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Abstract

Object recognition accuracy can be improved when in-
formation from multiple views is integrated, but informa-
tion in each view can often be highly redundant. We con-
sider the problem of distributed object recognition or index-
ing from multiple cameras, where the computational power
available at each camera sensor is limited and communi-
cation between cameras is prohibitively expensive. In this
scenario, it is desirable to avoid sending redundant visual
features from multiple views. Traditional supervised feature
selection approaches are inapplicable as the class label is
unknown at each camera. In this paper we propose an un-
supervised multi-view feature selection algorithm based on
a distributed coding approach. With our method, a Gaus-
sian Process model of the joint view statistics is used at
the receiver to obtain a joint encoding of the views without
directly sharing information across encoders. We demon-
strate our approach on recognition and indexing tasks with
multi-view image databases and show that our method com-
pares favorably to an independent encoding of the features
from each camera.

1. Introduction
Object recognition often benefits from integration of ob-

servations at multiple views. However, when multiple cam-
era sensors exist in a bandwidth limited environment it may
be impossible to transmit all the visual features in each im-
age. When the task or target class is not known a priori
there may be no obvious way to decide which features to
send from each view. If redundant features are chosen at
the expense of informative features, performance can be
worse with multiple views than with a single view, given
fixed bandwidth.

We consider the problem of how to select which features
to send in each view to achieve optimal results at a central-
ized recognition or indexing module (see Figure 1). An ef-
ficient encoding of the streams might be possible in theory
if a class label could be inferred at each camera, enabling
the use of supervised feature selection techniques to encode
and send only those features that are relevant of that class.
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Figure 1. Distributed object recognition. Messages are only sent
between each camera (transmitter) and the recognition module (re-
ceiver). An efficient joint feature selection is achieved without di-
rectly sharing information between cameras.

Partial occlusions, unknown camera viewpoint, and limited
computational power, however, limit the ability to reliably
estimate the image class label at each camera. Instead we
propose an unsupervised feature selection algorithm to ob-
tain an efficient encoding of the feature streams.

If each camera sensor had access to the information from
all views this could trivially be accomplished by a joint
compression algorithm that could, e.g., encode the features
of the v-th view based on the information in the previous
v − 1 views. We are interested, however, in the case where
there is no communication between cameras themselves,
and messages are only sent from the cameras to the recog-
nition module with a limited backchannel back to the cam-
eras. In practice, many visual category recognition and in-
dexing applications are bandwidth constrained (e.g., wire-
less surveillance camera networks, mobile robot swarms,
mobile phone cameras), and it is infeasible to broadcast im-
ages across all cameras or to send the raw signal from each
camera to the recognition module.

It is possible to achieve very efficient encoding without
any information exchange between the cameras, by adopt-
ing a distributed encoding scheme that takes advantage of
known statistics of the environment [14, 20, 18, 3]. We
develop a new method for distributed encoding based on
a Gaussian Process (GP) formulation, and demonstrate its
applicability to encoding visual-word feature histograms;
such representations are used in many contemporary object



indexing and category recognition methods [19, 12, 4].
Our algorithm exploits redundancy between views and

learns a statistical model of the dependency between fea-
ture streams during an off-line training phase at the re-
ceiver. This model is then used along with previously de-
coded streams to aid feature selection at each camera. If
the streams are redundant, then only a few features need to
be sent. In this paper, we consider bag-of-words represen-
tations [12, 4] and model the dependency between visual
feature histograms. As shown in our experiments, our algo-
rithm is able to achieve an efficient joint encoding of the fea-
ture histograms without explicitly sharing features across
views. This results in an efficient unsupervised feature se-
lection algorithm that improves recognition performance in
the presence of limited network bandwidth.

We evaluate our approach using the COIL-100 multi-
view image database [11] on the tasks of instance-level re-
trieval and recognition from multiple views; we compare
unsupervised distributed feature selection to independent
stream encoding. For a two-view problem, our algorithm
achieves a compression factor of over 100:1 in the second
view while preserving multi-view recognition and retrieval
accuracy. In contrast, independent encoding at the same rate
does not improve over single-view performance.

2. Related Work
Contemporary methods for object recognition use local

feature representations and perform recognition over sets of
local features corresponding to each image [8, 12, 4, 22].
Several techniques have been proposed that generalize these
methods to include object view-point in addition to appear-
ance [16, 21, 22, 17]. Rothganger et. al. [16] present
an approach that builds an explicit 3D model from local
affine-invariant image features and uses that model to per-
form view-point invariant object recognition. Thomas et.
al. [21] extend the Implicit Shape Model (ISM) of Leibe
and Schiele [8] for single-view object recognition to multi-
ple views by combining the ISM model with the recognition
approach of Ferrari et. al. [2]. Similarly, Savarese and Li
[17] present a part-based approach for multi-view recogni-
tion that jointly models object view-point and appearance.

Traditionally, approaches to multi-view object recogni-
tion use only a single input image at test time [16, 21, 22,
17]. Recently, there has been a growing interest in applica-
tion areas where multiple input views of the object or scene
are available. The presence of multiple views can lead to
increased recognition performance; however, the transmis-
sion of data from multiple cameras places an additional bur-
den on the network. In this paper, we propose an unsuper-
vised feature selection algorithm that enables effective ob-
ject recognition from multiple cameras in the presence of
limited network bandwidth.

Feature selection algorithms exploit data dependency or

redundancy to derive compact representations for classifi-
cation [9]. For our problem, traditional supervised feature
selection approaches are inapplicable as the class label is
unknown at each camera. Many approaches have been pro-
posed for unsupervised feature selection [1, 9, 13]. Peng
et. al. [13] define a minimum-redundancy or maximum-
relevance criterion for unsupervised feature selection based
on mutual information. Dy and Brodley [1] compute rel-
evant feature subsets using a clustering approach based on
a maximum likelihood criterion with the expectation maxi-
mization algorithm. For multiple views, it is possible to ap-
ply the above unsupervised feature selection techniques in-
dependently at each camera to efficiently encode and trans-
mit features over the network. A better encoding of the fea-
tures, however, can be achieved if features are jointly se-
lected across views [20]. Under limited network bandwidth
a joint encoding is not possible as communication between
cameras is often prohibitively expensive.

Distributed coding algorithms [14, 20, 18, 3] seek a joint
encoding of the streams without sharing features across
views. These methods exploit data redundancy at a shared,
common receiver to perform a distributed feature selec-
tion that in many cases approaches the joint encoding rate
[20]. Contemporary techniques to distributed coding in-
clude the DISCUS algorithm of Pradhan and Ramchandran
[14] based on data cosets, and the approach of Schonberg
[18] that builds upon low-density parity check codes. In
this paper, we present a new distributed coding algorithm
for bag-of-words image representations in multi-view ob-
ject recognition with Gaussian Processes.

Gaussian Processes (GPs) [15] have become popular be-
cause they are simple to implement, flexible (i.e., they can
capture complex behaviors through a simple parametriza-
tion), and are fully probabilistic. The latter enables them to
be easily incorporated in more complex systems, and pro-
vides an easy way of expressing and evaluating prediction
uncertainty. GPs have been suggested as a replacement for
supervised neural networks in non-linear regression [15]
and they generalize a range of previous techniques (e.g.
krigging, splines, RBFs). As shown in our experiments,
GPs are well suited for distributed feature selection as the
uncertainty measure provided by GPs is correlated with data
redundancy. Our work bears similarity to that of Kapoor et.
al. [5] that use GP prediction uncertainty as a criteria for
example selection in active learning.

3. Gaussian Process Review
A Gaussian Process is a collection of random variables,

any finite number of which have consistent joint Gaussian
distributions [15]. Given a training set D = {(xi,yi), i =
1, · · · , N}, composed of inputs xi and noisy outputs yi,
we assume that the noise is additive, independent and Gaus-
sian, such that the relationship between the (latent) function,



f(x), and the observed noisy targets, y, is given by

yi = f(xi) + εi , (1)

where εi ∼ N (0, σ2
noise) and σ2

noise is the noise variance.
GP regression is a Bayesian approach that assumes a GP

prior over the space of functions,

p(f |X) = N (0,K) , (2)

where f = [f1, · · · , fn] is the vector of latent function val-
ues, fi = f(xi), X = [x1, · · · ,xN ], and K is a covariance
matrix whose entries are given by a covariance function,
Ki,j = k(xi,xj). GPs are non-parametric models and are
entirely defined by their covariance function (and training
data); the set of possible covariance functions is defined by
the set of Mercer kernels. During training, the model hyper-
parameters, β̄, are learned by minimizing

− ln p(X, β̄ |Y)=
D

2
ln |K|+

1

2
tr
(

K−1YYT
)

+C . (3)

where Y = [y1, · · · ,yN ], C is a constant, and D is the
dimension of the output.

Inference in the GP model is straightforward, assuming
a joint GP prior over training, f , and testing, f∗, latent vari-
ables,

p(f , f∗) = N

(

0,

(

Kf,f K∗,f

Kf,∗ K∗,∗

))

, (4)

where ∗ is used as shorthand for f∗ and the dependency on
X is omitted for clarity of presentation, Kf,f is the covari-
ance of the training data, K∗,∗, the covariance of the test
data, and Kf,∗ = KT

∗,f is the cross-covariance of training
and test data. The joint posterior p(f , f∗|Y) is Gaussian:

p(f , f∗|Y) =
p(f , f∗)p(y|f)

p(y)
. (5)

Marginalizing the training latent variables, f , can be done
in closed form and yields a Gaussian predictive distribution
[15], p(f∗|y) = N (M,C), with

M = K∗,f (Kf,f + σ2
noiseI)

−1Y (6)
C = K∗,∗ −K∗,f (Kf,f + σ2

noiseI)
−1Kf,∗ . (7)

The variance of the GP is an indicator of the prediction
uncertainty. In the following section we will show how the
variance can be used to define a feature selection criteria.

4. Distributed Object Recognition
We consider the distributed recognition problem of V

cameras transmitting information to a central common re-
ceiver with no direct communication between cameras (see
Figure 1). In our problem, each camera is equipped with a
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Figure 2. System diagram. Image Iv is coded by encoder Ev

and decoder D. Ẑv are the encoded image features, ĥ
v the re-

constructed histograms, and ξv the non-redundant bin indices for
views v = 1, ..., V (see Section 4 for details).

simple encoder used to compress each signal before trans-
mission. A common decoder receives the encoded signals
and performs a joint decoding of the signal streams using a
model of the joint statistics. Note that this coding scheme
off-loads the computational burden onto the decoder and al-
lows for computationally in-expensive encoders. In what
follows, we assume a noiseless channel, but our approach is
also applicable to the more general case.

Figure 2 illustrates our proposed distributed coding algo-
rithm at a single camera. With our algorithm, the decoder
iteratively queries each of the V cameras and specifies the
desired encoding rate the camera should use. At the v-th
view, the decoder uses its model of joint statistics along
with side information, i.e., the previously decoded streams,
to decode the signal. The use of side information allows the
encoder to work at a lower encoding rate than if the stream
were encoded independently. As discussed below, the de-
coder selects the camera encoding rate based on the joint
stream statistics and transmits this information back to the
encoder. If the v-th view is highly redundant with respect to
the side information, then little-to-no information needs to
be encoded and sent to the decoder.

In this work, we consider bag-of-words models for ob-
ject recognition [12, 4]. With these models, an image is
represented using a set of local image descriptors extracted
from the image either at a set of interest point locations
(e.g., those computed using a Harris point detector [10]) or
on a regular grid. In our experiments, we employ the latter
feature detection strategy in favor of simplicity at the en-
coder. To perform feature coding, the local image features
are quantized using a global vocabulary that is shared by the
encoder and decoder and computed from training images.

Let Iv , v = 1, ..., V be a collection of V views of the
object or scene of interest, imaged by each camera and Zv

be the set of quantized local image features corresponding
to image Iv computed by the v-th encoder,Ev. In this con-
text (see Figure 2), the encoders transmit quantized features
to the central receiver and the encoding rate is the number



of features sent.
In theory, distributed coding with individual image fea-

tures (e.g., visual words) might be possible, but preliminary
experiments have shown that distributed coding of local fea-
tures does not improve over independent encoding at each
camera. Using a joint model over quantized features on
COIL-100 with a 991 word vocabulary gave an entropy of
9.4 bits, which indicates that the joint feature distribution
is close to uniform (for a 991 word feature vocabulary, the
uniform distribution has an entropy of 10 bits). This is ex-
pected since a local image feature is a fairly weak predictor
of other features in the image.

We have found, however, that distributed coding of his-
tograms of local features is effective. As seen in our exper-
iments, the distribution over features in one view is predic-
tive of the distribution of features in other views and, there-
fore, feature histograms are a useful image representation
for distributed coding.

4.1. Joint Feature Histogram Model
Let Ẑv be the set of encoded features of each view,

v = 1, ..., V . To facilitate a joint decoding of the fea-
ture streams, the decoder first computes a feature histogram,
ĥv = h(Ẑv), using the global feature vocabulary. Note, in
our approach, the form of h(·) can either be a flat [19] or
hierarchical histogram [12, 4]; we present a general dis-
tributed coding approach applicable to any bag-of-words
technique. At the decoder, the joint stream statistics are
expressed over feature histograms,

p(h1,h2, ...,hV ) = p(h1)

V
∏

v=2

p(hv|hv−1, ...,h1), (8)

where the conditional probabilities are learned from train-
ing data as described in Section 3.

Assuming independence between the histogram bins and
pair-wise dependence between histograms we write

p(hv|hv−1, ...,h1) =

v−1
∏

k=1

B
∏

b=1

p(hv,b|hk) (9)

where hv,b is the b-th bin of histogram hv, and B is the
number of bins.

The joint model of Equation 8 is used to determine which
features at a given camera are redundant with the side in-
formation. In particular, redundant features are those that
are associated with the redundant bins of the histogram of
the current view. Since we are ultimately interested in the
feature histograms for performing recognition, the encoders
can send either histogram bin counts or the quantized visual
features themselves.

We obtain a reconstruction of the feature histogram of
each view from the view’s encoded features and its side

Algorithm 1 GP Distributed Feature Selection
Let Ev be an encoder, ξv be defined over sets of feature
histogram bin indices, Ẑv be defined over sets of encoded
features, Hv be a N ×B matrix of N training examples,
v = 1, ..., V , and Rmax be the desired encoding rate.

ĥ = ∅
ξ1 = {1, ..., B}
for v = 1, ..., V do
Ẑv = request(Ev, ξv)
for b = 1, ..., B do

if b ∈ ξv then
ĥv,b = ψ(Ẑv,b)

else
ĥv,b = (kv−1,b

∗ )T (Kv−1,b)−1Hv,b

end if
end for
ĥ = (ĥ, ĥv)
if v < V then

for b = 1, ..., B do
σv+1,b = (kv,b(ĥ, ĥ) − (kv,b

∗ )T(Kv,b)−1k
v,b
∗ )

1

2

end for
ξv+1 = select(σv+1, Rmax)

end if
end for

information. Let hv be the histogram of interest and hk,
k = 1, ..., v − 1, its side information, where v is the current
view considered by the decoder. From Equation 9 the prob-
ability of a histogram hv given its side information is found
as,

p(hv |hv−1, ...,h1) =

v−1
∏

k=1

p(hv |hk) (10)

We model the above conditional probability using a GP
prior over feature histograms. To make learning more
tractable we assume independence between histogram bins

p(hv |hv−1, ...,h1) =

B
∏

b=1

N (0,Kv−1,b) (11)

where a GP is defined over each bin with kernel matrix
Kv−1,b. We compute Kv−1,b with a covariance function
defined using an exponential kernel over the side informa-
tion,

kv,b(hi,hj) =

v
∏

r=1

γ−v
b exp

(

d(hr
i ,h

r
j )

2

α2
b

)

+ ηbδij (12)

where ĥi = (ĥ1
i , ..., ĥ

v
i ) and ĥj = (ĥ1

j , ..., ĥ
v
j ) are multi-

view histogram instances, γb, αb are the kernel hyper-
parameters of bin b, which we assume to be the same across



Figure 3. Synthetic example considered below. This scenario con-
sists of two overlapping views of an object, which is presumed
to fill the scene. Image features are represented using a 6 word
vocabulary.

views, and ηb is a per-bin additive noise term. Given train-
ing data Hv, where Hv is a N × B matrix of N training
examples for the v = 1, ..., V views, the kernel hyper-
parameters are learned as described in Section 3. We define
a different set of kernel hyper-parameters per bin since each
bin can exhibit drastically different behavior with respect to
the side information.

The variance of each GP can be used to determine
whether a bin is redundant: a small bin variance indicates
that the GP model is confident in its prediction, and there-
fore the features corresponding to that bin are likely to be
redundant with respect to the side information. In our exper-
iments, we found that redundant bins generally exhibit vari-
ances that are small and similar in value and that these vari-
ances are much smaller than those of non-redundant bins.

4.2. GP Distributed Feature Selection
Distributed feature selection is performed by the decoder

using an iterative process. The decoder begins by query-
ing the first encoder to send all of its features, since in the
absence of any side information no feature is redundant.
At the v-th view, the decoder requests only those features
corresponding to the non-redundant histogram bins of that
view, whose indices are found using the bin variances out-
put by each GP. At each iteration, the GPs are evaluated
using the reconstructed histograms of previous iterations as
illustrated in Algorithm 1.

Given the encoded features Ẑv, the decoder reconstructs
histograms ĥv , v = 1, ..., V , such that bins that are non-
redundant are those received and the redundant bins are es-
timated from the GP mean prediction

ĥv,b =

{

h(Ẑv,b), b ∈ ξv

(kv−1,b
∗ )T(Kv−1,b)−1Hv,b, otherwise.

(13)

where Hv,b = (hv,b
1 , ..., hv,b

N )T are the bin values for view
v and bin b in the training data, and ξv are the bin indices of
the non-redundant bins of the histogram of view v.
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Figure 4. GP variance is correlated with bin redundancy. The GP
mean prediction for the second view is plotted vs. ground-truth
values for both a redundant and non-redundant bin. The GP vari-
ance for each of the 6 histogram bins, averaged across examples
is also shown; error bars indicate ±1 std. deviation. The variance
of non-redundant bins is noticeably higher than that of redundant
bins.

The GP distributed feature selection algorithm achieves
a compression rate proportional to the number of bin indices
requested for each view. For view v the compression rate of
our algorithm in percent bins transmitted is

R =
r

B
=

2|ξv|

B
, (14)

where B is the total number of histogram bins and r is the
number of bins received, which is proportional to twice the
number of non-redundant bins as a result of the decoder
request operation. Note, however, that in the case of
large amounts of redundancy there are few non-redundant
bins encoded at each view and therefore a small encoding
rate is achieved.

As mentioned above the bin indices ξv are chosen us-
ing the GP prediction uncertainty. If a desired encoding
rate Rmax is provided, the decoder requests the rmax/2 his-
togram bins associated with the highest GP prediction un-
certainty (see Equation 14). If Rmax is not known, the en-
coding rate can be automatically determined by grouping
the histogram bins at each view into two groups correspond-
ing to regions of high and low uncertainty; ξv is then defined
using the bins associated with the high uncertainty group.
Both strategies exploit the property that prediction uncer-
tainty is correlated with bin redundancy to request the non-
redundant bins at each view. Many grouping algorithms are
applicable for the latter approach, e.g., conventional clus-
tering. In practice, we use a simple step detection technique
to form each group by sorting the bin variances and finding
the maximum local difference.
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Figure 5. Nearest-neighbor instance-level retrieval for the two-
view synthetic dataset; average retrieval accuracy is plotted over
varying neighborhood sizes. For a fixed rate, our algorithm far
outperforms the independent encoding baseline (see text for de-
tails).

5. Experiments
We evaluate our distributed coding approach on the tasks

of object recognition and indexing from multiple views.
Given hv, v = 1, .., V , multi-view recognition is performed
using a nearest-neighbor classifier over a fused distance
measure, computed as the average distance across views

Di,j(hi,hj) =
1

V

V
∑

v=1

d(hv
i ,h

v
j ) (15)

where for flat histograms we define d(·) using the L2 norm,
and with pyramid match similarity [4] for multi-resolution
histograms1.

We use a majority vote performance metric for nearest-
neighbor recognition. Under this metric a query example is
correctly recognized if a majority (≥ k/2) of its k nearest-
neighbors are of the same category or instance. We also
experiment with an at-least-one criterion to evaluate perfor-
mance in an interactive retrieval setting: with this scheme
an example is correctly retrieved if one of the first k exam-
ples has the true label. We compare distributed coding to
independent encoding at each view with a random feature
selector that randomly selects histogram bins according to
a uniform distribution, and report feature selection perfor-
mance in terms of percent bins encoded, R (see Equation
14).

In what follows, we first present experiments on a syn-
thetic example with our approach and then discuss our re-
sults on COIL-100.

5.1. Synthetic Example
To demonstrate our distributed feature selection ap-

proach we consider the scenario illustrated in Figure 3. An
object is imaged with two overlapping views, and the his-
tograms of each view are represented using a 6 word vocab-
ulary. As shown by the figure, the images are redundant in

1Note our distributed coding algorithm is independent of the choice of
classification method.
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Figure 6. Nearest-neighbor instance-level retrieval on the two-
view synthetic dataset with partial redundancy, plotted over vary-
ing neighborhood sizes. Our distributed coding algorithm per-
forms favorably to independent encoding even when the bins are
only partially redundant.

4 of the 6 words, as 2 of the words (i.e., diamond and plus)
do not appear in the overlapping portion of each view. Al-
though real-world problems are much more complex than
described above, we use this simple scenario to give intu-
ition and motivate our approach.

We first consider the case where there is no noise be-
tween the redundant features in each view and the redun-
dant features appear only in the overlapping region. We
randomly generated N = 100, 6-D histograms, where each
histogram was generated by sampling its bins from a uni-
form distribution between 0 and 1, and the histograms were
normalized to sum to one. Each histogram was split into
two views by replicating the first 4 bins in each view and
randomly splitting the other two bins. The above data was
used to form a training set of examples, where each pair
of histograms corresponds to a single object instance. To
form the test set, zero mean Gaussian noise was added to
the training set with σ = 0.01 and the test set histograms
were split into two views using the same split ratios as the
training set.

For distributed coding we trained 6 GPs, one per dimen-
sion, using each view. Figure 4 displays the predicted bin
value vs. ground truth for 2 of the bins (one redundant and
the other non-redundant) evaluated on the second view of
the test set. The GPs are able to learn the deterministic map-
ping that relates the redundant bins. For the non-redundant
bin, the variance of the GP’s predictions is quite large com-
pared to that of the redundant bin. Also shown in Figure 4,
are the mean GP variances plotted for each histogram bin.
The error bars in the plot indicate the standard deviation.
The GP variance is much larger for the non-redundant bins
than those of the redundant ones whose variances are small
and centered about 0. This is expected since non-redundant
bins are less correlated and therefore the GPs are less cer-
tain in their prediction of the value of these bins from side
information.

Evaluating our distributed coding algorithm on the above
problem gave a bin rate of R = 0.66 in the second view.
Figure 5 displays the result of nearest-neighbor instance-
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Figure 7. Nearest-neighbor (top) retrieval and (bottom) recogni-
tion with two-views on COIL-100. Our algorithm performs signif-
icantly better over single view performance under each task while
achieving a very low encoding rate. For the retrieval task, our ap-
proach performs near multi-view performance. The independent
encoding baseline is also shown, where independent feature selec-
tion was performed at the same rate as our algorithm. Note that
independent encoding with two views does worse than a single
view when operating at such a low encoding rate.

level retrieval over each of the 100 instances in the training
set for varying neighborhood sizes. The average retrieval
accuracy, averaged over 10 independent trials, is shown for
both distributed and independent coding of the second view,
where for independent coding features were selected at the
same rate as distributed coding. Distributed coding far out-
performs independent encoding in the above scenario.

We also considered the case of partial redundancy, where
the redundant bins are only partially correlated as a result of
noise. To simulate partial redundancy we added zero mean
Gaussian noise to the split ratios of the first 4 bins with
σ = {0, 0.01, 0.05, 0.1}. Figure 6 displays the result of
nearest-neighbor recognition with distributed and indepen-
dent coding of the second view. In the plot, recognition per-
formance is reported, averaged across the differentσ values,
along with error bars indicating the standard deviation. For
this experiment, an average bin rate ofR = 0.78±0.23 was
achieved with our distributed feature selection algorithm.
Our distributed coding algorithm can perform favorably to
independent encoding even when the bins are only partially
redundant.

5.2. COIL-100 Experiments
We evaluated our distributed feature selection algorithm

using the COIL-100 multi-view object database [11] that
consists of 72 views of 100 objects viewed from 0 to 360

degrees in 5 degree increments. A local feature representa-
tion is computed for each image using 10 dimensional PCA-
SIFT features [6] extracted on a regular grid using a 4 pixel
spacing. We evaluate our distributed coding algorithm and
perform recognition with the COIL-100 dataset using multi-
resolution vocabulary-guided histograms [4] computed with
LIBPMK [7]. We split the COIL-100 dataset into train and
test sets by taking alternating views of each object. We then
paired images 50 degrees apart to form the two views of our
problem.

Using the training image features we perform hierarchi-
cal k-means clustering to compute the vocabulary used to
form the multi-resolution pyramid representation. Using 4
levels and a tree branch factor of 10 gave a 991 word vo-
cabulary at the finest level of the hierarchy. GP distributed
feature selection is performed over the finest level of the his-
togram, such that the encoders and decoder only communi-
cate bins at this level. The upper levels of the tree are then
recomputed from the bottom level when performing recog-
nition. To perform GP distributed coding we used a kernel
defined using L2 distance over a coarse, flat histogram rep-
resentation.

Figure 7 displays nearest-neighbor retrieval and recog-
nition accuracy using one and two views. A significant
performance increase is achieved by using the second view
when there are no bandwidth constraints. Applying GP dis-
tributed feature selection on the above dataset resulted in a
bin rate of R < 0.01 in the second view; this is a compres-
sion rate of over 100:1. Figure 7 displays the performance
of our GP distributed feature selection algorithm. By ex-
ploiting feature redundancy across views, our algorithm is
able to perform significantly better than single view perfor-
mance while achieving a very low encoding rate. The re-
sult of independent encoding is also shown in the Figure,
where independent feature selection was performed at the
same rate as our algorithm. In contrast to our approach, in-
dependent encoding is not able to improve over single-view
performance and in fact does worse at such low encoding
rates.

We also tested our approach over different encoding
rates, where the desired rate is provided as input to the algo-
rithm. Figure 8 displays the nearest-neighbor performance
of our approach over different encoding rates. As expected,
nearest-neighbor performance increases for larger encoding
rates. Performance saturates at about r = 50 bins and re-
mains fairly constant for larger rates. Of coarse, for r = B
one would expect to recover ground-truth performance. The
slow convergence rate of our approach to ground-truth per-
formance with increasing encoding rate suggests the need
for better bin selection criteria, which we plan to inves-
tigate as part of future work. The independent encoding
baseline is also shown. Recall that at rateR the baseline ap-
proach transmits twice the number of bins as our approach
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Figure 8. Nearest-neighbor performance increases with encoding
rate. Nearest-neighbor performance is shown for the tasks of (top)
retrieval and (bottom) recognition. The accuracy difference be-
tween our approach and ground-truth two-view performance is
shown averaged over neighborhood size; error bars indicate ±1

std. deviation. The independent encoding baseline is also shown.

as a result of the request operation. Independent encoding
needs to transmit nearly the entire histogram (|ξ2| = 400)
before reaching a recognition performance close to our ap-
proach. Our approach achieves similar performance with
only |ξ2| = 10.

6. Conclusion and Future Work
In this paper we presented a distributed coding method

for unsupervised distributed feature selection and showed
its application to multi-view object recognition. We devel-
oped a new algorithm for distributed coding with Gaussian
Processes and demonstrated its effectiveness for encoding
visual word feature histograms on both synthetic and real-
world datasets. For a two-view problem with COIL-100,
our algorithm was able to achieve a compression rate of over
100:1 in the second view, while significantly increasing ac-
curacy over single-view performance. At the same cod-
ing rate, independent encoding was unable to improve over
recognition with a single-view. For future work, we plan to
investigate techniques for modeling more complex depen-
dencies as well as one-to-many mappings between views
and evaluate our approach under different bin selection cri-
teria.
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