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Abstract

One of the most popular approaches to multi-target
tracking is tracking-by-detection. Current min-cost flow
algorithms which solve the data association problem op-
timally have three main drawbacks: they are computation-
ally expensive, they assume that the whole video is given
as a batch, and they scale badly in memory and computa-
tion with the length of the video sequence. In this paper,
we address each of these issues, resulting in a computation-
ally and memory-bounded solution. First, we introduce a
dynamic version of the successive shortest-path algorithm
which solves the data association problem optimally while
reusing computation, resulting in faster inference than stan-
dard solvers. Second, we address the optimal solution to the
data association problem when dealing with an incoming
stream of data (i.e., online setting). Finally, we present our
main contribution which is an approximate online solution
with bounded memory and computation which is capable of
handling videos of arbitrary length while performing track-
ing in real time. We demonstrate the effectiveness of our
algorithms on the KITTI and PETS2009 benchmarks and
show state-of-the-art performance, while being significantly
faster than existing solvers.

1. Introduction

In recent years the performance of object detectors has
improved substantially, reaching levels which nowadays
make them applicable to real-world problems. A notable
example is face recognition where algorithms that employ
deep learning features have attained human performance
[39]. Many aspects have been key for the success of ob-
ject recognition. The creation of benchmarks such as PAS-
CAL [18] and ImageNet [36] made experimentation more
rigorous and stimulated the development of key algorithms
such as the deformable part-based model (DPM) [19] and
more recently deep learning approaches based on convolu-
tional nets such as [26] and R-CNN [23].

With the success of object detection came also the suc-
cess of tracking-by-detection approaches [2, 10, 11, 32, 35,
43, 46] which track an unknown number of objects over
time. The idea is to first detect objects independently in
each frame, followed by an association step linking individ-
ual detections to form trajectories. The association prob-
lem is difficult due to the presence of occlusions, noisy
detections as well as false negatives. The simplest ap-
proach is to independently establish associations between
all pairs of consecutive frames, a problem which can be
solved optimally in polynomial time using the Hungarian
method. However, in challenging situations ambiguities are
hard to resolve using local information alone and early er-
rors cannot be corrected at later frames leading to globally
inconsistent tracks. More recently, sophisticated discrete-
continuous optimization schemes have been proposed [2],
which alternate between optimizing trajectories and per-
forming data association over the whole sequence by as-
signing detections to the set of trajectory hypotheses. Un-
fortunately, the resulting problems are highly non-convex,
hard to optimize and provide no guarantees of optimality.

In their seminal work, Zhang et al. [46] showed how
multi-frame data association can be cast as a network flow
problem. The optimal solution can be found by a min-cost
flow algorithm, solving simultaneously for the number of
objects and their trajectories according to a cost-function
which incorporates the likelihood of a detection as well as
pairwise relationships between detections for all consecu-
tive frames. Recent extensions [3, 6, 11, 35] demonstrate
speedups by using more elaborate graph solvers, and show
how higher-order motion models can be incorporated into
the formulation at the cost of giving up global optimality.

In this paper we are interested in making min-cost flow
solutions applicable to real-world scenarios such as au-
tonomous driving. Towards this goal two main problems
need to be addressed: (i) current approaches assume a batch
setting, where all detections must be available a priori, and
(ii) their memory and computation requirements grow un-
bounded with the size of the input video. As a conse-
quence existing min-cost flow techniques cannot be em-
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ployed in robotics applications where tracking algorithms
are required to run non-stop in an online setting while com-
peting with other processes for a limited computation and
memory budget. In this paper we develop practical tracking
by detection solutions that

• perform computations only when necessary,

• handle an online stream of data, and

• are bounded in memory and computation.

In particular, we show that the first two properties can be
achieved while maintaining optimality, and an approximate
solution is possible for the latter which still performs very
well in practice. We demonstrate the effectiveness of the
proposed solvers on the KITTI [22] and PETS 2009 [20]
tracking benchmarks. As evidenced by our experiments,
our approach is significantly more efficient than existing
min-cost flow algorithms. Furthermore, a near-optimal so-
lution is retrieved when bounding the memory and compu-
tation to as little as 20kB and 10ms. We make our code,
dataset and supplementary material available on our project
website1.

2. Related Work
Multi-target tracking approaches can be divided into

two main categories: filtering-based approaches and batch
methods. Filtering-based methods [10,17,33,34] are based
on the Markov assumption, i.e., the current state depends
only on the previous states. While they are fast and applica-
ble in real-time applications, they typically suffer from their
inability to recover from early errors.

Recent efforts focus primarily on batch methods, where
object hypothesis are typically obtained using an object de-
tector (tracking-by-detection) and tracking is formulated as
an optimization problem over the whole sequence. This
mitigates the aforementioned problems and allows for the
integration of higher-level cues such as social group behav-
ior in the case of pedestrian tracking [25, 27, 37]. Discrete-
continuous optimization techniques have been proposed
[2, 32], where discrete (data association) and continuous
(trajectory fitting) optimization problems are solved in an
alternating way until converging to a hopefully better lo-
cal minimum. In [9, 13, 14, 44], approximate Markov chain
Monte Carlo techniques are employed for solving the data
association problem. In order to increase the discriminative
power of appearance and dynamical models, online learning
approaches have been suggested [28, 29, 43, 45]. In [5, 6],
the problem is cast as optimization on a grid using a linear
program while assuming that the observing camera is static.
The problem of tracking through occlusions has been tack-
led in [4,12,16,30] by using context from outside the object
region or by building strong statistical motion models.

1http://www.cs.toronto.edu/∼boundTracking

While most of the aforementioned formulations resort
to approximate optimization without optimality guarantees,
Zhang et al. [46] showed how data association with pair-
wise energies can be formulated as a network flow problem
such that standard graph solvers can be leveraged to retrieve
the global optimum. Their formulation solves for the glob-
ally optimal trajectories including their number, and hence
implicitly solves the model selection problem. To reduce
the computational complexity of min-cost flow algorithms,
[6, 35] proposed to use the successive shortest-path (SSP)
algorithm as solver. Further speed-ups have been achieved
in [35] using a greedy dynamic programming (DP) approxi-
mation. The min-cost flow idea has been extended in [3,11]
to include higher-order terms at the price of loosing opti-
mality. More recently, Wang et al. [41] proposed to jointly
model the appearance of interacting objects by integrating
linear flow constraints into the framework.

While all of the existing min-cost flow formulations as-
sume a batch setting, in this paper we propose a compu-
tationally and memory-bounded version of this algorithm,
which is able to process video sequences frame-by-frame
while reusing computation via efficient caching strategies.
Furthermore, our scheduling strategy performs computa-
tions only when neccessary which also speeds up traditional
batch solvers.

3. Review on Optimal Tracking-by-Detection

One of the most popular approaches to multi-target
tracking is tracking-by-detection, where a set of detections
are computed for each frame and trajectories are formed
by linking these detections. In this section, we briefly re-
view the necessary preliminaries to our contributions in
Section 4. In particular, we review how to formulate multi-
target tracking as a min-cost flow problem and how to solve
it using the successive shortest path algorithm.

3.1. Tracking as Min-Cost Flow

Following the tracking-by-detection paradigm, we as-
sume that a set of detections X = {xi} is available as in-
put. Let xi = (xi, ti, si, ai, di) denote a detection, with xi
the position of the bounding box, ti the time step (frame
index), si the size of the bounding box, ai the appear-
ance, and di the detector score. We define a trajectory
as a sequence of observations Tk = (o1, o2, . . . , olk) with
o ∈ {1, . . . , |X |} the detection index of temporally adjacent
detections toi+1 = toi + 1.

The full association hypothesis is then given by a set of
trajectories T = {Tk}, and the data association problem
can be formulated as a Markov random field (MRF). More
specifically, we aim at maximizing the posterior probability

http://www.cs.toronto.edu/~boundTracking


of trajectories:

p(T |X ) = p(T )
∏
i

p(xi|T ) (1)

The observation model is given by

p(xi|T ) =

{
Pi if ∃Tk ∈ T ∧ i ∈ Tk
1− Pi otherwise (2)

where Pi denotes the probability of xi being a true detec-
tion. The prior over trajectories decomposes into a product
of unary and pairwise factors

p(T ) ∝
∏
T∈T

Ψ(T )
∏

T,T ′∈T
[T ∩ T ′ = ∅] (3)

where the pairwise term ensures that trajectories are dis-
joint. The unary factors are given by

Ψ(T ) = Ψen(xo1)Ψex(xol)

l−1∏
i=1

Ψli(xoi ,xoi+1
) (4)

where Ψen(xo1), Ψex(xol) and Ψli(xoi ,xoi+1
) model the

likelihood of entering a trajectory, exiting a trajectory and
linking temporally adjacent detections within a trajectory.

Taking the negative logarithm of (Eq. 1), the maximiza-
tion can be transformed into an equivalent minimization
problem over flow variables [46] as follows

f∗ = argmin
f

∑
i

Ceni feni +
∑
i

Cexi fexi

+
∑
i,j

Clii,jf
li
i,j +

∑
i

Cdeti fdeti

s.t. feni +
∑
j

f lij,i = fdeti = fexi +
∑
j

f lii,j ∀i (5)

where Ceni = − log Ψen(xi) is the cost of creating a new
trajectory at xi and Cexi = − log Ψex(xi) is the cost of ex-
iting a trajectory at xi. The cost of linking two consecutive
detections xi and xj is denoted Clii,j = − log Ψli(xi,xj)

and Cdeti encodes the cost of xi being a true detection or
a false positive (data term). Furthermore, the binary flow
variables feni or fexi take value 1 if the solution contains a
trajectory such that xi is the first frame or last frame, re-
spectively. fdeti = 1 encodes the fact that xi is part of a
trajectory and f lii,j = 1 if a tracklet exists which contains
both detections xi and xj in two consecutive frames.

In their seminal work, Zhang and Nevatia [46] showed
how to map the problem in Eq. 5 into a min-cost flow net-
work problem. Fig. 1 illustrates one such network graph,
where for each observation two nodes ui and vi are created
(summarized as one node for clarity of illustration) with an
edge between them with cost c(ui, vi) = Cdeti and flow

Figure 1: The original problem (top) is mapped into a min-
cost flow network (bottom). Ground truth trajectories are
shown in black. Colored nodes encode detections and cor-
respond to two nodes in the min-cost flow network G. For
clarity of illustration, edges from the source and to the sink
have been ommitted.

f(ui, vi) = fdeti . For entering, edges are introduced be-
tween the source s and the first node of each detection with
cost c(s, ui) = Ceni and flow feni . For exiting, edges are
introduced between the last node of each detection and the
sink with cost c(vi, t) = Cexi and flow fexi . Finally, edges
between consecutive detections (vi, uj) encode pairwise as-
sociation scores with cost c(vi, uj) = Clii,j and flow f lii,j .
While we assume that only detections in consecutive frames
can be linked, this can be easily generalized by allowing
transitions between detections in non-consecutive frames
resulting in additional edges.

To find the optimal solution, Zhang et al. [46] start with
flow zero, and augment the flow one unit at a time, applying
the push relabeling algorithm [24] to retrieve the shortest
path at each iteration. The algorithm terminates if the cost
of the currently retrieved shortest path is greater or equal to
zero. For efficiency, the bisection method can be applied on
the number of flow units, reducing time complexity from
linear to logarithmic with respect to the number of trajecto-
ries. The total complexity is then O((mn2 log2(n))), with
n the number of nodes and m the number of edges.

3.2. Successive Shortest-Path (SSP)

Recently, [6, 35] proposed to replace the costly push re-
labeling algorithm by the successive shortest-path (SSP) al-
gorithm [1, p. 104]. This reduces the computational com-
plexity to O(K(n log(n) + m)) where n is the number of
nodes, m is the number of edges and K denotes the num-
ber of trajectories which is upper bounded by the number of
nodes n. This section gives a brief introduction to the SSP
algorithm as it forms the foundation for our contributions.
We refer the reader to the supplementary material for tech-
nical details in greater depth and an illustrative example.



The SSP algorithm works as follows: it first computes
the shortest path between source and target (i.e., path with
the lowest negative cost). It then iterates between revers-
ing the edges of the previously found shortest path to form
the residual graph Gr, and computing the shortest path in
this new residual graph. This process is iterated until no
trajectory with negative cost can be found. Finally, trajecto-
ries are extracted by backtracking connected, inverted edges
starting at the target node.

In the first iteration the shortest path from the source
to the target is efficiently retrieved using dynamic pro-
gramming [15, p. 655] as the input graph is directed and
acyclic. In the following iterations, Dijkstra’s algorithm can
be leveraged after converting the graph such that all costs
are positive. This conversion is achieved by simply replac-
ing the current cost Cu,v between nodes (u, v) linked by
a directed edge, with C ′u,v = Cu,v + d(u) − d(v), where
d(u) and d(v) are the distance on the shortest path from the
source to nodes u and v (c.f . supplementary material). Im-
portantly, for u and v on the shortest path we have C ′u,v = 0
after conversion. Note that for graphs with positive costs
and unit flow capacity, the SSP algorithm is similar to the
k-shortest paths (“KSP”) algorithm [38].Furthermore, one
could use other algorithms such as Bellman-Ford to replace
Dijkstra and handle negative costs directly. However, this
would result in worst complexity, i.e., O(K(n2)) .

4. Dynamic Online and Bounded Tracking
In this section we present new algorithms that have the

necessary properties for tracking-by-detection to be appli-
cable to real-world scenarios: dynamic computation, han-
dling online data, and bounded memory and computation.
We start by proposing a distributed optimal SSP algorithm
which leverages a dynamic priority cue, saving computa-
tion when compared to the original SSP algorithm. We then
extend this algorithm to handle an online data stream. Fi-
nally, we proposed our main contribution, a memory and
computation bounded online SSP algorithm.

4.1. Optimal Dynamic Min-Cost Flow (dSSP)

In this section we propose a novel dynamic algorithm
which performs computations only when necessary. Di-
jkstra’s algorithm is based on the principle of relaxation,
in which an upper bound of the correct distance is grad-
ually replaced by tighter bounds (by computing the prede-
cessor and its distance) until the optimal solution is reached.
Nodes are held in a priority queue, guaranteeing that the
most promising node is relaxed in each iteration 2. This pri-
ority queue is initialized to hold only the source node, and
upon convergence all nodes have been visited.

The key intuition behind our dynamic computation is

2This is guaranteed as all costs are positive.

that calling Dijkstra at each iteration of the SSP algorithm is
suboptimal in terms of runtime as from one iteration to the
next only a small part of the graph has changed (i.e., only
the reversed edges are different). Inspired by the distributed
Bellman-Ford algorithm [8, 40], we propose to reuse com-
putation and only update the predecessors when needed.
This can be easily implemented within Dijkstra by using
a dynamic priority queue, which contains only nodes that
have changed. Initially, this queue comprises the changes
introduced by reducing edges after finding the previous
shortest path in order to handle positive costs as in KSP.
The queue is then dynamically updated depending on which
successors require changes. We refer the reader to Algo. 1
for a summary of our dynamic algorithm.

We illustrate our dynamic algorithm within the compu-
tation of a single iteration of SSP in Fig. 2 for an example
containing four frames with three detections each. Given
the shortest path found in the previous iteration, we revert
its edges to form the residual graph in Fig. 2(a). Note that
the corresponding predecessor maps have to be updated as
the direction of these edges has changed. We start by up-
dating all predecessors for nodes belonging to the most re-
cent trajectory (blue path in Fig. 2(a)) in a forward sweep
(relaxed edges are marked in red). Next, all nodes with a
new predecessor propagate their cost along their respective
shortest path to their successors when taken from the prior-
ity queue. All successors which receive an update, i.e., for
which the predecessor has changed, are themselves added to
the priority queue (indicated by the red edges in Fig. 2(b)).
Note that those nodes are not necessarily part of the previ-
ous shortest path but can be retrieved efficiently as the suc-
cessors of the nodes in the current queue. This way, our al-
gorithm recursively updates all required nodes and ensures
global optimality. The algorithm (one iteration of SSP)
terminates when the queue is empty as all shortest paths
have been updated. Note that this dynamic computation
is employed at each iteration of SSP, and SSP terminates
when no new shortest path with negative cost can be found
(Fig. 2(c)). The final trajectories are extracted by collect-
ing all backward pointing edges of Gr, starting at the target
node (Fig. 2(d)). In contrast to Dijkstra’s original algorithm,
our dynamic broadcasting scheme relaxes only parts of the
graph for typical tracking networks as illustrated in Fig. 2(e)
and demonstrated later in our experimental evaluation.

4.2. Optimal Online Solution (odSSP)

Next, we extend the dynamic min-cost flow formulation
introduced in the previous section to the online setting. Our
intuition is that every time a new observation arrives (i.e.,
set of detections at time t), we would like to reuse com-
putation from the shortest paths and trajectories computed
in the previous time step which involve all detections up to
time t− 1. This is possible as in the online setting, the new



(a) Update Nodes (b) Priority Queue (c) Shortest Path (d) Final Trajectories (e) Dijkstra (SSP)

Figure 2: Dynamic Message Broadcasting (dSSP): For a given residual graph (shortest path in blue), (a) nodes with invalid
predecessors which require an update (red) are detected and queued. (b) The queue is processed by successively taking
nodes from the queue and relaxing their outgoing edges. Successors with updated predecessors (red) are added to the queue.
Exploiting Dijkstra’s algorithm, the priority queue is processed until no nodes are left. The algorithm terminates with the
solution for the current residual graph (c)+(d). Trajectories are encoded by backward pointing edges (green and blue). While
our dynamic broadcasting scheme exploits the intrinsic properties of the tracking problem and updates only deprecated
predecessor maps (indicated by the red nodes in (a) and (b)), Dijkstra’s original algorithm requires the full predecessor map
and broadcasts messages to all nodes (indicated by the red nodes in (e)).

network contains the previous network and some additional
edges/nodes. It is important to note that a naı̈ve extension
of trajectories would violate optimality if the new evidence
(i.e., detections at time t) changes the optimal trajectories
for detections in previous time steps (1, · · · , t− 1).

We illustrate our dynamic online algorithm with an ex-
ample in Fig. 3. Consider the network specified in Fig. 3(a)
where the most recent time step is t = 3 and the optimal set
of trajectories and predecessor maps have been computed.
Fig. 3(b) illustrates the shortest paths as well as the two op-
timal trajectories (in blue and green respectively) computed
at time t = 3. As a new frame arrives, new nodes (de-
picted in cyan in Fig. 3(c) are added, extending the graph to
the next time step. The first trajectory can be computed by
applying dynamic programing only to the edges involving
the new nodes, as in a DAG the predecessors do not change
from previous time steps. For successive trajectories (next
iterations of the SSP algorithm), the predecessor maps from
the previous time steps can be reused only if the trajecto-
ries under consideration are currently in the same order as
when applying SSP to the previous time frame t − 1 (i.e.,
before we received the new observation). This will not be
the case when we have competing trajectories with similar
costs, as given the new evidence (new frame) the ordering
of these trajectories is likely to change. To handle this case,
we utilize a caching strategy which keeps all predecessor
maps for a cache of |C| frames in memory. Similar to the
offline strategy, the online version implements a dynamic
priority queue. Initially, this queue comprises the changes
introduced by the added nodes and edges for the most recent
time step. The queue is then dynamically updated depend-
ing on which successors require changes.

Coming back to our example, the optimal solution for
the first iteration of SSP is found in Fig. 3(d). The prede-
cessor maps for the new nodes (orange nodes in Fig. 3(e))

have to be re-estimated only if they were part of the shortest
path. Towards this goal, we employ our dynamic broad-
casting strategy where only the node in cyan in Fig. 3(f) is
put into the initial priority queue. As in this example the
optimal trajectories are consistent with the ones from the
previous time instant (see Fig. 3(b) and Fig. 3(g)), the opti-
mal trajectories can be computed very efficiently, resulting
in massive computational gains.

4.3. Memory-Bounded Solution (mbodSSP)

While the odSSP algorithm handles the online setting,
it does not scale to very large problems since messages
might broadcast back to very early frames in order to guar-
antee optimality. Furthermore, memory requirements still
grow unbounded with the length of the sequence. Thus,
these algorithms are not applicable to autonomous driving
or surveillance scenarios.

In this section we propose a memory and computation-
ally bounded approximation which we call “mbodSSP”.
The key intuition is that given some computation and mem-
ory budget, we can safely neglect most of the past, and only
retain the interesting information, i.e., the trajectories that
were optimal. We refer the reader to Algo. 2 for a depic-
tion of the algorithm, and focus on explaining it through
an example. Consider the case where we assume a budget
of τ = 4 frames, and the solution from the previous time
step is given in Fig. 3(g). Before adding new nodes to the
graph for the next time step t+1, we remove the oldest time
step t− τ from the graph as illustrated in Fig. 3(h) to main-
tain the memory/computation constraints. Simply deleting
edges from the graph is suboptimal as it completely discards
computations from previous time steps (before the new ob-
servation arrives). In order to “remember” known paths, for
each trajectory we sum the cost of the predecessor node at
time t− τ to the corresponding successor at time t− τ + 1.



(a) Original Network, t = 3 (b) Solution, t = 3 (c) Nodes added for t = 4 (d) Solution in DAG

(e) Merge Solution+Cache (f) Broadcast Changes (g) Decoded Trajectories (h) Clip Graph (mbodSSP)

Figure 3: Online (a)-(g) and Memory Bounded (h) Algorithm: Assume that for the original network at t = 3 (a), the
solution (b) is already known (shortest paths in blue and green). A new set of detections (cyan nodes) for t = 4 arrives and is
connected to the graph (c) resulting in a DAG for which the shortest path can be found by applying one step of the DAG-SP
algorithm (d). The predecessor maps from the previous (magenta nodes) and current time step (orange nodes) are merged
(e). The queue initially contains nodes with outdated predecessors from the last shortest path (cyan). The priority queue is
processed until convergence (Fig. 2) and the predecessors are updated (f). In this example, the algorithm terminates after
one iteration and the optimal solution is found (g). For the mbodSSP algorithm, paths which pass through nodes outside the
history window are merged with the entry costs of the next time step (h).

This strategy allows us to use the cache and remember pre-
viously found paths. In the rare event that a trajectory which
is not represented in the current cache is found, we resort to
odSSP on window [t − τ + 1, t + 1], guaranteeing a valid
cache for the current SSP iteration. The cached predecessor
maps are clipped using the same strategy. While optimal-
ity is violated as no changes can be applied to paths be-
yond t− τ + 1, our experiments demonstrate that for many
cases of practical interest small windows are sufficient to
obtain near-optimal solutions. In particular, our memory
bounded approximation is able to maintain track ids over
periods much longer than the window itself. In contrast,
when splitting the sequence into batches and applying the
min-cost flow network algorithm separately to each batch,
ad-hoc heuristics are required to resolve this problem.

5. Experimental Evaluation

We evaluate our algorithms on the challenging KITTI
[22] and PETS 2009 [20] tracking benchmarks. For PETS
we use the object detections provided by Andriyenko et
al. [2]. For KITTI we compare the DPM reference detec-
tions [19] provided on the KITTI website3 with the recently
proposed Regionlet detections [42] provided to us by the
authors.

3http://www.cvlibs.net/datasets/kitti/eval tracking.php

We convert the detection score of each bounding box
di into a unary cost value Ci using logistic regression
Ci = 1/(1 + eβdi) on the training set. To encode asso-
ciation costs, we use six different pairwise similarity fea-
tures s = {sl}: bounding box overlap, orientation simi-
larity, color histogram similarity, cross-correlation, location
similarity, and optical flow overlap. Similar to the detection
scores we pass the association features through a logistic
function using logistic regression yielding s ∈ [0, 1]6. The
detection/association cost for each edge (u, v) is then de-
fined as Cu,v = ((1 − s) + o)>w, where o denotes an
offset and w the scale. Note that the offset is required to
allow for negative as well as positive costs. All parameters
(o,w) have been obtained using block coordinate descent
on the respective training sets and kept fix during all our
experiments. We refer the reader to the supplementary ma-
terial for further details on the parameter setting, additional
results, and videos.

Comparison to State-of-the-art on KITTI: We first
compare the proposed dSSP and mbodSSP algorithms
against four state-of-the-art baselines [2, 21, 31, 35] as well
as the pairwise optimal Hungarian method (“HM”) on the
challenging KITTI dataset using the DPM reference detec-
tions [19]. The metrics we use are described in [7, 29]. As
shown in Table 1 (left part), the optimal algorithm (“SSP”)
outperforms all other methods. Note that all discussed opti-

http://www.cvlibs.net/datasets/kitti/eval_tracking.php


Algorithm 1: dSSP
Input: Set of Detections X = {xi}
Output: Set of trajectory hypotheses T = {Tk}

1 G(V,E,C, f)← ConstructGraph(X , s, t)
2 f(G)← 0 // initialize flow to 0
3 γ0, π0 ← DAG-SP(G(f)) // shortest path in DAG
4 G

(0)
r (f)← ConvertEdgeCosts(G(f), γ0, π0) G(1)

r (f)←
ComputeResidualGraph(G(0)

r (f), π(0))
5 q ← ∅ // q is maintained for every iteration k
6 while 1 do // find shortest paths for k ≥ 1
7 k ← k + 1

8 π(k) ← π(k−1)

9 q ← γ(k−1)

// process queue in time direction
10 foreach node u ∈ q do

// check predecessor from past
11 π(k) ← Update(π(k), u)
12 if updated then
13 q ← AddSuccessors(q, u, G(k)

r (f))
// process queue

14 while ¬ empty(q) do
15 u← NodeWithMinDistance(q) // pop node
16 q ← q \ u
17 foreach node v ∈ Successors(G(k)

r (f),u) do
// Check predecessor of v

18 π(k)(v)← Relax(u,v,c)
19 if d(v) > d(u) + c(u, v) then
20 d(v)← d(u) + c(u, v)
21 q ← AddNode(q, v)
22 G

(k)
r (f)← ConvertEdgeCost(G(k)

r (f), π(k))
23 G

(k+1)
r (f)← ResidualGraph(G(k)

r (f), γ(k))
// evaluate converted costs

24 if
∑k
i=1 cost(γ

(i)) > | cost(γ(0))| then
25 break
26 return T

mal batch solvers obtain identical tracking results, but with
different run time thus we only state results for SSP. In our
experiments, we made use of a relatively low threshold di =
−0.3 for the object detector to avoid early pruning and eval-
uate each method with respect to outlier rejection perfor-
mance. Note that our method attains the best performance
with respect to mostly tracked trajectories (“MT”) while
only exhibiting a slightly higher false alarm rate (“FAR”)
than the other methods. The method of [2] struggled with
the presence of outliers and di = 0.0 was used to obtain
meaningful results. Also note the little loss in performance
when running mbodSSP for a window length of τ = 10 as
a good trade-off between runtime and performance (Fig. 3).
Compared to the non-optimal DP solution [35], mbodSSP
achieves higher performance, especially in terms of identity
switches and fragmentations. We provide additional quali-

Algorithm 2: mbodSSP
Input: Current Detections X t = {xt},

Graph G(V,E,C, f, s, t), Cache C
Output: Set of trajectory hypotheses T = {Tk}

1 if memorybounded then
2 foreach node u ∈ [t− τ ] do

//remember predecessor by updating cen,i
3 G(f)← UpdateEntryEdge(G(f), u)
4 G(f)← RemoveObservation(G(f), u)

5 G(f)←AddObservations(G(f),X t) //still a DAG
6 π(0) ← C(0)(t− 1)

// run DAG-SP for edges (u, v) ∈ [t− 1, t]

7 γ(0), π(0) ← DAG-SP(Gr(f), t− 1)

8 G
(0)
r (f)←ConvertEdgeCosts(G(f), γ(0), π(0), t− 1)

9 G
(1)
r (f)←ComputeResidualGraph(G(0)

r (f), π(0))
10 q ← ∅, k ← 0
11 while 1 do
12 k ← k + 1

// γ(k−1)
t−δi = γ

(k−1)
t , δi ∈ {0, . . . , |C|}

13 δi ←MostRecentCache(C, γ(l) ∀ l = 0, . . . , k − 1)
14 π(k) ← C(δi, k) // update predecessor map πk
15 q ← {γ(k−1)

t , (u, v) ∈ [t− δi, t]}
// Algo. 1, line 10

16 G
(k+1)
r (f), γ(k) ← ProcessQueue(q, π(k), G(k)

r (f))
17 return T

HM [2] [31] [35] [21] mbodSSP SSP mbodSSP* SSP*
MOTA 0.42 0.35 0.48 0.44 0.52 0.52 0.54 0.67 0.67
MOTP 0.78 0.75 0.77 0.78 0.78 0.78 0.78 0.79 0.79
F1 0.60 0.61 0.67 0.62 0.69 0.70 0.71 0.83 0.83
FAR 0.048 0.46 0.18 0.053 0.083 0.14 0.11 0.34 0.40
MT 0.077 0.11 0.14 0.11 0.14 0.15 0.21 0.34 0.41
ML 0.42 0.34 0.34 0.39 0.35 0.30 0.27 0.10 0.090
IDS 12 223 125 2738 33 0 7 117 194
Frag. 578 624 401 3241 540 708 717 894 977

Table 1: Comparison of our proposed methods to four state
of the art methods and a HM baseline implementation on
KITTI-Car using the DPM reference detections and Region-
let detections (marked with a star).

[2] EKF [31] [31] mbodSSP SSP
MOTA 0.96 0.68 0.91 0.89 0.91
MOTP 0.79 0.77 0.80 0.87 0.87
MT 0.96 0.39 0.91 0.89 0.89
ML 0.0 0.04 0.04 0.0 0.0
ID-switches 10 25 11 7 23
Fragmentations 8 30 6 100 100

Table 2: Comparison of our proposed method to three base-
lines on PETS 2009 sequence “S2.L1”.

tative results in the supplementary material.We also exper-
iment with the detector of [42], which yields better results
particularly for occluded objects. The increasing tracking
performance indicates that with a good enough detector our
approach could be used in practical applications.

Comparison to State-of-the-art on PETS2009: We ad-
ditionally evaluate our methods on the commonly used
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Figure 4: Run Time and Memory Comparison. We compare computational performance of all solvers using one long
sequence without ground truth annotations. This figure shows the mean runtime (a) and idealized memory consumption (b)
for every solver. Additionally, we show the impact of different values for the history length τ (c).

τ 5 10 15 20 50 100
MOTA 0.50 0.52 0.48 0.49 0.51 0.52
MOTP 0.78 0.78 0.78 0.78 0.78 0.78

F1 0.69 0.70 0.68 0.69 0.70 0.71
FAR 0.15 0.14 0.14 0.14 0.14 0.14
MT 0.14 0.15 0.16 0.17 0.18 0.15
ML 0.30 0.30 0.34 0.33 0.30 0.26
IDS 2 0 0 0 4 5
Frag. 703 708 690 701 710 712

Table 3: Variation of the approximation parameter τ .

PETS2009 dataset for sequence “S2.L1”. We used the de-
tections and ground truth provided by the authors of [2,31].
Both, the optimal algorithms and the memory-bounded ap-
proximation perform on par with current state-of-the-art. In
particular performance for precision-based measures is no-
tably good. Note that we used the same parameters as for
the results presented on KITTI.

Comparing Min Cost Flow Solutions: We compare our
globally optimal methods (dSSP, odSSP) as well as our ap-
proximate mbodSSP algorithm for window size τ = 10
against a regular SSP implementation using Dijkstra’s algo-
rithm (as described in [15]) as well as the non-optimal DP
solution of [35] in terms of run time and memory consump-
tion. For a fair comparison, we implement all our solvers in
Python using the same data structures. Fig. 4 (a)-(b) depict
execution time and memory consumption as a function of
the number of frames for a very long sequence on KITTI.
Note that our globally optimal dynamic solver (dSSP) out-
performs the regular Dijkstra implementation (SSP) by a
factor of 3 on average. To verify the correctness of our
implementation against the optimal solution, we have used
thousands of random graphs. Importantly, our experiments
validate that the time complexity of mbodSSP is indepen-
dent of the sequence length. Thus, it outperforms DP [35]
in memory, computation as well as accuracy (see Table 1).

A run time evaluation for KITTI including a comparison for
the different training scenarios is discussed in greater depth
in the supplementary material.

Sliding Window Size of mbodSSP: We evaluate the
tracking performance of mbodSSP for different values of τ
on KITTI. As shown in Fig. 4(c), for a value of τ = 10, our
non-optimized Python implementation of mbodDijkstra re-
quires less than 10ms which is sufficient for many real-time
online applications.

6. Conclusions
In this paper we have proposed solutions to make the use

of min-cost flow tracking by detection possible in real world
scenarios. Towards this goal we have designed algorithms
that are dynamic, can handle an online data stream and are
bounded in memory and computation. We have demon-
strated the performance of our algorithms in challenging
autonomous driving and surveillance scenarios. In future
work we plan to extend our approach to handle long-term
occlusions and to incorporate additional features, e.g., map
information.
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