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Abstract

Recent trends in semantic image segmentation have
pushed for holistic scene understanding models that jointly
reason about various tasks such as object detection, scene
recognition, shape analysis, contextual reasoning. In this
work, we are interested in understanding the roles of these
different tasks in aiding semantic segmentation. Towards
this goal, we “plug-in” human subjects for each of the
various components in a state-of-the-art conditional ran-
dom field model (CRF) on the MSRC dataset. Comparisons
among various hybrid human-machine CRFs give us indi-
cations of how much “head room” there is to improve seg-
mentation by focusing research efforts on each of the tasks.
One of the interesting findings from our slew of studies was
that human classification of isolated super-pixels, while be-
ing worse than current machine classifiers, provides a sig-
nificant boost in performance when plugged into the CRF!
Fascinated by this finding, we conducted in depth analysis
of the human generated potentials. This inspired a new ma-
chine potential which significantly improves state-of-the-art
performance on the MRSC dataset.

1. Introduction
We consider the problem of semantic image segmenta-

tion. Clearly, other image understanding tasks like object
detection [10], scene recognition [38], contextual reasoning
among objects [29], and pose estimation [39] can aid se-
mantic segmentation. For example, knowing that the image
is a street scene influences where we expect to find people.
Studies have shown that humans can effectively leverage
contextual information from the entire scene to recognize
objects in low resolution images that can not be recognized
in isolation [35]. In fact, different and functionally com-
plementary regions in the brain are known to co-operate to
perform scene understanding [28].

Recent works [12, 40, 16, 23], have thus pushed on holis-
tic scene understanding models for among other things, im-
proved semantic segmentation. The advent of general learn-
ing and inference techniques for graphical models has pro-
vided the community with appropriate tools to allow for
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Figure 1. A holistic scene understanding approach to semantic seg-
mentation consists of a conditional random field (CRF) model that
jointly reasons about: (a) classification of local patches (segmen-
tation), (b) object detection, (c) shape analysis, (d) scene recog-
nition and (e) contextual reasoning. In this paper we analyze the
relative importance of each of these components by building an
array of hybrid human-machine CRFs where each component is
performed by a machine (default), or replaced by human subjects
or ground truth, or is removed all together (top).

joint modeling of various scene understanding tasks. These
have led to some of the state-of-the-art performances in a
variety of benchmarks.

In this paper, we aim to determine the relative impor-
tance of the different recognition tasks in aiding semantic
segmentation. Our goal is to discover which of the tasks
if improved, can boost segmentation performance signifi-
cantly. In other words, to what degree can we expect to
improve segmentation performance by improving the per-
formance of individual tasks? We argue that understanding
which problems to solve is as important as determining how
to solve them. Such an understanding can provide valuable
insights into which research directions to pursue for further
improving state-of-art methods for semantic segmentation.
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We analyze the recent and most comprehensive holistic
scene understanding model of Yao et al. [40]. It is a con-
ditional random field (CRF) that models the interplay be-
tween segmentation and a variety of components such as
local super-pixel appearance, object detection, scene recog-
nition, shape analysis, class co-occurrence, and compatibil-
ity of classes with scene categories. To gain insights into
the relative importance of these different factors or tasks,
we isolate each one, and substitute a machine with a human
for that task, keeping the rest of the model intact (Figure 1).
The resultant improvement in segmentation performance, if
any, will give us an indication of how much “head room”
there is to improve segmentation by focusing research ef-
forts on that task. Note that human outputs are not syn-
onymous with ground truth information, because the tasks
are performed in isolation. For instance, humans would not
produce ground truth labels when asked to classify a super-
pixel in isolation into one of several categories1. In fact,
because of inherent local ambiguities, the most intelligent
machine of the future will likely be unable to do so either.
Hence, the use of human subjects in our studies is key, as it
gives us a feasible point of what can be done.

Our slew of studies reveal several interesting findings.
For instance, we found that human classification of isolated
super-pixels when fed into the model provides a 5% im-
provement in segmentation accuracy on the MSRC dataset.
Hence, research efforts focused towards the specific task of
classifying super-pixels in isolation may prove to be fruit-
ful. Even more intriguing is that the human classification
of super-pixels is in fact less accurate than machine classifi-
cation. However when plugged into the holistic model, hu-
man potentials provide a significant boost in performance.
This indicates that to improve segmentation performance,
instead of attempting to build super-pixel classifiers that
make fewer mistakes, research efforts should be dedicated
towards making the right kinds of mistakes (e.g. comple-
mentary mistakes). This provides a refreshing new take on
the now well studied semantic segmentation task.

Excited by this insight, we conducted a thorough analy-
sis of the human generated super-pixel potentials to identify
precisely how they differ from existing machine potentials.
Our analysis inspired a rather simple modification of the
machine potentials which resulted in a significant increase
of 2.4% in the machine accuracy (i.e. no human involve-
ment) over the state-of-the-art on the MSRC dataset.

2. Related Work
Holistic Scene Understanding: The key motivation be-
hind holistic scene understanding, going back to the seminal

1Of course, ground truth segmentation annotations are themselves gen-
erated by humans, but by viewing the whole image and leveraging infor-
mation from the entire scene. In this study, we are interested in evaluating
how each recognition task in isolation can help segmentation performance.

work of Barrow in the seventies [3], is that ambiguities in
visual information can only be resolved when many visual
processes are working collaboratively. A variety of holis-
tic approaches have since been proposed. Many of these
works incorporate the various tasks in a sequential fashion,
by using the output of one task (e.g. object detection) as
features for other tasks (e.g. depth estimation, object seg-
mentation) [17, 16, 22, 5, 13]. There are fewer efforts on
joint reasoning of the various recognition tasks. In [36],
contextual information was incorporated into a CRF lead-
ing to improved object detection. A hierarchical generative
model spanning parts, objects and scenes is learnt in [34].
Joint estimation of depth, scene type, and object locations is
performed in [23]. Spatial contextual interactions between
objects have also been modeled [19, 29]. Image segmenta-
tion and object detection are jointly modeled in [21, 37, 12]
using a CRF. [6] also models global image classification in
the CRF. In this paper, orthogonal to these advances, we
propose the use of human subjects to understand the relative
importance of various recognition tasks in aiding semantic
segmentation.
Human-Studies: Numerous human-studies have been con-
ducted to understand the human ability to segment an image
into meaningful regions or objects. Rivest and Cavanagh
[30] found that luminance, color, motion and texture cues
for contour detections are integrated at a common site in
the brain. Fowlkes [11] found that machine performance at
detecting boundaries is equivalent to human performance in
small gray-scale patches. These and other studies are fo-
cused on the problem of unsupervised segmentation, where
the task is to identify object boundaries. In contrast, we are
interested in semantic segmentation which involves identi-
fying the semantic category of each pixel in the image.

Several works have studied high-level recognition tasks
in humans. Fei-Fei et al. [9] show that humans can rec-
ognize scenes rapidly even while being distracted. Bach-
mann et al. [2] show that humans can reliably recognize
faces in 16 × 16 images, and Oliva et al. [26] present sim-
ilar results for scene recognition. Torralba et al. [35] show
that humans can reliably detect objects in 32×32 images. In
contrast, in this paper, we study human performance at tasks
that closely mimic existing holistic computational models
for semantic segmentation in order to identify bottlenecks,
and better guide future research efforts.

Parikh et al. [27] recently applied human studies to iden-
tify the weakest links in existing models for the specific task
of person detection. In contrast, in this work, we are inter-
ested in systematically analyzing the roles played by several
high- and mid-level tasks such as grouping, shape analysis,
scene recognition, object detection and contextual interac-
tions in holistic scene understanding models for semantic
segmentation. While similar at the level of exploiting hu-
man involvement, the problem, the model, the methodolo-
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Figure 2. Overview of the holistic scene model of [40] that we
analyze using human subjects. For clarity, not all connections in
the model are shown here.

gies of the human studies and machine experiments, as well
as the findings and insights are all novel.

3. CRF Model
We analyze the recently introduced CRF model of [40]

which reasons jointly about a variety of scene components.
While the model shares similarities with past work [20, 21,
6], we choose this model because it provides state-of-the-
art performance in holistic scene understanding, and thus
forms a great starting point to ask “which components need
to be improved to push the state-of-the-art further?”. More-
over, it has a simple “plug-and-play” architecture making
it feasible to insert humans in the model. Inference is per-
formed via message passing [31] and so it places no restric-
tions (e.g. submodularity) on the potentials. This allows us
to conveniently replace the machine potentials with human
responses: after all, we cannot quite require humans to be
submodular!

We now briefly review this model (Figure 2). We refer
the reader to [40] for further technical details. The problem
of holistic scene understanding is formulated as that of in-
ference in a CRF. The random field contains variables rep-
resenting the class labels of image segments at two levels
in a segmentation hierarchy: super-pixels and larger seg-
ments. To be consistent with [40], we will refer to them as
segments and super-segments. The model also has binary
variables indicating the correctness of candidate object de-
tection bounding boxes. In addition, a multi-label variable
represents the scene type and binary variables encode the
presence/absence of a class in the scene.

The segments and super-segments reason about the se-

mantic class labels to be assigned to each pixel in the image.
The model employs these two segmentation layers for com-
putational efficiency, i.e., the super-segments are fewer but
more densely connected to other parts of the model. The
binary variables corresponding to each candidate bound-
ing box generated by an object detector allow the model
to accept or reject these detections. A shape prior is asso-
ciated with these nodes encouraging segments that respect
this prior to take on corresponding class labels. The bi-
nary class variables reason about which semantic classes
are present in the image. This allows for a natural way to
model class co-occurrences as well as scene-class affinities.
These binary class variables are connected to i) the super-
segments via a consistency potential that ensures that the
binary variables are turned on if a super-segment takes the
corresponding class label ii) binary detector variables via
a similar consistency potential iii) the scene variable via a
potential that encourages certain classes to be present in cer-
tain scene types iv) to each other via a potential that encour-
ages certain classes to co-occur more than others.

More formally, let xi ∈ {1, · · · , C} and yj ∈
{1, · · · , C} be two random variables representing the class
label of the i-th segment and j-th super-segment. We
represent candidate detections as binary random variables,
bi ∈ {0, 1}, taking value 0 when the detection is a false
detection. A deformable part-based model [10] is used to
generate candidates. The detector provides us with an ob-
ject class (ci), the score (ri), the location and aspect ratio
of the bounding box, as well as the root mixture component
ID that has generated the detection (mi). The latter gives
us information about the expected shape of the object. Let
zk ∈ {0, 1} be a random variable which takes value 1 if
class k is present in the image, and let s ∈ {1, . . . , Cl} be a
random variable representing the scene type among Cl pos-
sible candidates. The parameters corresponding to different
potential terms in the model are learnt in a discriminative
fashion [15]. Before we provide details about how the var-
ious machine potentials are computed, we first discuss the
dataset we work with to ground further descriptions.

4. Dataset
We use the standard MSRC-21 [33] semantic labeling

benchmark, also used by [40]. The MSRC dataset is widely
used, contains stuff (e.g., sky, water), things (i.e., shape-
defined classes such as cow, car) and a diverse set of scenes,
making it a good choice among existing datasets for our
study2. We use the more precise groundtruth of MSRC pro-

2The PASCAL dataset is more challenging in terms of object (“things”)
detection and segmentation. However, a large portion of its images, es-
pecially “stuff”, is unlabeled. The contextual interactions are also quite
skewed [7] making it less interesting for holistic scene understanding. The
SUN dataset [38] is prohibitively large for the scale of human studies in-
volved in our work. The SIFT-flow dataset [24] is dominated by “stuff”
with a small proportion of “things” pixels. Camvid [4] is limited to street
scenes.



vided by Malisiewicz and Efros [25] and used in [40], as
it offers a more accurate measure of performance. We use
the same scene category and object detection annotations as
in [40]. Figure 2 lists this information. As the performance
metric we use average per-class recall (average accuracy).
Similar trends in our results hold for average per-pixel re-
call (global accuracy [21]) as well. We use the standard
train/test split from [32] to train all machine potentials, de-
scribed next.

5. Machine CRF Potentials
We now describe the machine potentials we employed.

Our choices closely follow those made in [40].
Segments and super-segments: We utilize UCM [1] to
create our segments and super-segments as it returns a small
number of segments that tend to respect the true object
boundaries well. We use thresholds 0.08 and 0.16 for the
segments and super-segments respectively. On average, this
results in 65 segments and 19 super-segments per image for
the MSRC dataset. We use the output of the modified Tex-
tonBoost [33] in [20] to get pixel-wise potentials and aver-
age those within the segments and super-segments to get the
unary potentials. Following [18], we connect the two levels
via a pairwise Pn potential that encourages segments and
super-segments to take the same label.
Class: We use class-occurrence statistics extracted from
training data as a unary potential on zk. We also em-
ploy pairwise potentials between zi and zk that capture co-
occurance statistics of pairs of classes. However, for effi-
ciency reasons, instead of utilizing a fully connected graph,
we use a tree-structure obtained via the Chow-Liu algo-
rithm [8] on the class-class co-occurrence matrix.
Detection: Detection is incorporated in the model by gen-
erating a large set of candidate bounding boxes using the
deformable part-based model [10]. The CRF model reasons
about whether a detection is a false or true positive. On av-
erage, there are 16 hypotheses per image. A binary variable
bi is used for each detection and it is connected to the binary
class variable, zci , where ci is the class of the detector that
fired for the i−th hypothesis.
Shape: Shape potentials are incorporated in the model by
connecting the binary detection variables bi to all segments
xj inside the detection’s bounding box. The prior is de-
fined as an average training mask for each detector’s mix-
ture component. The values inside the mask represent the
confidence that the corresponding pixel has the same label
as the detector’s class. In particular, for the i-th candidate
detection, this information is incorporated in the model by
encouraging the xj segment to take class ci with strength
proportional to the average mask values within the segment.
Scene and scene-class co-occurrence: We train a classi-
fier [38] to predict each of the scene types, and use its con-

fidence to form the unitary potential for the scene variable.
The scene node connects to each binary class variable zi
via a pairwise potential which is defined based on the co-
occurance statistics of the training data, i.e., likelihood of
each class being present for each scene type.

6. Human CRF Potentials
We now explain our human studies. Section 7 presents

the results of feeding these human “potentials” into the ma-
chine model. We performed all human studies on Amazon
Mechanical Turk. Unless specified otherwise, each task was
performed by 10 different subjects. Depending on the task,
we paid participants 3−5 cents for answering 20 questions.
The response time was fast, taking 1 to 2 days to perform
each experiment. We randomly checked the responses of
the workers and excluded those that did not follow the in-
structions. More than 500 subjects participated in our stud-
ies that involved ∼ 300, 000 crowd-sourced tasks, making
the results obtained likely to be fairly stable across a differ-
ent sampling of subjects.
Segments and Super-segments: The study involves having
human subjects classify segments into one of the semantic
categories. Subjects were only shown pixels that belong to
the segment. The segment was shown within a rectangle
corresponding to the image around it, making its location
and scale in the image evident. If confused, subjects were
allowed to select multiple classes for each segment. See
Figure 3. The machine classifier, TextonBoost [33] in par-
ticular, has access to a large neighborhood (200x200 pix-
els) around the segment. Clearly, it does not use informa-
tion only from the pixels in the segment while classifying
the segment. However, showing all the information that the
machine uses to human subjects would lead to nearly 100%
classification accuracy by the subjects, leaving us with lit-
tle insights to gain. More importantly, a 200 x 200 window
occupies nearly 60% of the image, resulting in humans po-
tentially using holistic scene understanding while classify-
ing the segments. This would contradict our goal of having
humans perform individual tasks in isolation. Finally, a di-
rect comparison between humans and machines is not of
interest to us. We are interested in understanding the poten-
tial each component in the model holds. To this goal, the
discrepancy in information shown to humans and machines
is not a concern, as long as humans are not shown more in-
formation than the machine has access to. We experimented
with several interfaces (e.g. showing subjects a collection of
segments and asking them to click on all the ones likely to
belong to a certain class, or allowing a subject to select only
one category per segment, etc.). The one shown in Figure 3
resulted in most consistent responses from subjects.

Our experiment involved having subjects label all seg-
ments and super-segments from the MSRC dataset contain-
ing more than 500 pixels. This resulted in 10976 segments



Figure 3. Segment labeling interface.
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Figure 4. Isolated segment labels generated by human subjects

and 6770 super-segments. They cover 90.2% and 97.7%
of all pixels in the dataset3. Figure 4 shows examples of
segmentations obtained by assigning each segment to the
class with most human votes. The black regions correspond
to either the “void” class (unlabeled regions in the MSRC
dataset) or to small segments not being shown to the sub-
jects. Assigning each segment to the class with the highest
number of human votes achieves an accuracy of 72.2%, as
compared to 77.4% for machines4. As expected, humans
perform rather poorly when only local information is avail-
able. Accuracy for super-segments is 84.3% and 79.6% re-
spectively. The C dimensional human unary potential for a
(super)segment is proportional to the number of times sub-
jects selected each class, normalized to sum to 1. We set the
potentials for the unlabeled (smaller than 500 pixels) (su-
per)segments to be uniform.
Class Unary: We showed subjects 50 random images from
the MSRC dataset to help them build an intuition for the
image collection (not to count the occurrence of objects in
the images). For all pairs of categories, we then ask sub-
jects which category is more likely to occur in an image
from the collection. We build the class unary potentials
by counting how often each class was preferred over all
other classes. We ask MAP-like questions (“which is more

3Covering 100% of the pixels in the dataset would involve labeling
three times the number of segments, and the resources seemed better uti-
lized in the other human studies.

4This accuracy is calculated only over segments larger than 500 pixels
that were shown to humans. Machine accuracy over all segments is 74.2%.

likely”) to build an estimate of the marginals (“how likely is
this?”) because asking subjects to provide scalar values for
the likelihood of something is prone to high variance and
inconsistencies across subjects.
Class-Class Co-occurrence: To obtain the human co-
occurrence potentials we ask subjects the following ques-
tion for all triplets of categories {zi, zj , zk}: “Which sce-
nario is more likely to occur in an image? Observing (zi
and zj) or (zi and zk)?”. Note that in this experiment we did
not show subjects any images. The obtained statistics thus
reflect human perception of class co-occurrences as seen in
the visual world in general rather than the MSRC dataset.
Given responses to these questions, for every category zi,
we count how often they preferred each category zj over
the other categories. This gives us an estimate of P (zj |zi)
from humans. We compute P (zi) from the training images
to obtain P (zi, zj), which gives us a 21× 21 co-occurrence
matrix. We use the Chow-Liu algorithm on this matrix, as
was used in [40] on the class co-occurrence potentials to ob-
tain the tree structure, where the edges connect highly co-
occurring nodes. The structure of the human tree is quite
similar to the tree obtained from the MSRC training set. Vi-
sualizations of the trees are available on author’s webpage.
Object Detection: Since most objects in the MSRC dataset
are quite big, it is expected that human object detection
would be nearly perfect. As a crude proxy, we showed sub-
jects images inside ground truth object bounding boxes and
asked them to recognize the object. Performance was al-
most perfect at 98.8%.
Shape: We showed 5 subjects the segment boundaries in
the ground truth object bounding boxes along with its cat-
egory label and contextual information from the rest of the
scene. See Figure 5 5. Using the interface of [14], sub-
jects were asked to trace a subset of the segment boundaries
to match their expected shape of the object. The accuracy
of the best of the 5 masks obtained for each object (nor-
malized for foreground and background) was found to be
80.2%. The corresponding accuracy for the detector-based
shape prior snapped to the segments is 78.5%, not much
worse than the human subjects. This shows that humans
can not decipher the shape of an object from the UCM seg-
ment boundaries better than an automatic approach. Hence,
it is unlikely that simply “puzzling together” UCM-like seg-
ments will improve shape analysis.
Scene Unary: We ask human subjects to classify an im-
age into one of the 21 scene categories used in [40] (see
Figure 2). Images were presented at varying resolutions
(i.e. original resolution, smallest dimension rescaled to
32, 24 and 20 pixels). Subjects were allowed to select

5We showed subjects contextual information around the bounding box
because without it humans were unable to recognize the object category
reliably using only the boundaries of the segments in the box (54% accu-
racy). With context, classification accuracy was 94.0%.
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Figure 5. Shape mask labelling interface.

more than one category when confused, and the potential
was computed as the proportion of responses each category
got. Human accuracy at scene recognition was 90.4, 89.8,
86.8 and 85.3% for the different resolutions, as compared
to the machine accuracy of 81.8%. Note that human per-
formance is not 100% even with full resolution images be-
cause the scene categories are semantically ambiguous. Hu-
mans clearly outperform the machine at scene recognition,
but the question of interest is whether this will translate to
improved semantic segmentation performance.
Scene-Class Co-occurrence: Similar to the class-class ex-
periment, subjects were asked which object category is
more likely to be present in the scene. We “show” the scene
either by naming its category (no visual information), or by
showing them the average image for that scene category.
The normalized co-occurrence matrix is then used as the
pairwise potential.
Ground-truth Potentials: In addition to human potentials
(which provide a feasible point), we are also interested in
establishing an upper-bound on the effect each subtask can
have on segmentation performance. We do so by introduc-
ing ground truth (GT) potentials into the model. We formed
each potential using the dataset annotations. For segments
and super-segments we simply set the value of the potential
to be 1 for the segment GT label and 0 otherwise, similarly
for scene and class unary potentials. For object detection,
we used the GT boxes as the candidates and set their detec-
tion scores to 1. For the shape prior, we use a binary mask
that indicates which pixels inside the GT object bounding
box have the object’s label.

7. Experiments with Human-Machine CRFs
We now describe the results of inserting the human po-

tentials in the CRF model. We also investigated how plug-
ging in GT potentials or discarding certain tasks all together
affects segmentation performance on the MSRC dataset.
For meaningful comparisons, CRF learning and inference
is performed every time a potential is replaced, be it with (i)
Human or (ii) Machine or (iii) GT or (iv) Remove.

A summary of the results for the four different settings
is shown in Figure 6. Note that in each experiment only a
single machine potential was replaced, which is indicated in
the x axis of the plot. Missing bars for the remove setting
indicate that removing the corresponding potential would
result in the CRF being disconnected, and hence that exper-
iment was not performed. GT is not meaningful for pairwise
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Figure 6. Impact of each component on semantic segmentation.

potentials. The average recall is shown on the y axis. Due to
space considerations, we provide detailed class-wise accu-
racy tables in a separate document on the author’s webpage.

Class presence, class-class co-occurrence, and the scene-
class potentials have negligible impact on the performance
of semantic segmentation. The choice of the scene clas-
sifier also has little impact on this dataset. We find that
GT object detection boosts performance, which is not sur-
prising. GT shape also improves performance, but as dis-
cussed earlier, we find that humans are unable to instanti-
ate this potential using the UCM segment boundaries. This
makes it unclear what the realizable potential of shape is
for the MSRC dataset. One human potential that does im-
prove performance is the unitary segment potential. This
is quite striking since human labeling accuracy of segments
was substantially worse than machine’s (72.2% vs. 77.4%),
but incorporating the potential in the model significantly
boosts performance (from 77.2% to 82.3%). Intrigued by
this, we performed detailed analysis to identify properties
of the human potential that are leading to this boost in per-
formance. Resultant insights provided us concrete guidance
to improve machine potentials and hence state-of-the-art ac-
curacies. We now describe the various hypotheses we ex-
plored (including unsuccessful and successful ones).
Scale: We noticed that the machine did not have access to
the scale of the segments while humans did. So we added
a feature that captured the size of a segment relative to the
image and re-trained the unary machine potentials. The re-
sultant segmentation accuracy of the CRF was 75.2%, un-
fortunately worse than the original accuracy at 77.2%.
Over-fitting: The machine segment unaries are trained on
the same images as the CRF parameters, potentially leading
to over-fitting. Humans obviously do not suffer from such
biases. To alleviate any over-fitting in the machine model,
we divided the training data into 10 partitions. We trained
the machine unaries on 9 parts, and evaluated them on the
10th part, repeating this 10 times. This gives us machine
unaries on the entire training set, which can be used to train
the CRF parameters. While the machine unaries may not be
exactly calibrated, since the training splits are different by
a small fraction of the images, we do not expect this to be a
significant issue. The resultant accuracy was 76.5%, again,
not an improvement.



Ranking of the correct label: It is clear that the high-
est ranked label of the human potential is wrong more of-
ten than the highest ranked label of the machine potential
(hence the lower accuracy of the former outside the model).
But we wondered if perhaps even when wrong, the human
potential gave a high enough score to the correct label mak-
ing it revivable when used in the CRF, while the machine
was more “blatantly” wrong. We found that among the mis-
classified segments, the rank of the correct label using hu-
man potentials was 4.59 – noticeably better than 6.19 (out
of 21) by the machine.
Uniform potentials for small segments: Recall that we did
not have human subjects label the segments smaller than
500 pixels and assigned a uniform potential to those seg-
ments. The machine on the other hand produced a poten-
tial for each segment. We suspected that ignoring the small
(likely to be misclassified) segments may give the human
potential an advantage in the model. So we replaced the
machine potentials for small segments with a uniform dis-
tribution over the categories. The average accuracy unfortu-
nately dropped to 76.5%. As a follow-up, we also weighted
the machine potentials by the size of the corresponding seg-
ment. The segmentation accuracy was 77.1%, almost the
same as the original 77.2%.
Regressing to human potentials: We then attempted to
directly regress from the machine potential as well as the
segment features (TextonBoost, LBP, SIFT, ColorSIFT, lo-
cation and scale) to the human potential, with the hope that
if for each segment, we can predict the human potential, we
may be able to reproduce the high performance. We used a
Gaussian Process regressor with RBF kernel. The average
accuracy in both cases was lower: 75.6% and 76.5%. We
also replicated the sparsity of human potentials in the ma-
chine potentials, but this did not improve performance by
much (77.3%).
Complementarity: To get a deeper understanding as to
why human segment potentials significantly increase per-
formance when used in the model, we performed a vari-
ety of additional CRF experiments with hybrid potentials.
These included having human (H) or machine (M) poten-
tials for segments (S) or super-segments (SS) or both, with
or without the Pn potential in the model. The results are
shown in Table 1. The last two rows correspond to the case
where both human and machine segment potentials are used
together at the same level. In this case, using a Pn poten-
tial or not has little impact on the accuracy. But when the
human and machine potentials are placed at different lev-
els in the model (rows 3 and 4), not having a Pn potential
(and thus losing connection between the two levels) signif-
icantly hurts performance. This indicates that even though
human potentials are not more accurate than machine po-
tentials, when both human and machine potentials interact,
there is a significant boost in performance, demonstrating

the complementary nature of the two.

Pn without Pn

H S, H SS 78.9 77.2
M S, M SS 77.2 77.0
H S, M SS 82.3 75.3
M S, H SS 81.2 78.2

H S+M S, M SS 80.9 81.3
H S+M S, H SS 82.3 82.8

Table 1. Human & machine segment potentials are complementary
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Figure 7. (Sub) confusion matrices for isolated segment classifica-
tion. M = machine.

So we hypothesized that the types of mistakes that the
machine and humans make may be different. We qualita-
tively analyzed the confusion matrices for both. We no-
ticed that the machine confuses categories that spatially sur-
round each other e.g. bird and grass or water and boat (Fig-
ure 7(a)). This was also observed in [33] and is understand-
able because TextonBoost uses a large (200× 200) window
surrounding a pixel to generate its feature descriptor. On
the other hand, human mistakes are between visually simi-
lar categories e.g. car and boat (Figure 7(b)).6 Hence, we
trained TextonBoost with smaller windows. The resultant
confusion matrix was more similar to that of human sub-
jects (Figure 7(c)). For the full confusion matrix refer to
the author’s webpage. We re-computed the segment unaries
and plugged them into the model in addition to the original
unaries that used large windows. The average accuracy we
obtained by the model using window sizes of 10, 20, 30 and
40 were 77.9, 78.5, 79.6 and 79.6 (compare to 77.2%). This
improvement of 2.4% over state-of-the-art is quite signifi-
cant for this dataset7! Notice that the improvement provided
by the entire CRF model over the original machine seg-
ment unaries alone was 3% (from 74.2% to 77.2%). While
a fairly straightforward change in the training of machine
unaries lead to this improvement in performance, we note
that the insight to do so was provided by our use of humans
to “debug” the state-of-the-art model.

6One consequence of this is that the mistakes made within a super-
segment are consistent for machines but variable for humans. Specifically,
on average machine assigns different labels to 4.9% of segments, while
humans assign different labels to 12% of the segments within a super-
segment. The consistent mistakes may be harder for other components
in the CRF to fix.

7Adding a new unary potential simply by incorporating a different set
of features and kernels than TextonBoost (such as color, SIFT and self-
similarity with intersection kernel) provides only a small boost at best
(77.9%).



Potential of the pipeline: Of course, in spite of MSRC
being a well studied dataset, there is still room for improve-
ment. GT labels for segments when plugged into the CRF
provide an accuracy of 94% (and not 100% because deci-
sions are made at the segment level which are not perfect).
We find that not just the dataset, but even the particular
model of Yao et al. [40] that we analyze in this paper has
further potential. Plugging in human potentials for all the
components gives us an accuracy of 89.5%. Our analysis
reveals precisely which directions to pursue to reach this
potential. We expect even more insightful findings if this
model is studied on larger and more challenging datasets
like the SUN dataset [38], which is part of future work.

8. Conclusion

Researchers have developed sophisticated machinery for
semantic segmentation of images. Insights into which as-
pects of these models are crucial, especially for further im-
proving state-of-the-art performance is valuable. We gather
these insights by analyzing a state-of-the-art CRF model for
semantic segmentation on the MSRC dataset. Our analysis
hinges on the use of human subjects to produce the different
potentials in the model. Comparing performance of vari-
ous hybrid human-machine models allows us to identify the
components of the model that still have “head room” for
improving segmentation performance. One of our findings
was that human responses to local segments in isolation,
while being less accurate than machines’, provide comple-
mentary information that the CRF model can effectively ex-
ploit. We explored various avenues to precisely character-
ize this complementary nature, which resulted in a novel
machine potential that significantly improves accuracy over
the state-of-art.
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