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Abstract

Existing approaches to multi-view learning
are particularly effective when the views
are either independent (i.e, multi-kernel ap-
proaches) or fully dependent (i.e., shared la-
tent spaces). However, in real scenarios,
these assumptions are almost never truly
satisfied. Recently, two methods have at-
tempted to tackle this problem by factoriz-
ing the information and learn separate latent
spaces for modeling the shared (i.e., corre-
lated) and private (i.e., independent) parts
of the data. However, these approaches are
very sensitive to parameters setting or ini-
tialization. In this paper we propose a ro-
bust approach to factorizing the latent space
into shared and private spaces by introduc-
ing orthogonality constraints, which penalize
redundant latent representations. Further-
more, unlike previous approaches, we simul-
taneously learn the structure and dimension-
ality of the latent spaces by relying on a reg-
ularizer that encourages the latent space of
each data stream to be low dimensional. To
demonstrate the benefits of our approach, we
apply it to two existing shared latent space
models that assume full dependence of the
views, the sGPLVM and the sKIE, and show
that our constraints improve the performance
of these models on the task of pose estimation
from monocular images.

1 Introduction

Many machine learning problems inherently involve
multiple views, where a view is broadly defined as any
sensor stream of a scene or event. The different views
can arise either from the same sensor type or from
different modalities. Kernel combination approaches
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to multi-view learning (Bach et al., 2004; Sonnenburg
et al., 2006) have recently become very popular since
they provide a convenient way of combining informa-
tion from multiple data streams. They are particularly
effective when the views are independent, since the er-
rors occurring in a view can then be corrected by the
other views.

In contrast to multi-kernel approaches, methods have
been introduced to take advantage of the dependen-
cies in the data. These techniques typically rely on
learning latent spaces that capture the relevant infor-
mation shared by all the views, and are most effective
when the streams have significant dependencies. The
best-known example is Canonical Correlation Analysis
(CCA) (Kuss and Graepel, 2003), which learns latent
representations of the views whose correlation is maxi-
mal. While this, in essence, is a good idea, it can result
in trivial solutions in the presence of highly correlated
noise, as shown in Section 3.1. Recently, non-linear
shared latent variable models that do not suffer from
this problem have been proposed: the shared Gaus-
sian process latent variable model (sGPLVM) (Shon
et al., 2006; Ek et al., 2007; Navaratnam et al., 2007),
which minimizes the reconstruction error between the
data and the model’s prediction, and the shared ker-
nel information embedding (sKIE) (Sigal et al., 2009),
which maximizes the mutual information between the
latent representation and each input stream.

However, in real scenarios, information in the views is
typically neither fully independent nor fully correlated,
and thus multi-kernel (Bach et al., 2004; Sonnenburg
et al., 2006) and shared latent space (Kuss and Grae-
pel, 2003; Ek et al., 2007; Navaratnam et al., 2007; Si-
gal et al., 2009) techniques are not optimal. Typically,
in the latter case, information relevant to only a sin-
gle stream will be mixed with the shared information,
making inference complicated. Only few approaches
have tried to factorize the information and learn sep-
arate latent spaces for modeling the shared (i.e., cor-
related across the views) and private (i.e., indepen-
dent between the views) components of the input sig-
nals (Archambeau and Bach, 2008; Klami and Kaski,
2008; Ek et al., 2008; Leen, 2008). However, (Archam-
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Figure 1: Latent Factorization: (a) Circle used to generate the observed data. The observed data was
generated by projecting the circle onto the x−axis for Y(1) and onto the y−axis for Y(2). Knowing the location
on one axis gives information about the location on the second one, which indicates the presence of shared
information. Green dashed lines indicate slices of the circle used for further experiments. (b) Recovered factorized
latent spaces. (c) Negative log variance over one private space given the shared location. Given the shared location
of each training point, we regularly sampled the private latent space for Y(2). Given a pair of shared and private
coordinates, we computed the negative log. variance of the model’s prediction, which indicates where the model
expects the true location to be. (d)-(f) 3 slices of the plot in (c) taken at fixed shared locations. These slices
correspond to the dashed lines in plot (a). Note that the maxima along each slice correspond to the data points
on the circle.

beau and Bach, 2008; Klami and Kaski, 2008) build on
probabilistic CCA and therefore do not generalize to
non-linear mappings. Furthermore, while (Ek et al.,
2008; Leen, 2008) overcome this issue, they are typi-
cally initialized with CCA, and thus suffer from its in-
herent weaknesses, which we illustrate below. Finally,
these methods require choosing a priori the dimension-
ality of the latent space, or use cross-validation to find
it, which is computationally expensive.

In this paper, we propose a method to learn shared and
private latent spaces that are inherently disjoint by in-
troducing orthogonality constraints. Furthermore, fol-
lowing (Geiger et al., 2009), we discover the structure
and dimensionality of the latent representation of each
data stream by encouraging it to be low dimensional,
while still allowing to generate the data. Combined to-
gether, these constraints encourage finding factorized
latent spaces that are non-redundant, and that can
capture the shared-private separation of the data. We
demonstrate the effectiveness of our approach by ap-
plying it to two existing models, the sGPLVM (Shon
et al., 2006) and the sKIE (Sigal et al., 2009), and show
significant performance improvement over the original
models, as well as over the existing shared-private fac-
torizations (Ek et al., 2008; Leen, 2008) in the context
of pose estimation.

2 Factorized Latent Spaces

We are interested in learning low dimensional repre-
sentations of multi-view data. To this end, we would
like to factorize the latent space into the information
shared across all data streams and the independent
or private information of each stream. We propose
to learn this factorization and infer the dimensionality
of each space by introducing orthogonality constraints
between the latent spaces, as well as rank constraints
that encourage lower dimensional representations of
each data stream.

2.1 Factorized Orthogonal Latent Spaces
(FOLS)

To have a minimal factorization, we would like the
shared and private latent spaces to be non-redundant.
Similarly, we would like to penalize the redundancy of
different private spaces, and thus encourage represent-
ing information common to them in the shared space.
Here, we propose to enforce this by using orthogonality
constraints.

In addition to factorizing the shared and private in-
formation, we would like to estimate the latent spaces
dimensionalities at the same time as we learn their
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Figure 2: Graphical models (a) sGPLVM. (b) FOLS-GPLVM. (c) sKIE. (d) FOLS-KIE

structure. This avoids having to either choose the
latent dimensionalities a priori or estimate them by
cross-validation. To this end, we initialize the pri-
vate spaces to their corresponding data stream and the
shared space to their concatenation, and introduce a
regularizer that encourages each joint shared-private
latent space to be low dimensional.

Finally, since both the above terms tend to bring the
latent coordinates close to zero, we incorporate a term
in the optimization that encourages conservation of the
energy of the spectrum of the data.

More formally, let Y(i) = [y
(i)
1 , · · · ,y

(i)
N ]T be the

set of observations from a single view i, with 1 ≤
i ≤ V . Additionally, let X = [x1, · · · ,xN ]T be
the latent space shared across different views, Z(i) =

[z
(i)
1 , · · · , z

(i)
N ]T be the private space for i-th view, and

M(i) = [m
(i)
1 , · · · ,m

(i)
N ]T be the joint shared-private

latent space for each view, with m
(i)
j = [xj , z

(i)
j ]. By

imposing the above-mentioned constraints as a soft
penalty, a FOLS model can be learned by minimizing

L=L + α
∑

i



||XT · Z(i)||2F +
∑

j>i

||(Z(i))T · Z(j)||2F





︸ ︷︷ ︸

Orthogonality

+ γ
∑

i

φ(si)

︸ ︷︷ ︸

Low dimensionality

+η
∑

i

(E
(i)
0 −

∑

j

s2
i,j)

2

︸ ︷︷ ︸

Energy conservation

, (1)

where ‖ · ‖F represents the Frobenius norm of a ma-

trix, si are the singular values of M(i), and E
(i)
0 is the

energy of stream i. α, γ and η are scalars that set the
relative influence of the different terms. L is the loss
function of the particular model into which we intro-
duce our factorization constraints. As described later
for the sGPLVM and the sKIE models, L can represent
the square loss, or the negative mutual information
between each joint latent space and its corresponding
data stream.

As can be observed from Eq. 1, our orthogonality con-
straints are encoded as minimizing the Frobenius norm
of the inner product between latent spaces, which re-
sults in minimizing the scalar products between each

pair of latent dimensions. Note that, since both shared
and private latent spaces are initialized from the ob-
served data, they can potentially have twice as many
dimensions as the streams, which would prevent the
spaces from being orthogonal. However, in addi-
tion to being continuous and differentiable, the Frobe-
nius norm has the advantage of also being minimized
when latent dimensions shrink to zero. Therefore, the
penalty associated with our orthogonality constraints
is also minimized when some of the latent dimensions
become negligible.

Furthermore, we would like to learn the intrinsic di-
mensionalities of the individual joint shared-private la-
tent spaces, m(i). This can be done by introducing a
regularizer that encourages M(i) to be low rank. Pe-
nalizing the rank of a matrix results in a difficult non-
smooth optimization problem. Different relaxations of
the rank minimization problem have been proposed.
The most widely used relaxation is the nuclear norm,
also known as the trace norm, which is a particular
instance of the Schatten p-norm with p = 1. The
Schatten p-norm is defined as

||M(i)||p =

(
∑

i

s
p
i,j

)1/p

.

When p < 2 then the Schatten p-norm can be used for
the rank minimization problem since it will encourage
sparsity of the singular values.

The nuclear norm is typically used since it is a convex
function, and thus when the loss function is convex the
problem has a unique solution. In our case however,
the loss functions of the sKIE and sGPLVM models are
non-convex, and more sophisticated regularizers than
the nuclear norm can be used. In particular we want
to drive the smaller singular values faster to zero, since
they represent the noise of the data. Following (Geiger
et al., 2009), we use a logarithmic penalty

φ(si,j) =
∑

j

(1 + β log(s2
i,j)) , (2)

where β is a constant.

Since both previous terms are minimized when all
latent dimensions go to zero, we encourage the en-
ergy of the data spectrum to remain constant. This
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can be achieved by minimizing for each data stream
the squared difference between the energies of the la-

tent and observation spaces, (E
(i)
o −∑j s2

i,j)
2. The

energy of the observation space can be computed as

E
(i)
o =

∑

j p2
i,j , with pi,j the singular values of Y(i).

Fig. 1 shows a data-set exemplifying where two 1D
observation spaces Y(1) and Y(2) were generated by
projecting a circle onto the x− and y−axis. In gen-
eral, knowing the location along one axis of the circle
does not completely disambiguate the location along
the other one. However, it reduces its possible val-
ues to at most two. In Figure 1 (b), we show the la-
tent representation recovered with our approach. The
model learned a 3D latent space factorized into a 1D
shared space and two 1D private spaces corresponding
to each data stream. The shared space encodes the
information that is common for both axes, while the
private spaces reflect the remaining ambiguities of the
observed data given a shared location. To demonstrate
this, we took the shared latent location corresponding
to each training data point of Y(1) and uniformly sam-
pled locations in the private space of Y(2). Fig. 1 (c)
depicts the negative log of the variance for these lo-
cations. As can be observed from the plot, there are
clear modes in the variance. These modes depict the
fact that the location in Y(1) either completely dis-
ambiguates the location in Y(2), as is the case at the
largest x−axis value on the circle and shown in plot
(d), or leaves an ambiguity between two locations, as
is the case in the middle of the circle and shown in
plots (e) and (f).

Our factorization scheme is general and can be applied
to a variety of existing shared latent space models.
To demonstrate this, we apply our constraints to two
recently developed models, the sGPLVM (Shon et al.,
2006; Ek et al., 2007; Navaratnam et al., 2007) and
the sKIE (Sigal et al., 2009). In the remaining of the
section we briefly describe the FOLS versions of these
models.

2.2 FOLS-GPLVM

The shared Gaussian process latent variable model
(sGPLVM) (Shon et al., 2006; Ek et al., 2007; Navarat-
nam et al., 2007) is an extension of the GPLVM
(Lawrence, 2005) to learn a latent space that is shared
across feature streams. It is a directed model, where
the mapping from the latent space to the data streams
is modeled as a product of independent Gaussian pro-
cesses. Its graphical model is depicted in Fig. 2 (a).

To learn a FOLS version of the GPLVM, we introduce
private spaces into the sGPLVM as shown in Fig. 2
(b). For each data stream, we model the mapping from
the joint latent space to the observation stream as a

product of Gaussian processes

p(Y(i)|Z(i),X) =

Di∏

d=1

N (Y
(i)
:,d |0,K(i)) , (3)

where Y
(i)
:,d is the d-th column in Y(i), y

(i)
j ∈ ℜDi , and

K(i) is the covariance matrix which is typically defined
in terms of a kernel function. K(i) is restricted to be
positive definite, and thus all Mercer kernels are valid.
Here, we use the sum of an RBF, a bias and a white
noise kernel, such that

k(mi,mj) = θ
(i)
1 exp

(

−‖mi − mj‖2
2

2(θ
(i)
2 )2

)

+ θ
(i)
3 + θ

(i)
4 δij , (4)

with hyper-parameters Θ(i) = [θ
(i)
1 , θ

(i)
2 , θ

(i)
3 , θ

(i)
4 ].

Assuming conditional independence between the la-
tent spaces and the data streams, the FOLS-GPLVM
can be learned by minimizing Eq. 1 with respect to

{m(i)
j } and {θ(i)

1 , θ
(i)
3 , θ

(i)
4 }, where the negative log like-

lihood L is defined up to a constant as

L =

V∑

i=1

(
Di

2
ln |K(i)| + Di

2
tr
[

(K(i))−1Y(i)(Y(i))T
])

.

(5)

The kernel width θ
(i)
2 is determined by cross-

validation, and fixed during the optimization.

For inference, the mean prediction of the mapping
from a joint shared-private latent space to its corre-
sponding view is given by

ȳ
(i)
∗ = (k

(i)
∗ )T (K(i))−1Y(i) , (6)

where k
(i)
∗ contains the evaluation of the kernel func-

tion between the training and test data for the i-th
view.

2.3 FOLS-KIE

The shared kernel information embedding (sKIE) (Si-
gal et al., 2009) is an extension of the KIE (Memisevic,
2006) model to learn a latent space shared across mul-
tiple data streams. As illustrated by Fig. 2 (c), the
sKIE is an undirected model. The model is trained
by maximizing the mutual information between the
shared latent space and the data streams, which is ap-
proximated by kernel density estimation.

We create a FOLS version of KIE by introducing pri-
vate latent spaces into the sKIE model, as shown in
Fig. 2 (d). The FOLS-KIE model can be learned
by maximizing the mutual information between each
joint shared-private space and its corresponding data
stream. Assuming independence of the views given the
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Figure 3: Recovering shared and private information: Top: Generative signals for two data streams. The
shared information is shown in blue, and correlated noise in red. We projected these signals to a 20D space and
added Gaussian noise to them. Bottom left: CCA recovered the true shared, but also the correlated noise, as well
as another noise signal. Bottom right: The FOLS-GPLVM and FOLS-KIE models both accurately recovered
the generative signals.

joint shared-private spaces, such mutual information
can be written as

I(y,x, z) =

V∑

i=1

I
(

y(i), (x, z(i))
)

=

V∑

i=1

H
(

y(i)
)

+ H
(

(x, z(i))
)

− H
(

y(i), (x, z(i))
)

,

where H(·) is the Shannon entropy. As in the sKIE
model we approximate the mutual information using
kernel density estimation, which for each individual
view yields

Î
(

y(i), (x, z(i))
)

= − 1

N

∑

j

log
∑

t

km(m
(i)
j ,m

(i)
t )

− 1

N

∑

j

log
∑

t

ky(y
(i)
j ,y

(i)
t )

+
1

N

∑

j

log
∑

t

km(m
(i)
j ,m

(i)
t )ky(y

(i)
j ,y

(i)
t ) . (7)

Here, we use an RBF kernel to model km and ky. In
practice, we determined the kernel widths by cross-
validation. The FOLS-KIE model can then be learned
by minimizing Eq. 1 with respect to {m(i)

j }, with

L = −
V∑

i=1

Î
(

y(i), (x, z(i))
)

. (8)

For inference, the FOLS-KIE model provides both a
forward and an inverse mappings, whose mean predic-
tions can be expressed as

ȳ
(i)
∗ =

N∑

j=1

km(m∗

(i),m
(i)
j )

∑N
t=1 km(m∗

(i),m
(i)
t )

y
(i)
j , (9)

m̄
(i)
∗ =

N∑

j=1

ky(y∗

(i),y
(i)
j )

∑N
t=1 ky(y∗

(i),y
(i)
t )

m
(i)
j , (10)

where m∗

(i) and y∗

(i) represent the latent coordinates
and i-th view of the test example.

2.4 Computational Complexity

The computational overhead of a FOLS model is dom-
inated by the computation of the singular values of
M(i). The complexity of this operation for each view
is O(min{N3, d3

i }), with N the number of examples,
and di the initial dimensionality of the shared-private
latent space. When both N and di are large, estimat-
ing the singular values is computationally expensive.

To reduce the complexity, following the thresholding
strategy of (Cai et al., 2008), after a small fixed num-
ber of iterations we set the smallest singular values
to zero. As a consequence, the intrinsic dimensional-
ity of the latent space di decreases. In particular, we
keep the dimensions accounting for 95% of the vari-
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Figure 4: Humaneva Jog: For each model, we computed the mean 3D body joint error obtained with the
best of k-NN. The NN were computed in the shared latent spaces. We plot this error as a function the number
of nearest-neighbors on the left for sGPLVM models, and on the right for sKIE models. We also display the
error obtained by computing NN in the feature space, by GP regression from the feature space to the pose
space, and by the shared-private factorizations (Ek et al., 2008; Leen, 2008). GP regression does not rely on NN
computation. Note that both FOLS models outperform the other techniques.

ance. This makes the computational overhead of our
constraints negligible compare to the complexity of the
GPLVM which is O(N3) and the complexity of the
KIE model, which is O(N2). Moreover, sparsification
techniques can be use to reduce the cost of the origi-
nal models (Lawrence, 2007). Note that for inference
there is an additional benefit with respect to compu-
tational complexity since the latent space is factorized
and the shared space is lower dimensional than the
shared spaces of the sKIE and sGPLVM models.

3 Experimental Evaluation

In this section, we compare our FOLS models to sKIE,
sGPLVM, Nearest-Neighbors (NN), GP regression and
the factorization techniques of (Ek et al., 2008) and
(Leen, 2008) on a synthetic example and on real data
for the task of pose estimation from monocular images.

For these experiments, we subtracted the mean of each
view, and initialized the shared latent space of the
FOLS models with the PCA representation of the con-
catenated views. Similarly, each private space was ini-
tialized with the PCA representation of its correspond-
ing view. For both shared and private spaces we kept
95% of the variance. For the sKIE and the sGPLVM,
which assume a known latent dimensionality, we ap-
plied PCA to the concatenated views and kept as many
components as the global dimensionality found by the
FOLS models (i.e., the sum of the dimensionalities of
the shared and private spaces).

When learning FOLS models, the relative weights in
Eq. 1 were set such that the orthogonality constraints
and the energy conservation regularizer initial influ-
ences were roughly 10 times that of the other terms.
Furthermore, as mentioned in Section 2.4, we sped up
the optimization process by removing the latent di-

mensions accounting for less than 5% of the variance
of their corresponding latent space (i.e. shared or pri-
vate) every 10 iterations of the minimizer. Once a
stable dimensionality has been found, we set γ to 0
and optimize until convergence.

3.1 Synthetic Example

To illustrate the weaknesses of CCA, and thus of
models initialized from it, we constructed an exam-
ple where the noise is highly correlated. We gener-
ated 100 points of two data streams containing both
shared and private information. The ground-truth la-
tent spaces were generated from sinusoidal signals of
different frequencies such that

x = sin(2πt) , z(1) = cos(ππt) , z(2) = cos(
√

5πt) ,

where t is uniformly distributed in the interval (−1, 1).
The observations Y(i) were generated by randomly
projecting the joint shared-private spaces m(1) =
[x, z(1)] and m(2) = [x, z(2)] into 20D spaces, and
adding Gaussian noise with variance 0.01 and corre-
lated noise of the form xnoise = 0.02 sin(3.6πt).

The ground-truth latent spaces together with corre-
lated noise are depicted in the top row of Fig. 3. The
bottom left plot of Fig. 3 shows the result obtained by
CCA when the latent space is set a priori to be 3D.
As expected, CCA retrieved the true shared signal, in
blue, but failed to remove the highly correlated noise,
in red. Additionally, it discovered another highly cor-
related noise signal, which frequency does not corre-
spond to any of the frequencies of the signals used to
generate the data. In contrast, as depicted by the two
bottom right plots of Fig. 3, our FOLS-GPLVM and
FOLS-KIE models closely recover the generative sig-
nals, and find the correct separation between shared
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Figure 5: Humaneva Walk: As for the jog, we plot the mean 3D joint error as a function of the number of
nearest-neighbors. Note in this case that NN in the feature space outperforms other techniques. This suggests
that training and test examples are very similar. More importantly, note that the FOLS models outperform the
purely shared ones and the shared-private factorizations (Ek et al., 2008; Leen, 2008).

and private spaces, as well as correct latent dimension-
alities.

3.2 Pose Estimation

Next, we applied our models to the problem of hu-
man pose estimation from monocular images. For this
purpose, we used the HumanEva dataset (Sigal and
Black, 2006) consisting of pairs of motion captures
and corresponding images. We computed hierarchical
features (Kanaujia et al., 2007) for the walking and
jogging video sequences of the first subject seen from
a single camera. The image stream consists of 19D
features, and the pose stream consists of 57D observa-
tions. Note that estimating the pose directly from the
features is known to be multi-modal (Ek et al., 2008)
and cannot be solved as a regression task, and there-
fore, poses contain private information. As the subject
moves in circles, we used one loop for training, and
tested our models on the remaining one. We compare
our FOLS models to GP regression, Nearest-Neighbor
in the feature space, the shared-private factorizations
(Ek et al., 2008; Leen, 2008), and the sKIE and sG-
PLVM models. In the latter cases, the dimensionality
of the shared space was taken as the global one found
by the FOLS models, which in all cases was 5.

For inference, similar to (Sigal and Black, 2006), we
relied on the following strategy: We took the latent
representation of the first nearest-neighbor (NN) in
feature space, computed its k-NN in latent space, and
mapped them to the pose space using the forward
mapping provided by the different models. In the
FOLS case and for (Ek et al., 2008; Leen, 2008), the
k-NN were computed in the shared space only. The
joint shared-private latent representation was formed
by keeping the shared latent variables constant while
taking the private ones from the corresponding NNs.
Finally the mappings from joint shared-private spaces
to the pose were computed using Eq. 6 for the FOLS-

GPLVM and Eq. 9 for the FOLS-KIE.

Fig. 4 depicts the error for the jogging dataset as a
function of the number of NNs used. The error is
computed as the mean squared distance between the
model’s reconstruction of the 3D joint locations and
ground-truth data. Note that GP regression does not
rely on NN, and therefore remains constant. The
FOLS models significantly outperformed the purely
shared models (i.e., sKIE and sGPLVM), NN, GP re-
gression, and the shared-private models (Ek et al.,
2008; Leen, 2008). Moreover, note that all models
outperform GP regression, which confirms the multi-
modality of the data (i.e., an image observation can
be generated from more than one pose).

Fig. 5 depicts similar plots for the walking dataset. In
this case, when using multiple neighbors, NN outper-
forms our approach. This is due to the fact that there
is very little variation between the training and test ex-
amples. More importantly, we can again observe that
the two FOLS models outperform the purely shared
models. This confirms the benefits of factorizing the
latent spaces into shared and private parts. Note that,
when considering the first nearest-neighbor only, the
FOLS-KIE model outperforms the other methods for
both jogging and walking.

Another important observation is that the results of
(Leen, 2008), which optimizes the solution of (Ek et al.,
2008), are much worse than the initialization itself.
This shows that only focusing on data reconstruc-
tion does not yield a meaningful latent representation.
In contrast, the FOLS objective encourages the fac-
torization into shared and private spaces to be non-
redundant. As a result, our FOLS models outperform
these methods.

Finally, Fig. 6 depicts the sensitivity of our approach
to the image and pose kernel widths for both the
FOLS-KIE and FOLS-GPLVM models. For each
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Figure 6: Kernel width cross-validation: For both FOLS models, we found the kernel widths for the feature
and pose spaces by fixing one and varying the other between 0.25 and 10.0. On the left, we show the errors for 5
NN for the FOLS-GPLVM model, and on the right, for the FOLS-KIE model. Note that the same widths were
found for all models and spaces.

model, we fixed one width to 1 (i.e. the value used
in Fig. 4 and Fig. 5) and varied the other between
0.25 and 10. Fig. 6 displays the mean errors obtained
by using 5 NN for each kernel width. Note that the two
models find the same optimal widths for both spaces.

4 Conclusions

In this paper, we have proposed the use of orthogo-
nality and rank constraints to learn the structure and
dimensionality of factorized latent spaces that are non-
redundant, and can capture the shared-private separa-
tion of the data. We have demonstrated the effective-
ness of our approach by applying our constraints to
two shared models, the sGPLVM and the sKIE, and
show clear improvement over the original models in
the context of pose estimation from monocular images.
Moreover, our approach has shown beneficial over the
models of (Ek et al., 2008) and (Leen, 2008), which,
to our knowledge, are the only attempts at factorizing
latent spaces into private and shared components.

In the future, we plan to investigate the application
of the FOLS model to other domains such as multi-
agent modeling. We also intend to study the influence
of additional constraints such as smoothness or prior
knowledge about the task at hand (Urtasun et al.,
2008), as well as discriminative constraints for clas-
sification tasks (Urtasun and Darrell, 2007). An alter-
native topic for future research is the extension of our
model to semi-supervised learning. Provided that the
particular loss function of interest allows for missing
data, this could be done by computing the orthogonal-
ity constraints between the private spaces only on the
samples observed in both views.

References

C. Archambeau, and F. Bach. Sparse Probabilistic Projec-
tions. NIPS, 2008.

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel
learning, conic duality, and the SMO algorithm. In
ICML, 2004.

J. F. Cai, E. Candes, and Z. Shen. A Singular Value

Thresholding Algorithm for Matrix Completion. Arxiv
preprint arXiv:0810.3286, 2008.

C. H. Ek, P. H. Torr, and N. D. Lawrence. Gaussian process
latent variable models for human pose estimation. In
MLMI, 2007.

C. H. Ek, P. H. Torr, and N. D. Lawrence. Ambiguity
modeling in latent spaces. In MLMI, 2008.

A. Geiger, R. Urtasun, and T. Darrell. Rank priors for con-
tinuous non-linear dimensionality reduction. In CVPR,
2009.

A. Kanaujia, C. Sminchisescu, and D. Metaxas. Semi-
supervised Hierarchical Models for 3D Human Pose Re-
construction. In CVPR, 2007.

A. Klami, and S. Kaski. Probabilistic approach to detect-
ing dependencies between data sets. In Neurocomputing,
72:39–46, 2008.

M. Kuss and T. Graepel. The geometry of kernel canoni-
cal correlation analysis. Technical Report TR-108, Max
Planck Institute for Biological Cybernetics, Tübingen,
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