
Efficient Deep Learning for Stereo Matching

Wenjie Luo Alexander G. Schwing Raquel Urtasun
Department of Computer Science, University of Toronto

{wenjie, aschwing, urtasun}@cs.toronto.edu

Abstract

In the past year, convolutional neural networks have
been shown to perform extremely well for stereo estima-
tion. However, current architectures rely on siamese net-
works which exploit concatenation followed by further pro-
cessing layers, requiring a minute of GPU computation per
image pair. In contrast, in this paper we propose a match-
ing network which is able to produce very accurate results
in less than a second of GPU computation. Towards this
goal, we exploit a product layer which simply computes the
inner product between the two representations of a siamese
architecture. We train our network by treating the problem
as multi-class classification, where the classes are all pos-
sible disparities. This allows us to get calibrated scores,
which result in much better matching performance when
compared to existing approaches.

1. Introduction
Reconstructing the scene in 3D is key in many applica-

tions such as robotics and self-driving cars. To ease this
process, 3D sensors such as LIDAR are commonly em-
ployed. Utilizing cameras is an attractive alternative, as it is
typically a more cost-effective solution. However, despite
decades of research, estimating depth from a stereo pair is
still an open problem. Dealing with cclusions, large satu-
rated areas and repetitive patterns are some of the remaining
challenges.

Many approaches have been developed that try to aggre-
gate information from local matches. Cost aggregation, for
example, averages disparity estimates in a local neighbor-
hood. Similarly, semi-global block matching and Markov
random field based methods combine pixelwise predictions
and local smoothness into an energy function. However
all these approaches employ cost functions that are hand
crafted, or where only a linear combination of features is
learned from data.

In the past few years we have witnessed a revolution in
high-level vision, where deep representations are learned di-
rectly from pixels to solve many scene understanding tasks

Figure 1: To learn informative image patch representations
we employ a siamese network which extracts marginal dis-
tributions over all possible disparities for each pixel.

with unprecedented performance. These approaches cur-
rently are the state-of-the-art in tasks such as detection, seg-
mentation and classification.

Very recently, convolutional networks have also been ex-
ploited to learn how to match for the task of stereo esti-
mation [31, 29]. Current approaches learn the parameters
of the matching network by treating the problem as binary
classification; Given a patch in the left image, the task is
to predict if a patch in the right image is the correct match.
While [30] showed great performance in challenging bench-
marks such as KITTI [12], it is computationally very expen-
sive, requiring a minute of computation in the GPU. This is
due to the fact that they exploited a siamese architecture
followed by concatenation and further processing via a few
more layers to compute the final score.

In contrast, in this paper we propose a matching network
which is able to produce very accurate results in less than a
second of GPU computation. Towards this goal, we exploit
a product layer which simply computes the inner product
between the two representations of a siamese architecture.
We train our network by treating the problem as multi-class
classification, where the classes are all possible disparities.
This allows us to get calibrated scores, which result in much

1

better matching performance when compared to [30]. We
refer the reader to Fig. 1 for an illustration of our approach.
We demonstrate the effectiveness of our approach on the
challenging KITTI benchmark and show competitive results
when exploiting smoothing techniques. Our code and data
can be fond online at: http://www.cs.toronto.edu/

deepLowLevelVision.

2. Related Work
Over the past decades many stereo algorithms have been

developed. Since a discussion of all existing approaches
would exceed the scope of this paper, we restrict ourselves
mostly to a subset of recent methods that exploit learning
and can mostly be formulated as energy minimization.

Early learning based approaches focused on correcting
an initially computed matching cost [17, 18]. Learning
has been also utilized to tune the hyper-parameters of the
energy-minimization task. Among the first to train these
hyper-parameters were [32, 22, 20], which investigated dif-
ferent forms of probabilistic graphical models.

Slanted plane models model groups of pixels with
slanted 3D planes. They are very competitive in au-
tonomous driving scenarios, where robustness is key. They
have a long history, dating back to [2] and were shown to
be very successful on the Middleburry benchmark [23, 16,
3, 25] as well as on KITTI [26, 27, 28].

Holistic models which solve jointly many tasks have
also been explored. The advantage being that many tasks
in low-level and high level-vision are related, and thus
one can benefit from solving them together. For example
[5, 6, 4, 19, 14] jointly solved for stereo and semantic seg-
mentation. Guney and Geiger [13] investigated the utility
of high-level vision tasks such as object recognition and se-
mantic segmentation for stereo matching.

Estimating the confidence of each match is key when
employing stereo estimates as a part of a pipeline. Learn-
ing methods were successfully applied to this task, e.g., by
combining several confidence measures via a random for-
est classifier [15], or by incorporating random forest pre-
dictions into a Markov random field [24].

Convolutional neural networks(CNN) have been shown
to perform very well on high-level vision tasks such as im-
age classification, object detection and semantic segmenta-
tion. More recently, CNNs have been applied to low-level
vision tasks such as optical flow prediction [11]. In the con-
text of stereo estimation, [30] utilize CNN to compute the
matching cost between two image patches. In particular,
they used a siamese network which takes the same sized
left and right image patches with a few fully-connected lay-
ers on top to predict the matching cost. They trained the
model to minimize a binary cross-entropy loss. In simi-
lar spirit to [30], [29] investigated different CNN based ar-
chitectures for comparing image patches. They found con-

Left image patches Right image patches

Inner product

Patch representation

pi(yi)

Figure 2: Our four-layer siamese network architecture
which has a receptive field size of 9.

catenating left and right image patches as different channels
works best, at the cost of being very slow.

Our work is most similar to [30, 29] with two main dif-
ferences. First, we propose to learn a probability distribu-
tion over all disparity values using a smooth target distribu-
tion. As a consequence we are able to capture correlations
between the different disparities implicitly. This contrasts
a [30] which performs independent binary predictions on
image patches. Second, on top of the convolution layers
we use a simple dot-product layer to join the two branches
of the network. This allows us to do a orders of magni-
tude faster computation. We note that in concurrent work
unpublished at the time of submission of our paper [31, 8]
also introduced a dot-product layer.

3. Deep Learning for Stereo Matching

We are interested in computing a disparity image given
a stereo pair. Throughout this paper we assume that the im-
age pairs are rectified, thus the epipolar lines are aligned
with the horizontal image axis. Let yi ∈ Yi represent the
disparity associated with the i-th pixel, and let |Yi| be the
cardinality of the set (typically 128 or 256). Stereo algo-
rithms estimate a 3-dimensional cost volume by computing
for each pixel in the left image a score for each possible
disparity value. This is typically done by exploiting a small
patch around the given pixel and a simple hand-crafted rep-
resentation of each patch. In contrast, in this paper we ex-
ploit convolutional neural networks to learn how to match.

Towards this goal, we utilize a siamese architecture,
where each branch processes the left or right image respec-
tively. In particular, each branch takes an image as input,
and passes it through a set of layers, each consisting of a
spatial convolution with a small filter-size (e.g., 5 × 5 or

http://www.cs.toronto.edu/deepLowLevelVision
http://www.cs.toronto.edu/deepLowLevelVision

3× 3), followed by a spatial batch normalization and a rec-
tified linear unit (ReLU). Note that we remove the ReLU
from the last layer in order to not loose the information en-
coded in the negative values. In our experiments we ex-
ploit different number of filters per layer, either 32 or 64
and share the parameters between the two branches.

In contrast to existing approaches which exploit concate-
nation followed by further processing, we use a product
layer which simply computes the inner product between the
two representations to compute the matching score. This
simple operation speeds up the computation significantly.
We refer the reader to Fig. 2 which depicts an example of
a 4-layer network with filter-size 3 × 3, which results in a
receptive field of size 9× 9.

Training: We use small left image patches extracted at
random from the set of pixels for which ground truth is
available to train the network. This strategy provides us
with a diverse set of examples and is memory efficient. In
particular, each left image patch is of size equivalent to the
size of our network’s receptive field. Let (xi, yi) be the im-
age coordinates of the center of the patch extracted at ran-
dom from the left image, and let dxi,yi

be the corresponding
ground truth disparity. We use a larger patch for the right
image which expands both the size of the receptive field
as well as all possible disparities (i.e., displacements). The
output of the two branches of the siamese network is hence
a single 64-dimensional representation for the left branch,
and |Yi| × 64 for the right branch. These two vectors are
then passed as input to an inner-product layer which com-
putes a score for each of the |Yi| disparities. This allow us
to compute a softmax for each pixel over all possible dis-
parities.

During training we minimize cross-entropy loss with re-
spect to the weights w that parameterize the network

min
w

∑
i,yi

pgt(yi) log pi(yi,w).

Since we are interested in a 3-pixel error metric we use
a smooth target distribution pgt(yi), centered around the
ground-truth yGT

i , i.e.,

pgt(yi) =

λ1 if yi = yGT

i

λ2 if |yi − yGT
i | = 1

λ3 if |yi − yGT
i | = 2

0 otherwise

.

For this paper we set λ1 = 0.5, λ2 = 0.2 and λ3 = 0.05.
Note that this contrasts cross entropy for classification,
where pgt(yi) is a delta function placing all its mass on the
annotated groundtruth configuration.

We train our network using stochastic gradient descent
back propagation with AdaGrad [9]. Similar to moment-
based stochastic gradient descent, AdaGrad adapts the gra-
dient based on historical information. Contrasting moment

based methods it emphasizes rare but informative features.
We adapt the learning rates every few thousand iterations as
detailed in the experimental section.

Testing: Contrasting the training procedure where we
compose a mini-batch by randomly sampling locations
from different training images, we can improve the speed
performance during testing. Our siamese network computes
a 64-dimensional feature representation for every pixel i.
To efficiently obtain the cost volume, we compute the 64-
dimensional representation only once for every pixel i, and
during computation of the cost volume we re-use its values
for all disparities that involve this location.

4. Smoothing Deep Net Outputs

Given the unaries obtained with a CNN, we compute
predictions for all disparities at each image location. Note
that simply outputting the most likely configuration for ev-
ery pixel is not competitive with modern stereo algorithms,
which exploit different forms of cost aggregation, post pro-
cessing and smoothing. This is particularly important to
deal with complex regions with occlusions, saturation or
repetitive patterns.

Over the past decade many different MRFs have been
proposed to solve the stereo estimation problem. Most
approaches define each random variable to be the dispar-
ity of a pixel, and encode smoothness between consecu-
tive or nearby pixels. An alternative approach is to seg-
ment the image into regions and estimate a slanted 3D plane
for each region. In this paper we investigate the effect
of different smoothing techniques. Towards this goal, we
formulate stereo matching as inference in several different
Markov random fields (MRFs), with the goal of smoothing
the matching results produced by our convolutional neural
network. In particular, we look into cost aggregation, semi-
global block matching as well as the slanted plane approach
of [28] as means of smoothing. In the following we briefly
review these techniques.

Cost aggregation: We exploited a very simple cost ag-
gregation approach, which simply performs average pool-
ing over a window of size 5× 5.

Semi global block matching: Semi-global block match-
ing augments the unary energy term obtained from convo-
lutional neural nets by introducing additional pairwise po-
tentials which encourage smooth disparities. Specifically,

E(y) =

N∑
i=1

Ei(yi) +
∑

(i,j)∈E

Ei,j(yi, yj),

where E refers to 4-connected grid and the unary energy
Ei(yi) is the output of the neural net.

> 2 pixel > 3 pixel > 4 pixel > 5 pixel End-Point Runtime(s)
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

MC-CNN-acrt [30] 15.02 16.92 12.99 14.93 12.04 13.98 11.38 13.32 4.39 px 5.21 px 20.13
MC-CNN-fast [30] 17.72 19.56 15.53 17.41 14.41 16.31 13.60 15.51 4.77 px 5.63 px 0.20
Ours(19) 10.87 12.86 8.61 10.64 7.62 9.65 7.00 9.03 3.31 px 4.2 px 0.14
Table 1: Comparison of the output of the matching network across different error metrics on the KITTI 2012 validation set.

Unary CA SGM[31] Post[31] Slanted[28] Ours(9) Ours(19) Ours(29) Ours(37) MC-CNN-acrt[30] MC-CNN-fast[30]

X 16.69 8.61 7.64 6.61 12.99 15.53

X X 12.14 7.48 6.86 6.09 6.32 -

X X X 4.57 3.99 4.12 3.96 3.34 4.53

X X X X 4.11 3.73 3.99 3.88 3.22 3.73

X X X X X 3.96 3.64 3.81 3.83 3.36 3.83

Table 2: Comparison of different smoothing methods. The table illustrates non-occluded 3 pixel error on the KITTI 2012
validation set.

We define the pairwise energy as

Ei,j(yi, yj) =

 0 if yi = yj
c1 if |yi − yj | = 1
c2 otherwise

,

with variable constants c1 < c2. We follow the approach of
[30], where c1 and c2 is decreased if there is strong evidence
for edges at the corresponding locations in either the left or
the right image. We refer the reader to their paper for more
details.

Slanted plane: To construct a depth-map, this approach
performs block-coordinate descent on an energy involving
appearance, location, disparity, smoothness and boundary
energies. More specifically, we first over-segment the image
using an extension of the SLIC energy [1]. For each super-
pixel we then compute slanted plane estimates [28] which
should adhere to the depth-map evidence obtained from
the convolutional neural network. We then iterate these
two steps to minimize an energy function which takes into
account appearance, location, disparity, smoothness and
boundary energies. We refer the interested reader to [28]
for details.

Sophisticated post-processing: In [31] a three-step post-
processing is designed to perform interpolation, subpixel
enhancement and a refinement. The interpolation step re-
solves conflicts between the disparity maps computed for
the left and right images by performing a left-right consis-
tency check. Subpixel enhancement fits a quadratic function
to neighboring points to obtain an enhanced depth-map. To
smooth the disparity map without blurring edges, the final
refinement step applies a median filter and a bilateral filter.
We only use the interpolation step as we found the other two
don’t always further improve performance in our case.

5. Experimental Evaluation

We evaluate the performance of different convolutional
neural network structures and different smoothing tech-
niques on the KITTI 2012 [12] and 2015 [21] datasets. Be-
fore training we normalize each image to have zero mean
and standard deviation of one. We initialize the parameters
of our networks using a uniform distribution. We employ
the AdaGrad algorithm [9] and use a learning rate of 1e−2.
The learning rate is decreased by a factor of 5 after 24k it-
erations and then further decreased by a factor of 5 every
8k iterations. We use a batch size of 128. We trained the
network for 40k iterations which takes around 6.5 hours on
an NVIDIA Titan-X.

5.1. KITTI 2012 Results

The KITTI 2012 dataset contains 194 training and 195
test images. To compare the different network architectures
described below, we use as training set 160 image pairs ran-
domly selected, and the remaining 34 image pairs as our
validation set.

Comparison of Matching Networks: We first show our
network’s matching ability and compare it to existing
matching networks [30, 31]. In this experiment we do not
employ smoothing or post processing, but just utilize the
raw output of the network. Following KITTI, we employ
the percentage of pixels with disparity errors larger than a
fixed threshold as well as end-point error as metrics. We re-
fer to our architecture as ‘Ours(19).’ It consists of 9 layers
of 3 × 3 convolutions resulting in a receptive field size of
19 × 19 pixels. As shown in Table 1, our 9-layer network
achieves a 3-pixel non-occluded stereo error of 8.61% after
only 0.14 seconds of computation. In contrast, [30] obtains
12.99% after a significantly longer time of 20.13 seconds.

> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point Runtime
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All (s)

StereoSLIC [27] 5.76 7.20 3.92 5.11 3.04 4.04 2.49 3.33 0.9 px 1.0 px 2.3
PCBP-SS [27] 5.19 6.75 3.40 4.72 2.62 3.75 2.18 3.15 0.8 px 1.0 px 300

SPS-st [28] 4.98 6.28 3.39 4.41 2.72 3.52 2.33 3.00 0.9 px 1.0 px 2
Deep Embed [8] 5.05 6.47 3.10 4.24 2.32 3.25 1.92 2.68 0.9 px 1.1 px 3

MC-CNN-acrt [31] 3.90 5.45 2.43 3.63 1.90 2.85 1.64 2.39 0.7 px 0.9 px 67
Displets v2 [13] 3.43 4.46 2.37 3.09 1.97 2.52 1.72 2.17 0.7 px 0.8 px 265

Ours(19) 4.98 6.51 3.07 4.29 2.39 3.36 2.03 2.82 0.8 px 1.0 px 0.7

Table 3: Comparison to stereo state-of-the-art on the test set of the KITTI 2012 benchmark.

Figure 3: KITTI 2012 test set: (left) original image, (center) stereo estimates, (right) stereo errors.

Their faster version [31] requires 0.20 second which results
in a much lower performance of 15.53%. As shown in the
table, our network outperforms previously designed convo-
lutional neural networks by a large margin on all criteria.

Smoothing Comparison: Next, we evaluate different al-
gorithms for smoothing and post-processing when employ-
ing different network sizes. In particular, we evaluate cost
aggregation, semi-global block matching and slanted plane
smoothing, which are described in the previous section. We
also experiment with different receptive field sizes for our
network, which corresponds to changing the depth of our
architecture. As before, we use ‘Ours(n)’ to refer to our
architecture with a receptive field size of n × n pixel. We
investigated n = 9, 19, 29, 37. We use kernels of size 3× 3
for n = 9 and n = 19, while the kernels were of size 5× 5

for n = 39. To achieve a receptive field of 29 we use 5
layers of 5×5 and 4 layers of 3×3. This keeps the number
of layers bounded to 9.

As shown in Table 2, networks with different receptive
field sizes result in errors ranging from 6.61% (for n = 37
to 16.69% for n = 9. The corresponding error for [31]
is 12.99% for their slow and more accurate model, and
15.53% for their fast model. After smoothing, the differ-
ences in stereo error achieved by the networks are no longer
significant. All of them achieve an error slightly less than
4%. Since depth-maps tend to be very smooth we think that
an aggressive smoothing helps to flatten the noisy unary po-
tentials. In addition we observe that utilizing simple cost
aggregation to encourage local smoothness further helps to
slightly improve the results. This is due to the fact that

> 2 pixel > 3 pixel > 4 pixel > 5 pixel End-Point Runtime(s)
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

MC-CNN-acrt [30] 15.20 16.83 12.45 14.12 11.04 12.72 10.13 11.80 4.01 px 4.66 px 22.76
MC-CNN-fast [30] 18.47 20.04 14.96 16.59 13.18 14.83 12.02 13.67 4.27 px 4.93 px 0.21
Ours(37) 9.96 11.67 7.23 8.97 5.89 7.62 5.04 6.78 1.84 px 2.56 px 0.34

Table 4: Comparison of the output of the matching network across different error metrics on the KITTI 2015 validation set.

Unary CA SGM[31] Post[31] Slanted[28] Ours(9) Ours(19) Ours(29) Ours(37) MC-CNN-acrt[30] MC-CNN-fast[30]

X 15.25 8.95 7.23 7.13 12.45 14.96

X X 11.43 8.00 6.60 6.58 7.78 -

X X X 5.18 4.74 4.62 4.73 3.48 5.05

X X X X 4.41 4.23 4.31 4.38 3.10 4.74

X X X X X 4.25 4.20 4.14 4.19 3.11 4.79

Table 5: Comparison of smoothing methods using different CNN output. The table illustrates the non-occluded 3 pixel error
on the KITTI 2015 validation set.

such techniques eliminate small isolated noisy areas. While
the post-processing proposed in [31] focuses on occlusions
and sub-pixel enhancement, [28] adds extra robustness to
non-textured areas by fitting slanted planes. Both meth-
ods improve the semi-global block matching output slightly.
Our best performing model combination achieves a 3 pixel
stereo error of 3.64%.

Comparison to State-of-the-art: To evaluate the test set
performance we trained our model having a receptive field
of 19 pixels, i.e., “Ours(19),” on the entire training set. The
obtained test set performance is shown in Table 3. Since we
did not particularly focus on finding a good combination of
smoothness and unaries, our performance is slightly below
the current state-of-the-art.

Qualitative Analysis: Examples of stereo estimates by
our approach are depicted in Fig. 3. We observe that our ap-
proach suffers from texture-less regions as well as regions
with repetitive patterns such as fences.

5.2. KITTI 2015 Results

The KITTI 2015 dataset consists of 200 training and 200
test images. Instead of the gray-scale images used for the
KITTI 2012 dataset we directly process the RGB data. To
compare the different network architectures, we randomly
selected 160 image pairs as training set and use the remain-
ing 40 image pairs for validation purposes.

Comparison of Matching Networks: We first show our
network’s matching ability and compare it to existing
matching networks [30, 31]. In this experiment we do not
employ smoothing or post processing, but just utilize the
raw output of the network. We refer to our architecture via
‘Ours(37).’ It consists of 9 layers of 5 × 5 convolutions
resulting in a receptive field size of 37 × 37 pixels. As

shown in Table 4, our 9-layer network achieves a 3-pixel
stereo error of 7.23% after only 0.34 seconds of process-
ing time, whereas [30] obtains 12.45% after a significantly
longer processing time of 22.76 seconds. Their faster ver-
sion [31] requires 0.21 seconds but results in a much lower
performance of 14.96% when compared to our approach.
Again, our network outperforms previously designed con-
volutional neural networks by a large margin on all criteria.

Smoothing Comparison: Table 5 shows results of apply-
ing different post processing techniques to different network
architectures. As when processing KITTI 2012 images, we
observe that the difference in network performance vanishes
after applying smoothing techniques. Our best performing
combination achieves a 3-pixel error of 4.14% on the vali-
dation set.

Influence of Depth and Filter Size Next, we evaluate
the influence of the depth and receptive field size of our
CNNs in terms of matching performance and running time.
Fig. 4a shows matching performance as a function of the
networks’ receptive field size. We observe that an increas-
ing receptive field size achieves better performance. How-
ever, when the receptive field is very large, the improve-
ment is subtle, since the network starts to overlook the de-
tails of small objects and depth discontinuities. Our findings
are consistent for both non-occluded and for all pixel. As
shown in Fig. 4b, the running time and number of parame-
ters are highly correlated. Note that models with larger re-
ceptive field do not necessarily have more parameters since
the amount of trainable weights also depends on the number
of filters and the channel size of each convolutional layer.

Comparison to State-of-the-art: To evaluate the test
set performance, we choose the best model with current
smoothing techniques, which has a receptive field of 37

(a) Stereo error using only the matching network (unaries) (b) Runtime and number of parameters over receptive field

Figure 4: Evaluation of stereo error (a), runtime and number of parameters (b).

All/All All/Est Noc/All Noc/Est Runtime
D1-bg D1-fg D1-all D1-bg D1-fg D1-all D1-bg D1-fg D1-all D1-bg D1-fg D1-all (s)

MBM [10] 4.69 13.05 6.08 4.69 13.05 6.08 4.33 12.12 5.61 4.33 12.12 5.61 0.13
SPS-St [28] 3.84 12.67 5.31 3.84 12.67 5.31 3.50 11.61 4.84 3.50 11.61 4.84 2

MC-CNN [31] 2.89 8.88 3.89 2.89 8.88 3.88 2.48 7.64 3.33 2.48 7.64 3.33 67
Displets v2 [13] 3.00 5.56 3.43 3.00 5.56 3.43 2.73 4.95 3.09 2.73 4.95 3.09 265

Ours(37) 3.73 8.58 4.54 3.73 8.58 4.54 3.32 7.44 4.00 3.32 7.44 4.00 1
Table 6: Comparison to stereo state-of-the-art on the test set of KITTI 2015 benchmark.

pixel, i.e., “Ours(37).” The obtained test set performance
is shown in Table 6. We achieve on-par results in signifi-
cantly less time.

Qualitative Results: We provide results from the test set
in Fig. 5. Again, we observe that our algorithm suffers from
texture-less regions as well as regions with repetitive pat-
terns.

6. Conclusion
Convolutional neural networks have been recently shown

to perform extremely well for stereo estimation. Current
architectures rely on siamese networks which exploit con-
catenation follow by further processing layers, requiring a
minute on the GPU to process a stereo pair. In contrast, in
this paper we have proposed a matching network which is
able to produce very accurate results in less than a second
of GPU computation. Our key contribution is to replace the
concatenation layer and subsequent processing layers by a
single product layer, which computes the score. We trained
the networks using cross-entropy over all possible dispari-
ties. This allows us to get calibrated scores, which result in
much better matching performance when compared to ex-
isting approaches. We have also investigated the effect of
different smoothing techniques to further improve perfor-
mance. In the future we plan to utilize our approach for
other low-level vision tasks such as optical flow. We also

plan to build smoothing techniques that are tailored to our
approach.

Acknowledgments: This work was partially supported by
ONR-N00014-14-1-0232 and NSERC. We would like to
thank NVIDIA for supporting our research by donating
GPUs and Shenlong Wang for help with the figures.

References
[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Susstrunk. Slic superpixels compared to state-of-the-art
superpixel methods. PAMI, 2012. 4

[2] S. Birchfield and C. Tomasi. Multiway cut for stereo and
motion with slanted surfaces. In CVPR, 1999. 2

[3] M. Bleyer and M. Gelautz. A layered stereo matching algo-
rithm using image segmentation and global visibility con-
straints. ISPRS Journal of Photogrammetry and Remote
Sensing, 2005. 2

[4] M. Bleyer, C. Rhemann, and C. Rother. Extracting 3D scene-
consistent object proposals and depth from stereo images. In
ECCV, 2012. 2

[5] M. Bleyer, C. Rother, and P. Kohli. Surface stereo with soft
segmentation. In CVPR, 2010. 2

[6] M. Bleyer, C. Rother, P. Kohli, D. Scharstein, and S. Sinha.
Object stereo - joint stereo matching and object segmenta-
tion. In CVPR, 2011. 2

[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-

Figure 5: KITTI 2015 test set: (left) original image, (center) stereo estimates, (right) stereo errors.

volutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062, 2014.

[8] Z. Chen, X. Sun, L. Wang, Y. Yu, and C. Huang. A deep
visual correspondence embedding model for stereo matching
costs. In ICCV, 2015. 2, 5

[9] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradi-
ent methods for online learning and stochastic optimization.
JMLR, 12:2121–2159, 2011. 3, 4

[10] N. Einecke and J. Eggert. A multi-block-matching approach
for stereo. In Intelligent Vehicles Symposium (IV), 2015. 7

[11] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbaş,
and V. Golkov. FlowNet: Learning Optical Flow with Con-
volutional Networks. In ICCV, 2015. 2

[12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In
CVPR, 2012. 1, 4

[13] F. Guney and A. Geiger. Displets: Resolving stereo ambigu-
ities using object knowledge. In CVPR, 2015. 2, 5, 7

[14] C. Haene, L. Ladický, and M. Pollefeys. Direction Mat-
ters: Depth Estimation with a Surface Normal Classifier. In
CVPR, 2015. 2

[15] R. Haeusler, R. Nair, and D. Kondermann. Ensemble learn-
ing for confidence measures in stereo vision. In CVPR, 2013.
2

[16] A. Klaus, M. Sormann, and K. Karner. Segment-based stereo
matching using belief propagation and a self-adapting dis-
similarity measure. In ICPR, 2006. 2

[17] D. Kong and H. Tao. A method for learning matching errors
for stereo computation. In BMVC, 2004. 2

[18] D. Kong and H. Tao. Stereo matching via learning multiple
experts behaviors. In BMVC, 2006. 2

[19] L. Ladický, J. Shi, and M. Pollefeys. Pulling Things out of
Perspective. In CVPR, 2014. 2

[20] Y. Li and D. P. Huttenlocher. Learning for stereo vision using
the structured support vector machine. In CVPR, 2008. 2

[21] M. Menze and A. Geiger. Object Scene Flow for Au-
tonomous Vehicles. In CVPR, 2015. 4

[22] D. Scharstein and C. Pal. Learning conditional random fields
for stereo. In CVPR, 2007. 2

[23] D. Scharstein and R. Szeliski. Middlebury stereo vision
page. Online at http://www. middlebury. edu/stereo, 2002.
2

[24] A. Spyropoulos, N. Komodakis, and P. Mordohai. Learning
to detect ground control points for improving the accuracy of
stereo matching. In CVPR, 2014. 2

[25] Z.-F. Wang and Z.-G. Zheng. A region based stereo matching
algorithm using cooperative optimization. In CVPR, 2008. 2

[26] K. Yamaguchi, T. Hazan, D. McAllester, and R. Urtasun.
Continuous markov random fields for robust stereo estima-
tion. In ECCV, 2012. 2

[27] K. Yamaguchi, D. McAllester, and R. Urtasun. Robust
monocular epipolar flow estimation. In CVPR, 2013. 2, 5

[28] K. Yamaguchi, D. McAllester, and R. Urtasun. Efficient joint
segmentation, occlusion labeling, stereo and flow estimation.
In ECCV. 2014. 2, 3, 4, 5, 6, 7

[29] S. Zagoruyko and N. Komodakis. Learning to compare im-
age patches via convolutional neural networks. In CVPR,
2015. 1, 2

[30] J. Zbontar and Y. LeCun. Computing the stereo matching
cost with a convolutional neural network. In CVPR, 2015. 1,
2, 4, 6

[31] J. Žbontar and Y. LeCun. Stereo matching by training a con-
volutional neural network to compare image patches. arXiv
preprint arXiv:1510.05970, 2015. 1, 2, 4, 5, 6, 7

[32] L. Zhang and S. M. Seitz. Estimating optimal parameters for
MRF stereo from a single image pair. PAMI, 2007. 2

