinaNet [16]. One-stage detectors are computationally

very appealing and are typically real-time, especially with

the help of recently proposed architectures, e.g. MobineNet

[10], SqueezeNet [31]. One-stage detectors were outper-

formed significantly by two stage-approaches until Lin et

al. [16] shown state-of-the-art results by exploiting a focal

loss and dense predictions.

3D Object Detection: In robotics applications such as

autonomous driving we are interested in detecting objects

in 3D space. The ideas behind modern 2D image detec-

tors can be transferred to 3D object detection. Chen et al.

[2] used stereo images to perform 3D detection. Li [15]

used 3D point cloud data and proposed to use 3D convolu-

tions on a voxelized representation of point clouds. Chen

et al. [3] combined image and 3D point clouds with a fu-

sion network. They exploited 2D convolutions in BEV,

however, they used hand-crafted height features as input.

They achieved promising results on KITTI [6] but only ran

at 360ms per frame due to heavy feature computation on

both 3D point clouds and images. This is very slow, partic-

ularly if we are interested in extending these techniques to

handle temporal data.

Object Tracking: Over the past few decades many ap-

proaches have been develop for object tracking. In this sec-

tion we briefly review the use of deep learning in tracking.

Pretrained CNNs were used to extract features and perform

tracking with correlation [18] or regression [29, 9]. Wang

and Yeung [30] used an autoencoder to learn a good fea-

ture representation that helps tracking. Tao et al. [27] used

siamese matching networks to perform tracking. Nam and

Han [21] finetuned a CNN at inference time to track object

within the same video.

Motion Forecasting: This is the problem of predicting

where each object will be in the future given multiple past

frames. Lee et al. [14] proposed to use recurrent networks

for long term prediction. Alahi et al. [1] used LSTMs to

model the interaction between pedestrian and perform pre-

diction accordingly. Ma et al. [19] proposed to utilize con-

cepts from game theory to model the interaction between

pedestrian while predicting future trajectories. Some work

has also focussed on short term prediction of dynamic ob-

jects [7, 22]. [28] performed prediction for dense pixel-

wise short-term trajectories using variational autoencoders.

[26, 20] focused on predicting the next future frames given a

video, without explicitly reasoning about per pixel motion.

Multi-task Approaches: Feichtenhofer et al. [5] pro-

posed to do detection and tracking jointly from video. They

model the displacement of corresponding objects between

two input images during training and decode them into ob-

ject tubes during inference time.

Different from all the above work, in this paper we pro-

pose a single network that takes advantage of temporal in-

formation and tackles the problem of 3D detection, short

term motion forecasting and tracking in the scenario of au-

tonomous driving. While temporal information provides us

with important cues for motion forecasting, holistic reason-

ing allows us to better propagate the uncertainty through-

out the network, improving our estimates. Importantly, our

model is super efficient and runs real-time at 33 FPS.

3. Joint 3D Detection, Tracking and Motion

Forecasting

In this work, we focus on detecting objects by exploit-

ing a sensor which produces 3D point clouds. Towards this

goal, we develop a one-stage detector which takes as input

multiple frames and produces detections, tracking and short

term motion forecasting of the objects’ trajectories into the

future. Our input representation is a 4D tensor encoding an

occupancy grid of the 3D space over several time frames.

We exploit 3D convolutions over space and time to produce

fast and accurate predictions. As point cloud data is inher-

ently sparse in 3D space, our approach saves lots of compu-

tation as compared to doing 4D convolutions over 3D space

and time. We name our approach Fast and Furious (FaF), as

it is able to create very accurate estimates in as little as 30

ms.

3570

Figure 2: Voxel Representation: using height directly as

input feature.

Figure 3: Overlay temporal & motion forecasting data.

Green: bbox w/ 3D point. Grey: bbox w/o 3D point

In the following, we first describe our data parameter-

ization in Sec. 3.1 including voxelization and how we in-

corporate temporal information. In Sec. 3.2, we present

our model’s architecture, follow by the objective we use for

training the network (Sec. 3.3).

3.1. Data Parameterization

In this section, we first describe our single frame repre-

sentation of the world. We then extend our representation

to exploit multiple frames.

Voxel Representation: In contrast to image detection

where the input is a dense RGB image, point cloud data is

inherently sparse and provides geometric information about

the 3D scene. In order to get a representation where con-

volutions can be easily applied, we quantize the 3D world

to form a 3D voxel grid. We then assign a binary indica-

tor for each voxel encoding whether the voxel is occupied.

We say a voxel is occupied if there exists at least one point

in the voxel’s 3D space. As the grid is a regular lattice,

convolutions can be directly used. We do not utilize 3D

convolutions on our single frame representation as this op-

eration will waste most computation since the grid is very

sparse, i.e., most of the voxels are not occupied. Instead, we

performed 2D convolutions and treat the height dimension

as the channel dimension. This allows the network to learn

to extract information in the height dimension. This con-

trast approaches such as MV3D [3], which perform quan-

tization on the x-y plane and generate a representation of

the z-dimension by computing hand-crafted height statis-

tics. Note that if our grid’s resolution is high, our approach

is equivalent to applying convolution on every single point

without loosing any information. We refer the reader to

Fig. 2 for an illustration of how we construct the 3D ten-

sor from 3D point cloud data.

Adding Temporal Information: In order to perform mo-

tion forecasting, it is crucial to consider temporal informa-

tion. Towards this goal, we take all the 3D points from the

past n frames and perform a change of coordinates to rep-

resent then in the current vehicle coordinate system. This

is important in order to undo the ego-motion of the vehicle

where the sensor is mounted. After performing this trans-

formation, we compute the voxel representation for each

frame. Now that each frame is represented as a 3D ten-

sor, we can append multiple frames’ along a new temporal

dimension to create a 4D tensor. This not only provides

more 3D points as a whole, but also gives cues about ve-

hicle’s heading and velocity enabling us to do motion fore-

casting. As shown in Fig. 3, where for visualization pur-

poses we overlay multiple frames, static objects are well

aligned while dynamic objects have ‘shadows’ which rep-

resents their motion.

3.2. Model Formulation

Our single-stage detector takes a 4D input tensor and re-

gresses directly to object bounding boxes at different times-

tamps without using region proposals. We investigate two

different ways to exploit the temporal dimension on our 4D

tensor: early fusion and late fusion. They represent a trade-

off between accuracy and efficiency, and they differ on at

which level the temporal dimension is aggregated.

Early Fusion: Our first approach aggregates temporal in-

formation at the very first layer. As a consequence it runs as

fast as using the single frame detector. However, it might

lack the ability to capture complex temporal features as

this is equivalent to producing a single point cloud from

all frames, but weighting the contribution of the different

timestamps differently. In particular, as shown in Fig. 4,

given a 4D input tensor, we first use a 1D convolution with

kernel size n on temporal dimension to reduce the temporal

dimension from n to 1. We share the weights among all fea-

ture maps, i.e., also known as group convolution. We then

perform convolution and max-pooling following VGG16

3571

(a) Early fusion (b) Later fusion

Figure 4: Modeling temporal information

[25] with each layer number of feature maps reduced by

half. Note that we remove the last convolution group in

VGG16, resulting in only 10 convolution layers.

Late Fusion: In this case, we gradually merge the tempo-

ral information. This allows the model to capture high level

motion features. We use the same number of convolution

layers and feature maps as in the early fusion model, but

instead perform 3D convolution with kernel size 3 × 3 × 3
for 2 layers without padding on temporal dimension, which

reduces the temporal dimension from n to 1, and then per-

form 2D spatial convolution with kernel size 3× 3 for other

layers. We refer the reader to Fig. 4 for an illustration of our

architecture.

We then add two branches of convolution layers as

shown in Fig. 5. The first one performs binary classification

to predict the probability of being a vehicle. The second one

predicts the bounding box over the current frame as well as

n− 1 frames into the future. Motion forecasting is possible

as our approach exploits multiple frames as input, and thus

can learn to estimate useful features such as velocity and

acceleration.

Following SSD [17], we use multiple predefined boxes

for each feature map location. As we utilize a BEV rep-

resentation which is metric, our network can exploit priors

about physical sizes of objects. Here we use boxes corre-

sponding to 5 meters in the real world with aspect ratio of

1 : 1, 1 : 2, 2 : 1, 1 : 6, 6 : 1 and 8 meters with aspect ratio

of 1 : 1. In total there are 6 predefined boxes per feature

map location denoted as aki,j where i = 1, ..., I, j = 1, ..., J
is the location in the feature map and k = 1, ...,K ranges

over the predefined boxes (i.e., size and aspect ratio). Using

multiple predefined boxes allows us to reduce the variance

of regression target, thus makes the network easy to train.

Notice that we do not use predefined heading angles. Fur-

thermore we use both sin and cos values to avoid the 180
degrees ambiguity.

In particular, for each predefined box aki,j , our net-

Figure 5: Motion forecasting

work predicts the corresponding normalized location offset

l̂x, l̂y , log-normalized sizes ŝw, ŝh and heading parameters

âsin, âcos.

Decoding Tracklets: At each timestamp, our model out-

puts the detection bounding boxes for n timestamps. Re-

versely, each timestamp will have current detections as well

as n − 1 past predictions. Thus we can aggregate the in-

formation for the past to produce accurate tracklets without

solving any trajectory based optimization problem. Note

that if detection and motion forecasting are perfect, we can

decode perfect tracklets. In practice, we use average as ag-

gregation function. When there is overlap between detec-

tions from current and past’s future predictions, they are

considered to be the same object and their bounding boxes

will simply be averaged. Intuitively, the aggregation pro-

cess helps particularly when we have strong past predic-

tions but no current evidence, e.g., if the object is currently

occluded or a false negative from detection. This allow us

to track through occlusions over multiple frames. On the

other hand, when we have strong current evidence but not

prediction from the past, then there is evidence for a new

object.

3.3. Loss Function and Training

We train the network to minimize a combination of clas-

sification and regression loss. In the case of regression we

include both the current frame as well as our n frames fore-

3572

casting into the future. That is

ℓ(w) =
∑

α · ℓcla(w) +
∑

i=t,t+1,...,t+n

ℓtreg(w)

 (1)

where t is the current frame and w represents the model

parameters.

We employ as classification loss binary cross-entropy

computed over all locations and predefined boxes:

ℓcla(w) =
∑

i,j,k

qi,j,k log pi,j,k(w) (2)

Here i, j, k are the indices on feature map locations and pre-

defined box identity, qi,j,k is the class label (i.e. qi,j,k =1

for vehicle and 0 for background) and pi,j,k is the predicted

probability for vehicle.

In order to define the regression loss for our detections

and future predictions, we first need to find their associated

ground truth. We defined their correspondence by matching

each predefined box against all ground truth boxes. In par-

ticular, for each predicted box, we first find the ground truth

box with biggest overlap in terms of intersection over union

(IoU). If the IoU is bigger than a fixed threshold (0.4 in

practice), we assign this ground truth box as āki,j and assign

1 to its corresponding label qi,j,k. Following SSD [17], if

there exist a ground truth box not assigned to any predefined

box, we will assign it to its highest overlapping predefined

box ignoring the fixed threshold. Note that multiple prede-

fined boxes can be associated to the same ground truth, and

some predefined boxes might not have any correspondent

ground truth box, meaning their qi,j,k = 0.

Thus we define the regression targets as

lx =
x− xGT

wGT
ly =

y − yGT

hGT

sw = log
w

wGT
sh = log

h

hGT

asin = sin(θGT) acos = cos(θGT)

We use a weighted smooth L1 loss over all regression tar-

gets where smooth L1 is defined as:

smoothL1
(x̂, x) =

{

1

2
(x̂− x)2 if |x̂− x| < 1

|x̂− x| − 1

2
otherwise

(3)

Hard Data Mining Due to the imbalance of positive and

negative samples, we use hard negative mining during train-

ing. We define positive samples as those predefined boxes

having corresponding ground truth box, i.e., qi,j,k = 1. For

negative samples, we rank all candidates by their predicted

score pi,j,k from the classification branch and take the top

negative samples with a ration of 3 in practice.

4. Experimental Evaluation

Unfortunately there is no publicly available dataset

which evaluates 3D detection, tracking and motion forecast-

ing. We thus collected a very large scale dataset in order to

benchmark our approach. It is 2 orders of magnitude bigger

than datasets such as KITTI [6].

Dataset: Our dataset is collected by a roof-mounted Li-

DAR on top of a vehicle driving around several North-

American cities. It consists of 546,658 frames collected

from 2762 different scenes. Each scene consists of a con-

tinuous sequence. Our validation set consists of 5,000 sam-

ples collected from 100 scenes, i.e., 50 continuous frames

are taken from each sequence. There is no overlap between

the geographic area where the training and validation are

collected, in order to showcase strong generalization. Our

labels might contain vehicles with no 3D point on them as

the labelers have access to the full sequence in order to pro-

vide accurate annotations. Our labels contain 3D rotated

bounding box as well as track id for each vehicle.

Training Setup: At training time, we use a spatial X-Y

region of size 144 × 80 meters, where each grid cell is

0.2 × 0.2 meters. On the height dimension, we take the

range from -2 to 3.5 meters with a 0.2 meter interval, lead-

ing to 29 bins. For temporal information, we take all the

3D points from the past 5 timestamps. Thus our input is a 4

dimensional tensor consisting of time, height, X and Y.

For both our early-fusion and late-fusion models, we

train from scratch using Adam optimizer [13] with a learn-

ing rate of 1e-4. The model is trained on a 4 Titan XP GPU

server with batch size of 12. We train the model for 100K

iteration with learning rate halved at 60K and 80K iterations

respectively.

Detection Results: We compare our model against state-

of-the-art real-time detectors including SSD [17], Mo-

bileNet [10] and SqueezeNet [12]. Note that these detectors

are all developed to work on 2D detection from images. To

make them competitive, we also build our predefined boxes

into their system, which further easy the task for those de-

tectors. The region of interest is 144 × 80M centered at

ego-car during inference time. We keeps the same voxeliza-

tion for all models and evaluate detections against ground

truth vehicle bounding boxes with at minimum of three 3D

points. Vehicles with less than three points are considered

don’t care regions. We consider a detection correct if it

has an IoU against any ground truth vehicle booundign box

larger than 0.7. Note that for a vehicle with typical size of

3.5×6 meters, 0.7 IoU means we can at most miss 0.35 me-

ters along width and 0.6 meters along length. Fig. 6 shows

the precision recall curve for all approaches, where clearly

3573

IoU 0.5 0.6 0.7 0.8 0.9 Time [ms]

SqueezeNet v1.1 [12] 85.80 81.06 69.97 43.20 3.70 9

SSD [17] 90.23 86.76 77.92 52.39 5.87 23

MobileNet [10] 90.56 87.05 78.39 52.10 5.64 65

FaF 93.24 90.54 83.10 61.61 11.83 30

Table 1: Detection performance on 144× 80 meters region, with object having ≥ 3 number 3D points

Figure 6: P/R curve

our model is able to achieve higher recall, which is cru-

cial for autonomous driving. Furthermore, Tab. 1 shows

mAP using different IoU thresholds. We can see that our

method is able to outperform all other methods. Particu-

larly at IoU 0.7, we achieve 4.7% higher mAP than Mo-

bileNet [10] while being twice faster, and 5.2% better than

SSD [17] with similar running time.

We also report performance as a function of the mini-

mum number of 3D points, which is used to filter ground

truth bounding boxes during test time. Note that high level

of sparsity is due to occlusion or long distance vehicles. As

shown in Fig. 7, our method is able to outperform other

methods at all levels. We evaluate with a minimum of 0

point is, to show the importance of exploiting temporal in-

formation.

We are also interested in knowing how the model per-

form as a function of vehicle distance. Towards this goal,

we extend the predictions to be as far as 100 meters away.

Fig. 8 shows the mAP with IoU 0.7 on vehicles within dif-

ferent distance ranges. We can see that all methods are do-

ing well on nearby vehicles, while our method is signifi-

cantly better at long range. Note that all methods perform

poorly at 100 meters due to lack of 3D points at that dis-

tance.

Figure 7: mAP on different number of minimum 3D

points

Figure 8: mAP over distance

Ablation Study: We conducted ablation experiments

within our framework to show how important each of the

component is. We fixed the training setup for all exper-

iments. As shown in Tab. 2, using temporal information

with early fusion gives 3.7% improvement on mAP at IoU

3574

Single 5 Frames Early Laster w/ F w/ T IoU 0.5 IoU 0.6 IoU 0.7 IoU 0.8 IoU 0.9 Time [ms]

X 89.81 86.27 77.20 52.28 6.33 9

X X 91.49 88.57 80.90 57.14 8.17 11

X X 92.01 89.37 82.33 58.77 8.93 29

X X X 92.02 89.34 81.55 58.61 9.62 30

X X X X 93.24 90.54 83.10 61.61 11.83 30

Table 2: Ablation study, on 144× 80 region with vehicles having ≥3 number 3D points

Figure 9: Motion forecasting performance

MOTA MOTP MT ML

FaF 80.9 85.3 75 10.6

Hungarian 73.1 85.4 55.4 20.8

Table 3: Tracking performance

0.7. While later fusion uses the same information as early

fusion, it is able to get 1.4% extra improvement as it can

model more complex temporal features. In addition, adding

prediction loss gives similar detection results on current

frame alone, however it enables us to decode tracklets and

provides evidence to output smoother detections, thus giv-

ing the best performance, i.e. 6% points better on mAP at

IoU 0.7 than single frame detector.

Tracking: Our model is able to output detections with

track ids directly. We evaluate the raw tracking output with-

out adding any sophisticated tracking pipeline on top. Tab. 3

shows the comparison between our model’s output and a

Hungarian method on top of our detection results. We fol-

low the KITTI protocol [6] and compute MOTA, MOTP,

Mostly-Tracked (MT) and Mostly-Lost (ML) across all 100

validation sequences. The evaluation script uses IoU 0.5

for association and 0.9 score for thresholding both methods.

We can see that our final output achieves 80.9% in MOTA,

7.8% better than Hungarian, as well as 20% better on MT,

10% lower on ML, while still having similar MOTP.

Motion Forecasting: We evaluate the forecasting ability

of the model by computing the average L1 and L2 distances

of the vehicles’ center location. As shown in Fig. 9, we are

able to predict 10 frames into the future with L2 distance

only less than 0.33 meter. Note that due to the nature of the

problem, we can only evaluate on true positives, which in

our case has a corresponding recall of 92.5%.

Qualitative Results: Fig. 10 shows our results on a 144×
80 meters region. We provide 4 sequences, where the top 3

rows show that our model is able to perform well at com-

plex scenes, giving accurate rotated bounding boxes on both

small vehicles as well big trucks. Note that our model also

gives accurate motion forecasting for both fast moving ve-

hicles and static vehicles (where all future center locations

overlay at the current location). The last row shows one

failure case, where our detector fails on the center right blue

vehicle. This is due to the sparsity of the 3D points.

5. Conclusion

We have proposed a holistic model that reasons jointly

about detection, prediction and tracking in the scenario of

autonomous driving. We show that it runs real-time and

achieves very good accuracy on all tasks. In the future, we

plan to incorporate RoI align in order to have better feature

representations. We also plan to test other categories such

as pedestrians and produce longer term predictions.

References

[1] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei,

and S. Savarese. Social lstm: Human trajectory prediction in

crowded spaces. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 961–971,

2016. 2

[2] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun.

3d object proposals using stereo imagery for accurate object

class detection. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2017. 2

3575

Figure 10: Qualitative results on 144x80M region [best view in color]. Same color represents same vehicle across different

timeframe. Each vehicle has ‘dot’ presents the center locations of current and future time frames

[3] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view

3d object detection network for autonomous driving. arXiv

preprint arXiv:1611.07759, 2016. 2, 3

[4] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection

via region-based fully convolutional networks. In Advances

in neural information processing systems, pages 379–387,

2016. 2

[5] C. Feichtenhofer, A. Pinz, and A. Zisserman. Detect to track

and track to detect. arXiv preprint arXiv:1710.03958, 2017.

2

[6] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

Conference on Computer Vision and Pattern Recognition

(CVPR), 2012. 2, 5, 7

[7] H. Gong, J. Sim, M. Likhachev, and J. Shi. Multi-hypothesis

motion planning for visual object tracking. In Computer Vi-

sion (ICCV), 2011 IEEE International Conference on, pages

619–626. IEEE, 2011. 2

[8] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-

CNN. arXiv preprint arXiv:1703.06870, 2017. 2

[9] D. Held, S. Thrun, and S. Savarese. Learning to track at 100

fps with deep regression networks. In European Conference

on Computer Vision, pages 749–765. Springer, 2016. 2

[10] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,

T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision appli-

cations. arXiv preprint arXiv:1704.04861, 2017. 2, 5, 6

[11] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,

A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, et al.

Speed/accuracy trade-offs for modern convolutional object

detectors. arXiv preprint arXiv:1611.10012, 2016. 2

[12] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.

Dally, and K. Keutzer. Squeezenet: Alexnet-level accuracy

with 50x fewer parameters and¡ 0.5 mb model size. arXiv

preprint arXiv:1602.07360, 2016. 5, 6

3576

[13] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014. 5

[14] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr,

and M. Chandraker. Desire: Distant future prediction in

dynamic scenes with interacting agents. arXiv preprint

arXiv:1704.04394, 2017. 2

[15] B. Li. 3d fully convolutional network for vehicle detection

in point cloud. arXiv preprint arXiv:1611.08069, 2016. 2

[16] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár.

Focal loss for dense object detection. arXiv preprint

arXiv:1708.02002, 2017. 2

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single shot multibox detector. In

ECCV, 2016. 2, 4, 5, 6

[18] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical

convolutional features for visual tracking. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 3074–3082, 2015. 2

[19] W.-C. Ma, D.-A. Huang, N. Lee, and K. M. Kitani. Forecast-

ing interactive dynamics of pedestrians with fictitious play.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 774–782, 2017. 2

[20] M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale

video prediction beyond mean square error. arXiv preprint

arXiv:1511.05440, 2015. 2

[21] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4293–4302, 2016. 2

[22] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. You’ll

never walk alone: Modeling social behavior for multi-target

tracking. In Computer Vision, 2009 IEEE 12th International

Conference on, pages 261–268. IEEE, 2009. 2

[23] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger.

arXiv preprint arXiv:1612.08242, 2016. 2

[24] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Neural Information Processing Systems (NIPS),

2015. 2

[25] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 4

[26] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsuper-

vised learning of video representations using lstms. In Inter-

national Conference on Machine Learning, pages 843–852,

2015. 2

[27] R. Tao, E. Gavves, and A. W. Smeulders. Siamese instance

search for tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1420–

1429, 2016. 2

[28] J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncer-

tain future: Forecasting from static images using variational

autoencoders. In European Conference on Computer Vision,

pages 835–851. Springer, 2016. 2

[29] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual track-

ing with fully convolutional networks. In Proceedings of the

IEEE International Conference on Computer Vision, pages

3119–3127, 2015. 2

[30] N. Wang and D.-Y. Yeung. Learning a deep compact im-

age representation for visual tracking. In Advances in neural

information processing systems, pages 809–817, 2013. 2

[31] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet:

Unified, small, low power fully convolutional neural net-

works for real-time object detection for autonomous driving.

arXiv preprint arXiv:1612.01051, 2016. 2

3577

