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Abstract

When classifying high-dimensional sequence data, tra-
ditional methods (e.g., HMMs, CRFs) may require large
amounts of training data to avoid overfitting. In such
cases dimensionality reduction can be employed to find
a low-dimensional representation on which classification
can be done more efficiently. Existing methods for super-
vised dimensionality reduction often presume that the data
is densely sampled so that a neighborhood graph structure
can be formed, or that the data arises from a known dis-
tribution. Sufficient dimension reduction techniques aim to
find a low dimensional representation such that the remain-
ing degrees of freedom become conditionally independent
of the output values. In this paper we develop a novel se-
quence kernel dimension reduction approach (S-KDR). Our
approach does not make strong assumptions on the distri-
bution of the input data. Spatial, temporal and periodic
information is combined in a principled manner, and an op-
timal manifold is learned for the end-task. We demonstrate
the effectiveness of our approach on several tasks involving
the discrimination of human gesture and motion categories,
as well as on a database of dynamic textures.

1. Introduction
Many computer vision problems involve high dimen-

sional datasets that are computationally challenging to ana-
lyze. In such cases it is desirable to reduce the dimension-
ality of the data while preserving the original information
in the data distribution, allowing for more efficient learning
and inference. Linear (e.g., PCA) and non-linear (e.g., LLE
[14], Isomap [15], GPLVM [8]) unsupervised learning tech-
niques learn a low dimensional space that represents “well”
the data without regard to any particular task. Supervised
dimensionality reduction approaches (e.g., Linear Discrim-
inant Analysis [4], Discriminative GPLVM [17]) try to esti-
mate a low-dimensional representation which has sufficient
information for predicting the task target values. However,
these supervised approaches assume that the latent space
and/or the data is generated from some restricted distribu-
tion (e.g., a Gaussian process for the GPLVM). When the
data do not follow this distribution, the bias introduced by
this assumption can significantly affect performance.

Sufficient dimension reduction (SDR) techniques [9] aim
to find a low-dimensional space such that vectors in its or-
thogonal complement become conditionally independent of
the output values. Fukumizu et al. [5] proposed kernel
dimension reduction (KDR) which unlike other SDR tech-
niques does not make strong assumptions on the distribu-
tion of the input data. This is important for us, since data
in computer vision applications rarely satisfy these assump-
tions. KDR makes use of cross-covariance operators which
are infinite-dimensional generalizations of covariance ma-
trices. Nonlinear dependencies can be captured by defin-
ing the cross-covariance operators on reproducing kernel
Hilbert spaces (RKHSs).

However, to date, SDR has only been applied to static
data, and has not been applied to common vision problems
beyond learning a simple image manifold [13]. In this pa-
per we extend KDR to model time-series data and design
kernels that capture dynamics, periodic motions and multi-
class classification. Our approach combines spatial, tem-
poral and periodic information in a principled manner, and
learns an optimal manifold without assuming any distribu-
tion of the data. In particular, we propose two ways of com-
bining this information: multiple kernel learning and build-
ing regularizers that exploit the manifold structure of the
dynamics.

We demonstrate the effectiveness of our approach on
classifying human gestures and activities from video, mo-
tion capture data and dynamic textures with large intra-
category variations. Our approach is shown to be supe-
rior to unsupervised methods (i.e., PCA), to classifying in
the observation space using NN and SVMs, structure pre-
diction using SVM-HMM [1], the original KDR [5], and
sequence classification methods such as HMMs, CRFs [7]
and HCRFs [19]. In the remainder of the paper, we first
introduce our framework for sufficient dimension reduction
of sequence data, present our experimental evaluation, con-
clude and give directions of future research.

2. Sufficient Dimension Reduction
In this section we briefly review the Sufficient Dimen-

sion Reduction paradigm [9]. Let x be the set of measurable
covariates, with x ∈ <D, and let y be the output variables.
In supervised learning, the purpose of sufficient dimension
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Figure 1. Dynamic textures database: Illustration of 2 instances of each of the 10 dynamic texture categories, i.e., branches, cloud, lab,
flower, fountain, grass, leaves, ripple, sea anemone, waves. Note that the variation in appearance within a single category is very large.

reduction (SDR) is to estimate a low-dimensional represen-
tation z that is sufficient for the prediction task, with

z = Wx . (1)

W is a projection matrix to a d-dimensional space, and
z ∈ <d, with d � D. One of the key advantages of SDR
with respect to other supervised and unsupervised dimen-
sionality reduction techniques is that it makes no assump-
tion on the form of the distribution of x.

The SDR criterion can be captured formally as the fol-
lowing conditional independence assertion

y ⊥⊥ x|z . (2)

This means that given z, the remaining features of x are
conditionally independent of the output y. In the statistical
sense, z is sufficient for estimating y.

Kernel Dimension Reduction (KDR) [5] maps the ran-
dom variables x and y to reproducing kernel Hilbert spaces
(RKHS) and characterizes conditional independence using
cross-covariance operators

Σyy|x = Σyy − ΣyxΣ
−1
xxΣxy. (3)

Note that Σyy|x ≤ Σyy as the second term is positive
semidefinite. Intuitively this means that conditioning on x

reduces uncertainty [13].
In [5] it was shown that KDR performs well on a vari-

ety of tasks, where the training and testing data are i.i.d.
samples from the joint distribution p(x,y). However, in
many computer vision applications, one has to deal with
time-series data, where samples are now correlated in time.

3. Sequence Kernel Dimension Reduction
In this section we develop a novel KDR formulation for

sequence data. The idea is that we would like the latent
coordinates of similar input observations that are close in
space, time and/or phase to be close in latent space.

We formulate the Sequence Kernel Dimension Reduc-
tion (S-KDR) problem of estimating the W that minimizes
tr[Σ̂yy|z], where Σ̂yy|z is the empirical estimate of Σyy|z as

min tr
[

Kc
y(K̄

c
z + εI)−1

]

+ λR(W)

subject to WTW = I (4)

where I is the identity matrix, tr[] is the trace, Σyy|z is de-
fined in Eq. (3), and Kc denotes the centered kernel matrix

Kc = (I −
1

N
11T )K(I −

1

N
11T )T (5)

with 1 a vector of all ones, λ a constant, andR a regularizer.
Kc
y can be computed using a kernel that measures out-

put label similarities. Here we are interested in multi-class
sequence classification. We define a distance metric which
is 0 for points of the same class and 1 for points of different
classes. Note that this distance metric is equivalent to the
Hamming distance between indicator vectors that indicate
the class label. To smooth the kernel, we use an RBF kernel
on top of this distance metric.

Different strategies can be used to combine the temporal,
spatial and phase information. We now propose kernels that
capture this information as well as regularizers that exploit
the manifold structure of the dynamics.

3.1. Building individual kernels
Probably the simplest way to combine the different

sources of information is to build individual kernels and
combine them using multiple kernel learning. In particu-
lar, we combine them using a product of kernels

k̄z = kx(xi,xj) · kt(ti, tj) · kp(zi, zj) (6)

where K̄z = {k̄z(zi, ti, zj , tj)}. Note that these kernels
are restricted to be Mercer kernels, i.e., the resulting Gram
matrix is positive semidefinite for any possible data. We
now design suitable kernels for Kx, Kt and Kp.

Observations: The observation kernel should encourage
latent coordinates of similar (input) observations to be sim-
ilar. We use an RBF kernel such that

kx(xi,xj) = exp

(

−
‖Wxi − Wxj‖2

2

2θ2x

)

(7)

with xi a single frame.

Dynamics: The dynamics kernel should encourage points
that are close in time to be close in latent space. We use a
bias plus an RBF kernel to model the dynamics

kt(ti, tj) = 1 + exp

(

−
‖ti − tj‖

2
2

2θ2t

)

δi,j (8)

where δi,j = 1 if the i-th and j-th datapoints are from the
same sequence, and 0 otherwise.



Figure 2. Arm gesture database: Illustration of the 6 gesture classes: FB - Flip Back, SV - Shrink Vertically, EV - Expand Vertically,
DB - Double Back, PB - Point and Back, EH - Expand Horizontally. Each image is an abbreviation of a gesture class, where the fingertip
motion trajectories are depicted in green. The direction of the arrow symbolizes the direction in which the gesture is performed.

Phase: For periodic motions it is desirable for points
with similar phase to be close in latent space. If the
phase of the observations is known a priori one could
build a periodic kernel by mapping the one-dimensional
phase variable φ into a two-dimensional variable u(φ) =
(cos(φ), sin(φ))[18] such that

k̂cp(zi, zj) = 1 + exp

(

−
sin2(

φi−φj

2 )

θ2p

)

δi,j . (9)

Since we only want to align in phase latent coordinates of
motions that are from the same sequence, we set δi,j = 1
when the i-th and j-th datapoints are from the same se-
quence, and 0 otherwise. While for some applications one
can have a reasonable estimate of the phase, in this paper
we tackle the more challenging scenario where the phase of
the motion is unknown, and has to be estimated at the same
time as the embedding. In particular we seek to express
the phase of each point as a function of the latent coordi-
nates. Using sin2(φ) + cos2(φ) = 1, we can express the
kernel in Eq. (9) as a function of the cosine of the phase
increment φz1,z2 = φ(z1) − φ(z2). Using the fact that
a · b = ‖a‖2 · ‖b‖2 cos(φab), we can finally write

kp(zi, zj) = 1 + exp

(

1

2θ2p

z̃Ti z̃j
√

||z̃i||2 · ||z̃j ||2 + η

)

δi,j (10)

where the z̃i are the centered latent coordinates computed
as z̃i = z−z̄si

, with z̄si
the mean value of the latent coordi-

nates of each sequence, and η is a regularization parameter.
Note that even though z = Wx, we have explicitly stated
the dependency on the latent space in the kernel. As shown
in the experiments, even if this kernel is designed for peri-
odic motions, it can also model non-periodic ones.

3.2. Dynamic Time Warping kernels
The dynamic kernels introduced above encourage points

that are close in time, phase and in observation space to
be close in latent space. When the dynamics of the different
sequences are well structured, one can make use of more so-
phisticated kernels to capture this structure. Dynamic Time
Warping (DTW) solves the problem of computing distances
between two sequences of different lengths. This is typi-

cally done by solving the following optimization problem

min
ψ,θ

∑L

k=1 d(x
(j)
ψk
, x

(p)
θk

) (11)

s.t. 1 ≤ ψ1, ψL ≤ |x(j)|, ψi ≤ ψi+1, i = 1, ..., L− 1

1 ≤ θ1, θL ≤ |x(p)|, θi ≤ θi+1, i = 1, ..., L− 1

where d is the local distance, typically Euclidean, x(j) is
the j-th sequence, Lj and Lp are the lengths of the two se-
quences, andL ≤ Lj+Lp is the number of warping frames.
This problem can be solved using dynamic programming.

Once the warpings are estimated, we can compute a
DTW kernel by simply converting distances into similar-
ities. We smooth the results of the DTW by convolving
the resulting kernel with a Laplace kernel. We can then
construct a dynamics kernel by combining the DTW kernel
with the kernel defined in the latent space

k̄z = kx(x
(i),x(j)) · [1 + kDTW (y(i),y(j))]δyi,yj

(12)

with δyi,yj
= 1 when x(i) and x(j) are from the same class,

and 0 otherwise. Note that k̄z is a matrix defined for pairs
of sequences, unlike the kernel in Eq. (6) that was defined
in terms of individual frames. However, the elements of k̄z ,
k̄z(x

(i)
r ,x

(j)
s ), are still defined on a per frame basis.

3.3. Choice of regularizers
Additional regularizers could be employed in order to

exploit the manifold structure underlying the dynamics. In
this paper we propose two different regularizations: an L2

weighted distance and a regularizer based on the Laplacian.
In order to encourage the latent coordinates of warped

points to be close in latent space we employ a weighted
squared loss, with weights given by the DTW kernel

R(W) =
∑

i,j

(xi − xj)
TWkDTW (xi,xj)W

T (xi − xj)

Note that kDTW (xi,xj) is a scalar.
A widely employed regularizer in semi-supervised learn-

ing is the Laplacian. Alternatively we can construct

R(W) = tr
(

WTXT (D −KDTW )XW
)

where D is a diagonal matrix with elements Dii =
∑

j kDTW (yi,yj). As shown in our experiments, in prac-
tice the L2 regularization outperforms the Laplacian.
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Figure 3. Classification error for the Mocap database as a function of the latent space dimensionality. The Mocap database consist of
walking, running and jumping motions performed by different subjects. The observations are 62D, where the first 3 dimensions represent
spatial velocities, and the the remaining degrees of freedom represent joint angles that define the human pose. Our approach performs
extremely well with only 3.4 ± 1.2% classification error for single frame estimation, and 2.9 ± 1.0% for sequence classification.

3.4. Optimization
As our objective function is nonconvex, we use projected

gradient descent with simulated annealing and a line search
for minimizing Eq. (4). For all experiments we estimate the
parameters using cross-validation. For inference, we use
the estimated projection matrix W to compute the latent
coordinates of the test points x∗, such that z∗ = Wx∗, and
use NN and SVM as the classifiers in the low dimensional
space.

4. Experimental Evaluation
We demonstrate the effectiveness of our approach for

classifying motion capture data, categorical dynamic tex-
tures and video sequences of human gestures.

Dynamic Textures: We use the DynTex database [10]
to define 10 different categories of dynamic textures:
branches, cloud, lab, flower, fountain, grass, leaves, ripple,
sea anemone, waves. We scaled each image to be of dimen-
sion 25 × 25, resulting in 625D observations. For each dy-
namic texture, we took the first 200 frames subsampled by
a factor of 4, so that each sequence has a temporal duration
of 50 frames. Fig. 1 depicts examples of the different cate-
gories. Note that there is a large intra-class variation. Other
results reported on this database are instance level recogni-
tion, where each video is segmented and divided into train-
ing and testing. In contrast, our experiment is a category
recognition experiment.

Arm Gesture Dataset: We use the gesture database of
[19] that is composed of six gestures: Expand Horizontally
(EH), Expand Vertically (EV), Shrink Vertically (SV), Point
and Back (PB), Double Back (DB) and Flip Back (FB). The
users were asked to perform these gestures in front of a
stereo camera. The stereo-tracking algorithm of [3] was
used to estimate the head, torso, arms and forearms. Fol-
lowing [19], for each frame a redundant parameterization

composed of joint angles and relative coordinates of the arm
joints define the 20D input observations. The gestures were
performed by 13 users, and on average 90 gestures were
collected per class. Fig. 2 illustrates the different gestures.
We subsample the data by a factor of 2; the length of the
different gestures varies from 14 to 42 frames.

Head Gesture Dataset: The head gesture data consists of
interactions between 16 human participants and an embod-
ied agent [19]. The participants interactions were recorded,
resulting in a total of 152 head nods, 11 head shakes and 179
miscellaneous sequences. The gestures were tracked using
an adaptive view-based appearance model which captures
the user appearance in different poses [12]. The observa-
tions consist of the FFT of the 3D angular velocities recov-
ered by the tracker. Each observation forms a 51D vector.
We subsample the data by a factor of 2; the length of the
gestures varies dramatically from 18 to 908 frames.

Mocap data: We use motion capture data of walking,
running and jumping performed by different subjects from
the CMU mocap database [11]. Each observation is a 62D
vector, where the first 3 dimensions are the spatial veloc-
ities, and the remaining dimensions are joint angles that
characterize the pose. We subsample the mocap data by
a factor of 4 so that the framerate is 30Hz. The length of the
different sequences varies from 65 to 100 frames.

Activity Recognition: The activity recognition bench-
mark of [6] consists of 9 different subjects performing
10 different actions, including running, walking, skipping,
jumping jack, waving and bending. The video sequences
are low-resolution (180×144) with relatively uniform back-
ground and stationary camera. We first perform segmenta-
tion by utilizing background substraction on the joint color
and motion (i.e., optical flow) space. Based on the seg-
mented video sequences, we normalize the bounding boxes
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Figure 4. Classification error for the Dynamic texture dataset of [10] as a function of the latent space dimensionality. The DynTex
dataset consists of video sequences of natural scenes, exhibiting both periodic and non-periodic motions. We labeled the dataset with
10 categories, each with a variety of textures. Due to the complexity and high dimensionality of the database, the classification task is
inherently difficult and all the baselines have errors well larger than 50%. Our approach is able to capture the underlying dynamics and
achieve 34.3 ± 4.5% classification error for single frame estimation, and 25.6 ± 3.3% for sequence classification.
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Figure 5. Classification error for the Arm Gestures dataset of [19] as a function of the latent dimensionality. The dataset consists of 6
different hand motions performed by different subjects. Our approach results in good performance with 18.9 ± 1.6% classification error
for single frame estimation and 4.7 ± 1.8% for sequence classification.

and compute HOG features by overlaying 7 × 9 cell blocks
with 5 histogram channels. The resulting feature space is
of dimension 315. Finally, we truncate the sequences at
50 frames and subsample them by a factor of 2, as this is
enough to capture the dynamics.

For all databases, we compare our approach (i.e., mul-
tiple kernel learning of Eq. 6) to the following baselines:
classification in the observation space using NN and non-
linear SVMs, PCA, SVM-HMM [1], and the original KDR
[5]. SVM-HMM discriminatively trains a k-th order Hidden
Markov Model (HMM) using the Structural Support Vector
Machine formulation (SVM-Struct) [16]. Given an input
sequence of feature vectors, the model predicts a sequence
of labels according to a linear discriminant function. SVM-
HMM learns an emission weight vector for each k-th order
label sequence and one transition weight vector between
adjacent labels. We report results of classifying each data
point independently, and combining the classifiers from the

whole sequence by voting. Note that the latter assumes that
the test data is segmented. The error bars in all figures rep-
resent ±1 standard deviations. To avoid clutter, the SVM-
HMM baseline is only shown in the text. The performance
of SVM-HMM is consistently worse than SVM in the ob-
servation space.

Fig. 3 depicts classification error averaged over 5 splits
as a function of the latent space dimensionality for the
mocap database. For each class, 5 examples were used
for training and 20 for testing. Our approach consistently
outperforms all the baselines even when using very low-
dimensional spaces. Note that NN and SVM in the obser-
vation space and SVM-HMM accuracies do not vary with
the dimensionality since these methods do not learn a latent
space. The average error of SVM-HMM was 7.4±1.2% for
single frame and 5.2 ± 1.2% for multi-frame. Fig. 3 (left)
depicts the error rate when doing single frame classifica-
tion, i.e., every frame is independent. Fig. 3 (right) shows
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Figure 6. Classification error for the Head Gestures dataset of [19]. The dataset consists of 3 classes of head motions - shakes, nods and
other movements. The motions have considerable overlap, and sequence classification is intrinsically more difficult than frame estimation.
Our approach achieves 8.5 ± 3.0% classification error for single frame and 28.7 ± 3.1% for sequence estimation.

N Accuracy (%)
HMM w = 0 80 84.22
CRF w = 0 80 86.03
CRF w = 1 80 81.75

HCRF (one-vs-all) w = 0 80 87.49
HCRF (multi-class) w = 0 80 91.64
HCRF (multi-class) w = 1 80 93.85

S-KDR-SVM w = 0 10 95.3

Table 1. Comparison of our approach (S-KDR)) HMM, CRF and
HCRF. We include the classification accuracy reported in [19].
Our approach outperforms all the baselines, and only requires 10
training examples per class instead of 80 that were used to train the
baselines. w = 1 means that the previous and next observations
are concatenated to produce an observation.

N Accuracy (%)
HMM w = 0 171 65.33
CRF w = 0 171 66.53
CRF w = 1 171 68.24

HCRF (multi-class) w = 0 171 71.88
HCRF (multi-class) w = 1 171 85.25

S-KDR-SVM w = 0 15 91.5

Table 2. Comparison of our approach (S-KDR) with HMM, CRF
and HCRF. We include the classification accuracy reported in [19].
N denotes the total number of training examples.

classification error when combining the single frame clas-
sifiers by voting. As expected voting results in better per-
formance since it combines information from all the frames
in the sequence. However, the single frame estimation does
not assume that the sequences are segmented. Our approach
results in extremely good performance; 3.4± 1.2% classifi-
cation error for single frame estimation, and 2.9± 1.0% for
sequence classification.

Fig. 4 shows classification error averaged over 5 splits
as a function of the dimensionality of the latent space for
the dynamic texture database [10]. 3 examples per class
were used for training and 5 for testing. The correct classi-
fication rate of SVM-HMM is 36.1 ± 5% for single frame

and 34.4 ± 7.2%. Our approach significantly outperforms
all the baselines even with low-dimensional latent spaces.
Note that this is an extremely hard problem since one has to
classify 10 dynamic texture categories with very few exam-
ples and very large intra-class variations, as shown in Fig.
1. As a result, the performance of the baselines is as low as
34%, while for our approach is 75%.

Fig. 5 shows classification error for the arm gestures
dataset of [19] averaged over 5 splits. For each class 10
examples were used for training and 100 for testing. The
different gestures are shown in Fig. 2. The performance of
SVM-HMM is 67.5±3.2% for single frame and 82.2±3.5%
for multi frame. Our approach outperforms the baselines
when using single frame or multi-frame (voting) classi-
fication, resulting in 81.1 ± 1.6% for single frame and
95.3 ± 1.8% for multi-frame. As shown in Table 1, our
approach also results in better performance than HMMs,
CRFs and HCRFs [19]. Moreover, we only require 10 train-
ing examples per class, while the baselines were trained
with approximately 80 examples per class. Note also that
there is a large benefit for this database when using infor-
mation from multiple frames. This is because, even though
the different gestures have some poses in common, the over-
all gesture is very discriminative.

Error rates averaged over 5 splits for the head gesture
database of [19] are shown in Fig. 4. For each class 5 ex-
amples are used for training and 30 for testing. Note that,
unlike with the other databases, incorporating information
from multiple frames decreases performance. This is to be
expected since head nods, head shakes and miscellaneous
have very similar poses, sometimes for more than 50% of
the length of the sequence. Moreover, failures in the monoc-
ular tracking make SVM approaches fail in the multi-frame
setting. The mean error of the SVM-HMM is 28.8 ± 5.7%
for single frame and 39.1 ± 4.3% for multi-frame. Com-
parisons of our approach to HMMs, CRFs and HCRFs are
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Figure 7. Classification error for the Weizmann dataset of [6]. The dataset consists of 10 different actions. Our approach achieves
4.9 ± 2.2% classification error for single frame and 4.0 ± 1.8% for sequence estimation.
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Figure 8. Multiplicative vs additive kernels. We compare the results obtained with the kernel of Eq. (6) against using an additive kernel.
Classification errors for (a) single frame arm gesture data (b) multi-frame arm gesture data (c) single frame mocap data and (d) multi-frame
mocap data are depicted. Our multiplicative kernel outperforms the additive one in all tasks.

shown in Table 2. Our approach outperforms all the base-
lines and it is trained using only 10% of the data used to
train the other baselines, resulting in 8.5 ± 3% mean error
for single frame and 28.7± 3.1% for multi-frame.

Fig. 4 shows classification error averaged over 5 splits
for the Weizmann dataset. For each class, 4 sequences were
used for training and 5 for testing. The average error rate of
SVM-HMM is 9.8± 5.8% and 7.0± 3.8% for single-frame
and multi-frame estimation, respectively. Note that SVM
in the original space overfits, and NN works better. Our
approach consistently outperforms PCA and SVM, with a
4.9±2.2% error rate for single frame estimation and a 4.1±
1.7% error rate for sequence classification.

Not only does our approach outperform the baselines,
but, more importantly, the standard errors are much smaller.
This implies that S-KDR consistently learns latent spaces
that are good for the classification task. We also investigate
other ways of combining the different sources of informa-
tion. In particular, we compare the multiplicative kernel of
Eq. (6) to an additive kernel, K̄z = Kx + Kt + Kp . As
shown in Fig. 8 the multiplicative kernel outperforms the
additive one.

We now evaluate the effectiveness of the dynamic time
warping kernels. For the Weizmann, Mocap and the Arm
Gesture datasets, the dynamics are well-structured and rel-
atively distinct, allowing for accurate computation of the
time warpings. For each of these datasets, we compare

KDR and S-KDR to 3 different ways of incorporating
DTW:L2 regularization (S-KDR-L2-DTW), Laplacian reg-
ularization (S-KDR-Lap-DTW) and the kernel of Eq. (12)
(S-KDR-DTW). In the former two cases we add the regu-
larizations to the KDR objective, with k̄z = kx. We be-
lieve that this is a fair comparison with S-KDR, since then
the dynamic information is utilized only once. In all three
cases, we find that NN outperforms SVM; as a consequence
we only report NN results. Furthermore, since the new la-
tent spaces are optimal for sequence alignment, we perform
an additional per-sequence classification using DTW in the
latent space. As shown in Fig. 4 the results for all three
datasets are similar: L2 regularization typically improves
the S-KDR performance while the Laplacian regularization
often degrades it. The kernel combination in Eq. (12) uni-
formly achieves the best performance. Moreover, the DTW
classifier in the latent space achieves state-of-the-art results
on the Weizmann dataset (i.e., 99.8%). This suggests that
when there is sufficient structure in the dynamics, the DTW
kernel correctly captures both linear and nonlinear aspects
of dynamics, and DTW is the optimal classifier.

5. Conclusion
In this paper we have developed a novel Kernel Dimen-

sion Reduction formulation for time series data. Our ap-
proach combines spatial, temporal and periodic information
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Figure 9. Classification error for the Weizmann [6], Mocap [11] and Arm Gesture [19] datasets. Comparison of different methods of
incorporating dynamics structure with the DTW kernel. Using the DTW kernel consistently achieves the best performance.

in a principled manner, and learns an optimal embedding
for the end-task. We have demonstrated the effectiveness of
our approach in classifying motion capture data, categorical
dynamic textures, human gestures and activities from video.
Our approach outperforms a large variety of baselines com-
prising unsupervised learning (i.e., PCA), classification in
the observation space and the SVM-HMM. When compared
to sequence classification methods, i.e., HMMs, CRFs and
HCRFs, our approach performs similarly or better while re-
quiring much smaller training sets. We are planning to ex-
plore sparsification techniques [2] for fast learning and the
development of new kernels for combining other sources of
information.
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