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Abstract

We consider the problem of computing optical flow in
monocular video taken from a moving vehicle. In this set-
ting, the vast majority of image flow is due to the vehi-
cle’s ego-motion. We propose to take advantage of this
fact and estimate flow along the epipolar lines of the ego-
motion. Towards this goal, we derive a slanted-plane
MRF model which explicitly reasons about the ordering of
planes and their physical validity at junctions. Further-
more, we present a bottom-up grouping algorithm which
produces over-segmentations that respect flow boundaries.
We demonstrate the effectiveness of our approach in the
challenging KITTI flow benchmark [11] achieving half the
error of the best competing general flow algorithm and one
third of the error of the best epipolar flow algorithm.

1. Introduction

Optical flow is an important classical problem in com-
puter vision, as it can be used in support of 3D reconstruc-
tion, perceptual grouping and object recognition. Here we
are interested in applications to autonomous vehicles. In
this setting, most of the flow can be explained by the vehi-
cle’s ego-motion. As a consequence, once the ego-motion is
computed, one can treat flow as a matching problem along
epipolar lines. The main difference with stereo vision re-
sides in the fact that the epipolar lines radiate from a single
epipole, called the focus of expansion (FOE).

A few attempts to utilize these constraints have been pro-
posed [22], mainly in the context of scene flow (i.e., when
a stereo pair is available). However, so far, we have not
witnessed big performance gains by employing the epipolar
constraints. In contrast, we take advantage of recent devel-
opments in stereo vision to construct robust solutions to the
epipolar flow problem.

This paper has three main contributions. Our first con-
tribution is to adapt slanted plane stereo models [39, 2] to
the problem of monocular epipolar flow estimation. This
allow us to exploit global energy minimization methods in
order to alleviate problems in texture-less regions and pro-
duce dense flow fields. In particular, we represent the prob-
lem as one of inference in a hybrid Markov random field

(MRF), where a slanted plane represents the epipolar flow
for each segment and discrete random variables represent
the boundary relations between each pair of neighboring
segments (i.e., hinge, coplanar, occlusion). The introduc-
tion of these boundary variables allows the model to rea-
son about ownerships of the boundary as well as to enforce
physical validity of the boundary types at junctions.

In order to produce accurate results, slanted plane MRF
models require a good over-segmentation of the image,
where the planar assumption for each superpixel is approx-
imately satisfied. Towards this goal, our second contribu-
tion is an efficient flow-aware segmentation algorithm in the
spirit of SLIC [1], but where the segmentation energy in-
volves both image and flow terms. This encourages the seg-
mentation to respect both image and flow discontinuities.

The success of MRF models also depends heavily on
having good data terms. Our last contribution is a local
flow matching algorithm, inspired by the very successful
stereo algorithm semi-global block matching [20], which
computes very accurate semi-dense flow fields.

We demonstrate the effectiveness of our approach in the
challenging KITTI flow benchmark [11] achieving half the
error of the best competing general flow algorithm and one
third of the error of the best competing epipolar flow algo-
rithm. In the remainder of the paper, we first review re-
lated work and present our local epipolar flow algorithm.
We then discuss our unsupervised segmentation algorithm
which preserves epipolar flow discontinuities, and present
our slanted plane MRF formulation. We conclude with our
experimental evaluation and a discussion about future work.

2. Related Work

Over the past few decades we have witnessed a great
improvement in performance of flow algorithms. Current
approaches can be roughly divided into two categories:
gradient-based approaches [21, 5, 41], which are typi-
cally based on the brightness constancy assumption, and
matching-based approaches [22, 14, 25], which match a
region (block) around each pixel to a set of candidate lo-
cations. Gradient-based methods suffer in the presence of
large displacements as the brightness constancy assumption
does not hold. Moreover, the regularization employed is
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typically too local, yielding bad results in textureless re-
gions. Matching-based methods can potentially deal with
large displacements, but are typically computationally de-
manding due to the large amount of candidates required for
good accuracy. Furthermore, they also suffer from homoge-
neous regions as the matching is ambiguous.

While existing many works use a variational approach
for continuous flow optimization [21, 5, 6, 41], a number
of recent approaches have proposed discrete MRF formu-
lations [26, 35, 14, 25]. However, these approaches suffer
from the discretization trade-off between the number of la-
bels and the resulting computational complexity. The prob-
lem is more severe than in stereo, as instead of 1D dispar-
ities, a 2D flow field has to be discretized. [14, 25] use a
coarse-to-fine approach and sampling, while [26, 35] cre-
ate a set of candidate flow estimates by standard continuous
optical flow algorithms.

When dealing with mostly static scenes, optical flow can
be expressed as a 3D rigid motion due to the camera mo-
tion. The knowledge of this epipolar geometry has been in-
troduced as a soft constraint in the energy function [36, 37]
or as a hard constraint [33, 22]. In the latter, first the fun-
damental matrix is calculated and the flow estimation is
formulated as a 1D search by restricting a corresponding
point to lie on the epipolar line. While a soft constraint can
yield less errors in independently moving objects, hard con-
straints can reduce computational complexity and achieve
robust estimation of flow in stationary objects if the funda-
mental matrix is accurately estimated. In this paper we take
the latter approach and adapt the highly successful slanted-
plane MRF approach to stereo vision for the problem of
epipolar flow estimation. As demonstrated by our experi-
ments, this results in very significant performance gains.

3. Semi-global Block Matching for Flow

In this section we extend the popular stereo algorithm,
semi-global block matching [20] to tackle the epipolar flow
problem. In particular, we first convert the estimation from
a 2D matching problem to a 1D search along the epipolar
lines, which are defined by the vehicle’s ego-motion. We
then define parameterizations and cost functions which are
appropriate for epipolar flow.

3.1. Epipolar Flow as a 1D Search Problem

The first step of our algorithm consists on estimating the
fundamental matrix that defines the set of epipolar lines.
Towards this goal, we simply match SIFT keypoints [28] in
the two consecutive images, and estimate the fundamental
matrix F using RANSAC and the 8-point algorithm [15].
We then estimate the parameters of the flow that is due to
camera rotation, and pose the flow problem as a 1D search
along the translational flow component.
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Figure 1. Epipolar flow geometry.

More formally, let w = (wx, wy, wz) and v =
(vx, vy, vz) be the camera rotation and translation from time
t to time t + 1. Assuming that the scene is static, the flow
vector u = (ux, uy) for a pixel p = (x, y) in the image at
time t is given by

u = uw(p) + uv(p, Zp), (1)

where uw(p),uv(p, Zp) are the components of the flow
due to the camera rotation and translation, respectively, and
Zp is the depth of pixel p.

Assuming that the camera rotation between two images
is small, uw(p) can be expressed as follows [27],

uw(p) =

(
fwy − wz ȳ +

wy

f x̄
2 − wx

f x̄ȳ

−fwx + wzx̄+
wy

f x̄ȳ −
wx

f ȳ
2

)
where f is the focal length of the camera and x̄ = x −
cx, ȳ = y − cy , with (cx, cy) the principal point. Thus, we
can write uw(p) as a 5-parameter model.

uw(p) = uw(p;a) =

(
a1 − a3ȳ + a4x̄

2 + a5x̄ȳ
a2 + a3x̄+ a4x̄ȳ + a5ȳ

2

)
An additional constraint that we can exploit to estimate

the rotational component of the flow is given by the fact that
uv(p, Zp) is parallel to the epipolar line passing though that
point at time t+1. This epipolar line is given by `′(p) = Fp̃
with p̃ representing p in homogeneous coordinates. Thus,
as uv(p, Zp) being parallel to the epipolar line `′(p) im-
plies that p + uw(p) must be on `′(p), we can impose that

`′(p)>(p̃ + ũw(p)) = 0 (2)

with ũw(p) representing uw(p) in homogeneous coordi-
nates. We can then estimate the parameters of the rotational
flow, a = (a1, ..., a5), by minimizing the sum for all pixels
of the left hand side of Eq. (2). Once this is done, we only
need to estimate the flow in the direction of the epipolar
lines. This is a 1D computation which is not only computa-
tionally attractive, but also results in more accurate match-
ing, as it imposes a strong regularization.

3.2. Semi-global Block Matching for Flow

We now discuss how we can adapt the semi-global block
matching stereo algorithm (SGM) [20] to estimate the trans-
lational component of flow. SGM works in three steps:
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first a pixel-wise matching cost is calculated and the cost
of neighboring pixels is then aggregated taking into account
smoothness constraints. Finally, postprocesing is utilized in
order to obtain sub-pixel accuracy, remove spurious estima-
tions and return only consistent estimates.

We need to define a good parameterization and a good
cost function for epipolar flow. The SGM algorithm for
stereo works directly on disparities. In the case of flow,
using this parameterization leads to the interaction between
the epipolar geometry and the scene depth, as the disparity
at each point is a complex non-linear function of depth Zp.
Instead, we need to come up with a better parameterization
that should be approximately linear. Towards this goal, we
can write the translational component as

uv(p, Zp) = e′(p) · d(p, Zp),

with e′(p) a unit vector in the direction of the epipolar line
`′(p) and d(p, Zp) the disparity along the epipolar line.

Fig 1 (left) shows the epipolar geometry of two images,
where C and C′ are the camera centers at time t and t +
1, p and p′ are the projected image points of a 3D world
point P and o and o′ are the epipoles. Adding the rotation
flow vector uw(p) to each pixel p means that the image
plane at time t is rotated so that its camera direction is the
same as the one at time t + 1, as shown in Fig. 1 (right).
As a result, the epipole and the epipolar line in the rotated
image at time t are exactly the same as those in the image
at time t + 1. Fig. 2 shows the geometric configuration on
the epipolar plane, where r and r′ are distances between the
epipole and the projected image point on both images. We
can thus write

r =
Rp

Zp
f − f tanϕ′ =

Rp − Zp tanϕ′

Zp
f,

r′ =
Rp − vz tanϕ′

Zp − vz
f − f tanϕ′ =

Rp − Zp tanϕ′

Zp − vz
f,

where ϕ′ is the angle between the camera direction and the
translation vector v. We can then compute the disparity as

d(p, Zp) = r′−r = r

vz
Zp

1− vz
Zp

= |p+uw(p)−o′|
vz
Zp

1− vz
Zp

.

Note that the disparity is a complex function of depth.
Since the z-component vz of the camera translation is

constant for all pixels, the ratio vz
Zp

, denoted VZ-ratio, de-
pends only on the distance Zp. As a consequence the

smoothness between the VZ-ratio (S(ωp, ωq) in Eq. (3))
represents the scene independent of the epipolar geome-
try. In order to utilize the VZ-ratio, we first quantize it as
vz
Zp

=
ωp

n υmax, with ωp ∈ {0, 1, 2, ..., n − 1}, where υmax

is the maximum value of vz
Zp

and n is the number of quanti-
zation levels. We denote ωp as the VZ-index.

Next, we need to define a cost function adequate for esti-
mating the epipolar flow. We employ a cost function based
on edge information as well as the Hamming distance be-
tween Census transform descriptors [40] as follows

C(p, ωp) =
∑

q∈W(p)

|Gt(q, e′(q))− Gt+1(q′(q, ωq), e′(q))|

+λcen
∑

q∈W(p)

H(Bt(q),Bt+1(q′(q, ωq)))

where Bt(·) is the Census transform at time t, H(·, ·)
is the Hamming distance between two binary descriptors,
q′(q, ωq) = q+uw(q)+uv(q, Zq;ωq) is the correspond-
ing pixel in the second image whose VZ-index is ωq , λcen is
a constant,W(p) is a window centered at pixel p and G(·)
is the directional derivative in the image in the direction of
the epipolar line.

The second step of SGM involves defining a cost aggre-
gation energy. We simply define this cost as the sum of the
unary cost and a smoothness term

E(ω) =
∑
p

C(p, ωp) +
∑

{p,q}∈N

S(ωp, ωq) (3)

We define S(ωp, ωq) to be 0, if ωp = ωq, and two differ-
ent penalties (0 ≥ λ1 ≥ λ2.) depending whether they are
1 or more integers apart. Using lower penalties for small
changes permits an adaptation to slanted or curved surfaces.

The flow can then be estimated by solving for the dis-
parities {ωp} by minimizing the energy in Eq. (3). While
this global minimization is NP hard, in order to get a fast
estimate we adopt the strategy of [20] and aggregate the
matching cost in 1D from all directions equally

L(p, ωp) =
∑
j

Lj(p, ωp)

with Lj the cost of direction j. This can be done efficiently
as the minimum cost in each direction can be estimated us-
ing dynamic programming by recursively computing

Lj(p, ωp) = C(p, ωp) + min
i
{Lj(p− j, i) + S(ωp, i)}

Following [20], once Eq. (3) is minimized, we refine the
VZ-index map by sub-index estimation, we remove small
spurious regions, and perform a consistency check between
the two consecutive frames by running the algorithm both
ways and comparing the VZ values. This provides the
sets Ft and Ft+1 of the pixels, whose flow has been es-
timated, and VZ-indices ω̂t(p) and ω̂t+1(p′) of the pixels
p ∈ Ft,p′ ∈ Ft+1.



Algorithm 1 MotionSLIC
Init superpixels by sampling pixels in a regular grid
for i = 1 to #iterations do

for all pixel p do
sp = argminiE(p, i, θi, µi, ci)

end for
for all superpixel si do
µi = 1

|si|
∑

p∈si p, ci = 1
|si|
∑

p∈si I(p)

Compute θi by robust fitting a VZ-index plane
end for

end for

4. Joint Segmentation and Flow Estimation
Given an estimate of the flow in a subset of the pixels,

we are interested in computing an over-segmentation of the
image that respects both flow and image boundaries. This
over-segmentation will be used in the next section by our
slanted-plane MRF model in order to produce more accu-
rate dense flow estimations. Towards this goal, we represent
the VZ-index of each superpixel with a slanted plane,

ω(p, θsp) = αspx+ βspy + γsp , (4)

defined with parameters θsp = (αsp , βsp , γsp), where sp
indexes the superpixel that pixel p belongs to. It can be
shown that Eq. (4) represents a valid homography.

We frame joint unsupervised segmentation and flow es-
timation as an energy minimization problem, and define the
energy of each pixel as the sum of energies encoding shape,
appearance and flow, taking special care into modeling oc-
clusions. The input to our algorithm is the two images as
well as our initial (possibly sparse) flow estimate ω̂ (see sec-
tion 3). We now discuss each energy term in more details.

Regular Shape: We prefer superpixels that have a regular
shape. Following [1] we encode this as

Epos(p, µsp) =
∣∣∣∣p− µsp ∣∣∣∣22 /g

where µsp is the superpixel centroid, g = W ×H/m with
W,H the width and height of the image and m the desired
number of superpixels.

Appearance: We encourage the elements of the same su-
perpixel to have similar appearance. We do so by defining

Etcol(p, csp) =
(
It(p)− csp

)2
where csp is the mean appearance descriptor for superpixel
sp. Let q(p, θsp) be the predicted location of pixel p at
time t + 1 computed using the plane assumption (Eq. (4))
and (1). We can encode a similar energy for the next frame

Et+1
col (p, csp , θsp) =

{(
It+1(q(p, θsp))− csp

)2
if δno(p, θsp)

Etcol(p, csp) otherwise

Algorithm 2 PCBP Flow
Set N
∀i Initialize planes y0

i = (α0
i , β

0
i , γ

0
i ) from motionSLIC

Initialize σα, σβ and σγ
for t = 1 to #iters do

Sample N times ∀i from αi ∼ N (αt−1
i , σα), βi ∼

N (βt−1
i , σβ), γi ∼ N (γt−1

i , σγ)
(ot,yt)← Solve discretized MRF using convex BP
Update σcα = σcβ = 1

2 exp(− c
10 ), σcγ = 5 exp(− c

10 )
end for
Return ot, yt

where δno(p, θsp) represents whether a pixel is non-
occluded. We say that a pixel p is non-occluded if we have
an initial estimate, i.e., p ∈ Ft or if q(p, θsp) ∈ Ft+1 and
ω(p, θsp) ≥ ω̂t+1(q(p, θsp)).

Flow: This potential enforces that the plane parameters
should agree with the input flow ω̂t(p) as follows

Etdisp(p, θsp) =

{(
ω(p, θsp)− ω̂t(p)

)2
if p ∈ Ft

λd otherwise

with λd a constant. Additionally, we define

Et+1
disp(p, θsp) =

{(
ω(p, θsp)− ω̂t+1(q(p, θsp))

)2
if δno(p, θsp)

λd otherwise

We can define the total energy of a pixel as

E = Etcol(p, csp) + Et+1
col (p, csp , θsp) + λposEpos(p, µsp)

+ λdisp

{
Etdisp(p, θsp) + Et+1

disp(p, θsp)
}
,

where λpos and λdisp are two scalars. The problem of joint
unsupervised segmentation and flow estimation becomes

min
Θ,S,µ,c

∑
p

E(p, sp, θsp , µsp , csp). (5)

where S = {s1, · · · , sm) is the set of superpixel assign-
ments, Θ = {θ1, · · · , θm} the set of plane parameters,
µ = {µ1, · · · , µm} the mean location of each superpixel,
and c = {c1, · · · , cm} the mean appearance descriptor.

This is a non-convex mixed continuous-discrete opti-
mization problem, which is NP-hard to solve. We derive
an iterative scheme that works in three steps: first we mini-
mize the energy with respect to the assignments, we update
the parameters µsp , csp by simply computing their means,
and then compute the plane parameters by using a robust
estimator. The algorithm, which we denote MotionSLIC,
is summarized in Algorithm 1. This algorithm can be ex-
tended to stereo vision by simply replacing the two consec-
utive frames with the left and right images of the stereo pair,
and the VZ-ratio with disparity. Our experimental evalu-
ation will demonstrate the effectiveness of our method in
both epipolar flow and stereo estimation problems.



> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

Pyramid-LK [3] 72.46 % 75.91 % 65.74 % 70.09 % 60.99 % 65.98 % 57.22 % 62.72 % 21.7 px 33.1 px
OCV-BM [4] 65.60 % 70.03 % 63.46 % 68.16 % 61.85 % 66.75 % 60.41 % 65.49 % 24.4 px 33.3 px

PolyExpand [10] 50.16 % 56.39 % 47.54 % 53.95 % 45.88 % 52.34 % 44.53 % 51.03 % 17.2 px 25.2 px
HAOF [5] 38.19 % 45.68 % 35.76 % 45.36 % 33.98 % 41.61 % 32.48 % 40.12 % 11.1 px 18.2 px
GCSF [7] 39.53 % 47.25 % 33.23 % 41.74 % 29.24 % 38.23 % 26.33 % 35.64 % 7.0 px 15.3 px

DB-TV-L1 [41] 33.87 % 42.00 % 30.75 % 39.13 % 28.42 % 36.94 % 26.50 % 35.10 % 7.8 px 14.6 px
C+NL [34] 26.42 % 35.28 % 24.64 % 33.35 % 23.53 % 32.06 % 22.71 % 31.08 % 9.0 px 16.4 px
LDOF [6] 24.43 % 33.87 % 21.86 % 31.31 % 20.13 % 29.48 % 18.72 % 27.97 % 5.5 px 12.4 px

RSRS-Flow [13] 22.68 % 31.81 % 20.74 % 29.68 % 19.55 % 28.24 % 18.65 % 27.13 % 6.2 px 12.1 px
HS [21] 22.02 % 31.18 % 19.92 % 28.86 % 18.60 % 27.28 % 17.61 % 26.07 % 5.8 px 11.7 px

GC-BM-Mono [22] 24.79 % 34.59 % 19.49 % 29.88 % 17.04 % 27.56 % 15.42 % 25.93 % 5.0 px 12.1 px
GC-BM-Bino [22] 23.07 % 33.10 % 18.93 % 29.37 % 16.80 % 27.32 % 15.31 % 25.80 % 5.0 px 12.0 px

TGV2CENSUS [38] 13.33 % 21.11 % 11.14 % 18.42 % 9.98 % 16.83 % 9.19 % 15.68 % 2.9 px 6.6 px
fSGM [18] 14.56 % 25.90 % 11.03 % 22.90 % 9.43 % 21.50 % 8.44 % 20.63 % 3.2 px 12.2 px

Ours 6.33 % 11.59 % 4.08 % 8.70 % 3.14 % 7.23 % 2.58 % 6.26 % 0.9 px 2.2 px
Table 1. Flow: Comparison with the state of the art on the test set of KITTI [11].

Image at time t

VZ-index map
of SGM-Flow

VZ-index map
of MotionSLIC

VZ-index map
of PCBP-Flow

Flow image
of PCBP-Flow

Flow errors

Figure 3. KITTI examples

5. Slanted-plane MRFs for Epipolar Flow

Slanted-plane MRF models are among the leading ap-
proaches to stereo vision [2]. Recently, [39] proposed a
slanted-plane MRF model for stereo vision that reasons
about segments as well as occlusion boundaries. Here we
follow a similar idea, and represent the epipolar flow esti-
mation problem as inference in a mixed continuous-discrete
random field. The continuous variables represent 3D planes
encoding the VZ-ratio, while the discrete variables encode
the type of boundaries between pairs of superpixels. Our
approach takes as input epipolar flow as well as an over-
segmentation of the image. In particular, we employ the
epipolar flow fields and segmentations estimated by Mo-
tionSLIC (see section 4).

Let yi = (αi, βi, γi) ∈ <3 be a random variable repre-
senting the i−th slanted plane. For each pixel p belonging
to the i−th segment, we can compute its VZ-ratio as

ω̄i(p,yi) = αi(u− ciu) + βi(v − civ) + γi (6)

where p = (u, v), ci = (ciu, ciu) is the center of the i-
th segment, γi the VZ-ratio in the segment center, and yi
represents the slanted plane yi = (αi, βi, γi). We have cen-
tered the planes as it improves the efficiency. Let oi,j ∈
{co, hi, lo, ro} be a discrete random variable representing
whether two neighboring planes are coplanar, form a hinge
or an occlusion boundary. Here, lo implies that plane i oc-
cludes plane j, and ro the opposite. We define our hybrid
conditional random field in terms of all slanted-planes and
boundary variables and encode potentials over sets of con-
tinuous, discrete or mixture of both types of variables. We
now briefly describe the potentials employed, and refer the
reader to [39] for more details.

VZ-ratio: We define truncated quadratic potentials for
each segment encoding that the plane should agree with the
epipolar flow estimated using the algorithm from section 3.

Boundary: We employ 3-way potentials linking our dis-
crete and continuous variables expressing the fact that when



> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

Ours SGM-Flow 7.11 % 16.75 % 4.76 % 13.71 % 3.58 % 11.81 % 2.78 % 10.35 % 1.0 px 3.1 px
Ours MotionSLIC 6.53 % 13.19 % 4.39 % 10.25 % 3.34 % 8.53 % 2.59 % 7.28 % 0.9 px 2.3 px
Ours PCBP-Flow 6.11 % 10.97 % 4.08 % 8.22 % 3.08 % 6.67 % 2.38 % 5.58 % 0.9 px 1.8 px

Table 2. Importance of each step on the test set of KITTI [11].

> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

disparity 8.41 % 19.07 % 5.66 % 16.21 % 4.26 % 14.56 % 3.33 % 13.33 % 1.2 px 5.0 px
VZ-index 7.11 % 16.75 % 4.76 % 13.71 % 3.58 % 11.81 % 2.78 % 10.35 % 1.0 px 3.1 px

Table 3. Use of VZ index vs disparity on SGM-Flow evaluated on the validation set of KITTI [11].

two neighboring planes are hinge or coplanar they should
agree on the boundary, and when a segment occludes an-
other, the boundary should be explained by the occluder.

Compatibility: We penalize occlusion boundaries that
are not supported by the data. Additionally, we define a
potential that penalizes negative VZ-ratios.

Occam’s razor: We impose a regularization on the type
of occlusion boundary, where we prefer simpler explana-
tions (i.e., coplanar better than hinge better than occlusion).

Junction Feasibility: We encode the physical validity of
junctions of 3 and 4 planes. Although these potentials are
high-order, they only involve variables with 4 states, thus
the additional complexity is not prohibitive.

Color similarity: This potential encodes the fact that we
expect segments which are coplanar to have similar color
statistics, while the entropy is higher when the planes form
an occlusion boundary or a hinge. We employ the χ-squared
distance between histograms of neighboring segments.

Computing the MAP estimate of our hybrid MRF is NP-
hard. Instead, we rely on approximate algorithms based
on LP relaxations. Following [39] we make use of parti-
cle convex belief propagation (PCBP) [29], a technique that
is guaranteed to converge and gradually approach the opti-
mum. PCBP is an iterative algorithm that works as follows:
For each continuous variable particles are sampled around
the current solution. These samples act as labels in a dis-
cretized MRF which is solved to convergence using convex
belief propagation [16]. The current solution is then up-
dated with the MAP estimate obtained on the discretized
MRF. This process is repeated for a fixed number of itera-
tions. In our implementation, we use the distributed mes-
sage passing algorithm of [32] to solve the discretized MRF
at each iteration. Algorithm 2 depicts our PCBP-Flow al-
gorithm. At each iteration, to balance the trade off between
exploration and exploitation, we decrease the variance of
the distribution we sample from. Following [39], we dis-
cretize the continuous variables, and utilize the algorithm
of [17] for learning the importance of each potential.

6. Experimental Evaluation
We perform our experiments on the challenging KITTI

dataset [11], which is composed of 194 training and 195 test

high-resolution images captured from an autonomous driv-
ing platform driving around a urban environment. We use
10 images for training and 184 for validation. The ground
truth is semi-dense covering approximately 30 % of the pix-
els. We employ two different metrics to evaluate our ap-
proach. The first one measures the average number of pix-
els (non-occluded and all) whose error is bigger than a fixed
threshold. The second one reports end-point error for both
settings. For all experiments, we employ the same param-
eters which have been validated on the validation set. We
use υmax = 0.3 and n = 256 for our discretization of the
VZ-ratio. For SGM-Flow, we set λcen = 0.5, λ1 = 100,
λ2 = 1600, use a window W(p) of size 5×5, and aggre-
gate information over 4 paths. Unless otherwise stated, for
MotionSLIC we set the number of superpixels m = 400,
λpos = 4000, λdisp = 30, λd = 3, use 10 iterations and a
Lab vector as the mean color representation. For PCBP, we
employ the same parameter values as [39], and run infer-
ence with 10 particles and 5 iterations of re-sampling.

Comparison with the state-of-the-art: We compare our
approach to the state-of-the-art in the test set of KITTI. As
shown in Table 1, our approach significantly outperforms
all approaches, yielding approximately half the error of the
best general flow algorithm, and a third of the error of the
best epipolar flow algorithm, i.e., GC-BM-Mono [22]. In-
terestingly, even a scene flow approach, i.e., GC-BM-Bino
[22] that unlike our approach utilizes stereo pairs results in
three times more error. Fig. 3 depicts our flow estimations.

Importance of each step: We evaluate the importance of
each step of our pipeline. Table 2 depicts errors of our
SGM-Flow (section 3), our MotionSLIC (section 4) as well
as our PCBP-Flow (section 5) algorithms. Note that the out-
put of SGM-flow is used as input for motionSLIC, and the
output of motionSLIC is used as input to PCBP-flow. Each
step significantly improves results.

Running Time: We evaluate the run time of our ap-
proach. KITTI images have on average 1237 × 374 pix-
els. SGM-Flow takes on average 5.7s per image, 1.5s for
MotionSLIC and 3.5 minutes for PCBP-Flow. Thus state-
of-the-art estimates can be obtained in only a few seconds,
as SGM-Flow and MotionSLIC significantly outperforms



> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

Oracle FOE 0.000 % 0.000 % 0.000 % 0.000 % 0.000 % 0.000 % 0.000 % 0.000 % 0.02 px 0.03 px
Estimated FOE 0.33 % 0.48 % 0.17 % 0.22 % 0.06 % 0.10 % 0.00 % 0.02 % 0.2 px 0.2 px

Oracle GT 1.46 % 1.77 % 1.14 % 1.33 % 0.98 % 1.12 % 0.87 % 0.98 % 0.3 px 0.4 px
Oracle estimated 2.47 % 3.15 % 1.75 % 2.12 % 1.39 % 1.64 % 1.18 % 1.37 % 0.5 px 0.6 px
Our SGM-Flow 6.11 % 10.97 % 4.08 % 8.22 % 3.08 % 6.67 % 2.38 % 5.58 % 0.9 px 1.8 px

Table 4. Epipolar constraint and piece-wise planar assumptions on the validation set of KITTI [11]. If the true FOE is used to estimate
flow, there is no error (“Oracle FOE”). The error of the best oracle match along the epipolar line when employing our estimated FOE is
also very small. In “Oracle GT”, ground truth flow vectors are converted into VZ-index values using the epipolar lines estimated from
ground truth, and VZ-index planes are fitted to the superpixel segments, which are generated by motionSLIC. In “Oracle estimated”, flow
vectors of ground truth are converted to VZ-index values using our estimated epipolar lines. SGM-Flow has no oracle access.

> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

pos + 1-color 8.02 % 14.37 % 5.68 % 11.22 % 4.46 % 9.35 % 3.59 % 8.01 % 1.1 px 2.4 px
pos + 1-color + 1-flow 6.63 % 13.26 % 4.50 % 10.33 % 3.44 % 8.61 % 2.69 % 7.36 % 0.9 px 2.3 px
pos + 1-color + 2-flow 6.53 % 13.17 % 4.42 % 10.26 % 3.37 % 8.55 % 2.62 % 7.31 % 0.9 px 2.3 px
pos + 2-color + 2-flow 6.53 % 13.19 % 4.39 % 10.25 % 3.34 % 8.53 % 2.59 % 7.28 % 0.9 px 2.3 px

Table 5. Importance of energy terms of MotionSLIC: The first number in color and flow denotes the number of images used.

existing approaches.

Importance of VZ-index: As shown in Table 3 using
VZ-index instead of disparity as parameterization in our
SGM-Flow algorithm significantly improves performance.

Oracle: We would like to estimate how much we loose
due to the assumptions of our model. Our first assumption
is that most of the flow is due to the ego-motion. As shown
in Table 4, if the true FOE is used to estimate flow, there
is basically no error (“Oracle FOE”). When utilizing our
estimated FOE (via SIFT matching and 8-point algorithm
with RANSAC), the error of the best oracle match along
the epipolar line is also very small. Thus, even with a noisy
egomotion estimation, one could potentially achieve very
low error. The second assumption is that the VZ-ratio is
piece-wise planar. Note that given the ground truth epipolar
lines (“Oracle GT”), the piece-wise planar assumption is
fairly accurate. When the epipolar lines are estimated by
our ego-motion estimation (“Oracle estimated”), the piece-
wise planar assumption becomes worse, but is still a good
fit. Our algorithm (“SGM-Flow”) is not far from the oracle.

Energy terms in MotionSLIC: Table 5 depicts perfor-
mance as a function of the energy terms employed. The
first row coincides with SLIC [1]. Note that performance
significantly increases by adding flow.

Stereo: Our MotionSLIC algorithm can be utilized for
stereo vision in order to compute disparities and segmenta-
tions that respect depth boundaries. We called this Stere-
oSLIC. Once computed, it can be used as input to the
slanted-plane MRF model of [39]. We call this PCBP-
StereoSLIC. As shown in Table 6 both algorithms outper-
form the state-of-the-art. Importantly, StereoSLIC requires
only a few seconds per image.

7. Conclusion and Future Work

We have presented a slanted-plane MRF model for the
problem of epipolar flow estimation which utilizes a robust
data term as well as an over-segmentation of the image that
respects flow boundaries. We have demonstrated the ef-
fectiveness of our approach in the challenging KITTI flow
benchmark, achieving half the error of the best competing
general flow algorithm and one third of the error of the best
competing epipolar flow algorithm. Our algorithms can be
easily parallelized (see e.g., [32]). We plan to explore this
to achieve real-time performance in the future.
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