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Abstract. In this paper we present a novel slanted-plane model which
reasons jointly about occlusion boundaries as well as depth. We formu-
late the problem as one of inference in a hybrid MRF composed of both
continuous (i.e., slanted 3D planes) and discrete (i.e., occlusion bound-
aries) random variables. This allows us to define potentials encoding the
ownership of the pixels that compose the boundary between segments, as
well as potentials encoding which junctions are physically possible. Our
approach outperforms the state-of-the-art on Middlebury high resolution
imagery [1] as well as in the more challenging KITTI dataset [2], while
being more efficient than existing slanted plane MRF methods, taking
on average 2 minutes to perform inference on high resolution imagery.

1 Introduction

Over the past few decades we have witnessed a great improvement in perfor-
mance of stereo algorithms. Most modern approaches frame the problem as in-
ference on a Markov random field (MRF) and utilize global optimization tech-
niques such as graph cuts or message passing [3] to reason jointly about the
depth of each pixel in the image.

A leading approach to stereo vision uses slanted-plane MRF models which
were introduced a decade ago [4]. Most methods [5–10] assume a fixed set of su-
perpixels on a reference image, say the left image, and model the surface under
each superpixel as a slanted plane. The MRF typically has a robust data term
scoring the assigned plane in terms of a matching score induced by the plane
on the pixels contained in the superpixel. This data term often incorporates an
explicit treatment of occlusion — pixels in one image that have no correspond-
ing pixel in the other image [11, 12, 8, 13]. Slanted-plane models also typically
include a robust smoothness term expressing the belief that the planes assigned
to adjacent superpixels should be similar.

A major issue with slanted-plane stereo models is their computational com-
plexity. For example, [13] reports an average of approximately one hour of com-
putation for each low-resolution Middebury stereo pair. This makes these ap-
proaches impractical for applications such as robotics or autonomous driving. A
main source of difficulty is the fact that each plane is defined by three continu-
ous parameters and inference for continuous MRFs with non-convex energies is
computationally challenging.
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This paper contains two contributions. First, we introduce the use of junction
potentials, described below, into this class of models. Second, we show that par-
ticle methods can achieve state-of-the-art performance with reasonable inference
times on very challenging high-resolution imagery, i.e., KITTI dataset [2].

Junction potentials originate in early line labeling algorithms [14, 15]. These
algorithms assign labels to the lines of a line drawing where the label indicate
whether the line represents a discontinuity due to changes in depth (an occlu-
sion), surface orientation (a corner), lighting (a shadow) or albedo (paint). A
junction is a place where three lines meet. Only certain combinations of labels
are physically realizable at junctions. The constraints on label combinations at
junctions often force the labeling of the entire line drawing [14]. Here, following
work on monocular image interpretation [16–18], we label the boundaries be-
tween image segments with labels –“left occlusion”, “right occlusion”, “hinge”
or “coplanar”. In our model the occlusion labels play a role in the data term,
where they are interpreted as expressing ownership of the pixels that compose
the boundary between segments — an occlusion boundary is “owned” by the
foreground object.

Our second contribution is to show that particle methods can be used to per-
form inference in high resolution imagery with reasonable running times. Particle
methods avoid premature commitment to any fixed quantization of continuous
variables and hence allow a precise exploration of the continuous space. Our
particle inference method is based on the recently developed particle convex be-
lief propagation (PCBP) [19]. Furthermore, we learn the contribution of each
potential via the primal-dual framework of [20].

In the remainder of the paper we first review related work. We then introduce
our continuous MRF model for stereo and show how to do learning and inference
in this model. Finally, we demonstrate the effectiveness of our approach and show
that it outperforms the state-of-the-art for high resolution Middlebury imagery
[1] as well as in the more challenging KITTI dataset [2].

2 Related Work

In the past few years much progress has been made towards solving the stereo
problem, as evidenced by Scharstein et al. overview [21]. Local methods typi-
cally aggregate image statistics in a small window, thus imposing smoothness
implicitly. Optimization is usually performed using a winner-takes-all strategy,
which selects for each pixel the disparity with the smallest value under some dis-
tance metric [21]. Traditional local methods [22] often suffer from border bleed-
ing effects or struggle with correspondence ambiguities. Approaches based on
adaptive support windows [23, 24] adjust their computations locally to improve
performance, especially close to border discontinuities. This results in better
performance at the price of more computation.

Hirschmüller proposed semi-global matching [25], an approach which extends
polynomial time 1D scan-line methods to propagate information along 16 ori-
entations. This reduces streaking artifacts and improves accuracy compared to
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Fig. 1. Impossible cases of 3-way junctions. (a) 3 cyclic occlusions, (b) hinge and 2 oc-
clusion with opposite directions, (c) coplanar and 2 occlusion with opposite directions,
(d) 2 hinge and occlusion, (e) 2 coplanar and occlusion, (f) 2 coplanar and hinge, (g)
hinge, coplanar, and occlusion (superpixel with coplanar boundary is in front).

traditional methods. In this paper we employ this technique to compute a dis-
parity map from which we build our potentials. In [26, 27] disparities are ‘grown’
from a small set of initial correspondence seeds. Though these methods pro-
duce accurate results and can be faster than global approaches, they do not
provide dense matching and struggle with textureless and distorted image areas.
Approaches to reduce the search space have been investigated for global stereo
methods [28, 29] as well as local methods [30].

Dense and accurate matching can be obtained by global methods, which en-
force smoothness explicitly by minimizing an MRF-based energy function. These
MRFs can be formulated at the pixel level [31], however, the smoothness is then
defined very locally. Slatend-plane MRF models for stereo vision were introduced
in [4] and have been since very widely used [5–7, 9, 10, 13]. In the context of this
literature, our work has several distinctive features. First, we use a novel model
involving “boundary labels”, “junction potentials”, and “edge ownership”. Sec-
ond, for inference we employ the convex form of the particle norm-product belief
propagation [32], which we refer to as particle convex belief propagation (PCBP)
[19]. In contrast, some previous works used particle belief propagation (PBP) [33,
34, 10] which correspond to non-convex norm-product with the Bethe entropy
approximation. The efficiency and convexity of PCBP makes it possible to eval-
uate our approach on hundreds of high-resolution images [2], whereas previous
empirical evaluations of slanted-plane models have largely been restricted to
the low-resolution versions of the small number of highly controlled Middlebury
images. Third, we use a training algorithm based on primal-dual approximate
inference [35] which allow us to effectively learn the importance of each potential.

3 Continuous MRFs for stereo

In this section we describe our approach to joint reasoning of boundary labels and
depth. We reason at the segment level, employing a richer representation than a
discrete disparity label. In particular, we formulate the problem as inference in a
hybrid conditional random field, which contains continuous and discrete random
variables. The continuous random variables represent, for each segment, the dis-
parities of all pixels contained in that segment in the form of a 3D slanted plane.
The discrete random variables indicate for each pair of neighboring segments,
whether they are co-planar, they form a hinge or there is a depth discontinuity
(indicating which plane is in front of which).
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Fig. 2. Valid 4-way junctions. (a) 4 coplanar boundaries, (b)-(d) 2 coplanar vertical
boundaries and 2 occlusion/hinge horizontal boundaries, (e)-(g) 2 coplanar horizontal
boundaries and 2 vertical occlusion/hinge boundariese. A 4-way junction only appears
in a region of uniform color.

More formally, let yi = (αi, βi, γi) ∈ <3 be a random variable representing
the i−th slanted 3D plane. We can compute the disparities of pixel p ∈ Si, where
Si is the set of pixels belonging to the i−th segment, as follows

d̂i(p,yi) = αi(u− cix) + βi(v − ciy) + γi (1)

with p = (u, v), and ci = (cix, ciy) the center of the i-th segment. We have
defined γi to be the disparity in the segment center as it improves the efficiency
of PCBP inference. Let oi,j ∈ {co, hi, lo, ro} be a discrete random variable repre-
senting whether two neighboring planes are coplanar, form a hinge or an occlu-
sion boundary. Here, lo implies that plane i occludes plane j, and ro represents
that plane j occludes plane i.

We define our hybrid conditional random field as follows

p(y,o) =
1

Z

∏
ϑ

ψϑ(yϑ)
∏
ζ

ψζ(oζ)
∏
τ

ψτ (yτ ,oτ ) (2)

where y represents the set of all 3D slanted planes, o the set of all discrete ran-
dom variables, and ψϑ, ψζ , ψτ encode potential functions over sets of continuos,
discrete or mixture of both types of variables. Note that y contains three random
variables for every segment in the image, and there is a random variable oi,j for
each pair of neighboring segments.

In the following, we describe the different potentials we employed for our joint
occlusion boundary and depth reasoning. For clarity, we describe the potentials
in the log domain. Each type of potential will have a weight associated. All the
weights w will be learned using structure prediction methods [20].

3.1 Occlusion Boundary and Segmentation Potentials

Our approach takes as input a disparity image computed by any matching algo-
rithm. In this paper we employ semi-global block matching [25]. Most matching
methods return estimated disparity values on a subset of pixels. Let F be the
set of all pixels whose initial disparity has been estimated, and let D(p) be the
disparity of pixel p ∈ F . Our model jointly reasons about segmentation in the
form of occlusion boundaries as well as depth. We define potentials for each of
these tasks individually as well as potentials which link both tasks. We start by



Continuous Markov Random Fields for Robust Stereo Estimation 5

KITTI:	
  Pr(category	
  |	
  distance)	
  

0%	
  

10%	
  

20%	
  

30%	
  

40%	
  

50%	
  

60%	
  

70%	
  

80%	
  

90%	
  

100%	
  

0	
   0.2	
   0.4	
   0.6	
   0.8	
   1	
  

Pr
ob

ab
ili
ty
	
  

Color	
  distance	
  

Occlusion	
  

Hinge	
  

Coplanar	
  

Middlebury:	
  Pr(category	
  |	
  distance)	
  

0%	
  

10%	
  

20%	
  

30%	
  

40%	
  

50%	
  

60%	
  

70%	
  

80%	
  

90%	
  

100%	
  

0	
   0.2	
   0.4	
   0.6	
   0.8	
   1	
  

Pr
ob

ab
ili
ty
	
  

Color	
  distance	
  

Occlusion	
  

Hinge	
  

Coplanar	
  

Fig. 3. Color statistics on (left) KITTI dataset, (right) Middlebury high-resolution

> 2 pixels > 3 pixels > 4 pixels > 5 pixels
Non-Occ All Non-Occ All Non-Occ All Non-Occ All

Census 13.03 % 14.31 % 9.84 % 10.92 % 8.11 % 9.02 % 6.94 % 7.71 %
Gradient 8.68 % 9.82 % 6.04 % 6.96 % 4.73 % 5.47 % 3.90 % 4.51 %

Gradient + Census 8.19 % 9.39 % 5.55 % 6.52 % 4.26 % 5.05 % 3.47 % 4.13 %

Table 1. SGBM matching functions in the validation set of KITTI.

defining truncated quadratic potentials, which we will employ in the definition
of some of our potentials, i.e.,

φTPi (p,yi,K) = min
(∣∣∣D(p)− d̂i(p,yi)

∣∣∣ ,K)2

, p ∈ Si ∩ F (3)

with K a constant threshold, and d̂i(p,yi) the disparity of pixel p estimated as
in Eq. 1. Note that we have made the quadratic potential robust via the min
function. We now describe each of the potentials employed in more details.

Disparity potential: We define truncated quadratic potentials for each seg-
ment encoding that the plane should agree with the results of the matching,

φseg
i (yi) =

∑
p∈Si∩F

φTPi (p,yi,K)

Boundary potential: We employ 3-way potentials linking our discrete and
continuous variables. In particular, these potentials express the fact that when
two neighboring planes are hinge or coplanar they should agree on the bound-
ary, and when a segment occludes another segment, the boundary should be
explained by the occluder. We thus define

φbdy1
ij (oij ,yi,yj) =


∑

p∈Bij∩F φ
TP
i (p,yi,K) if oij = lo∑

p∈Bij∩F φ
TP
j (p,yj ,K) if oij = ro

1
2

∑
p∈Bij∩F φ

TP
i (p,yi,K) + φTPj (p,yj ,K) if oij = hi ∨ co

where Bij is the set of pixels around the boundary (within 2 pixels of the bound-
ary) between segments i and j.
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> 2 pixels > 3 pixels > 4 pixels > 5 pixels
Non-Occ All Non-Occ All Non-Occ All Non-Occ All

GC+occ [36] 39.76 % 40.97 % 33.50 % 34.74 % 29.86 % 31.10 % 27.39 % 28.61 %
OCV-BM [37] 27.59 % 28.97 % 25.39 % 26.72 % 24.06 % 25.32 % 22.94 % 24.14 %
CostFilter [38] 25.85 % 27.05 % 19.96 % 21.05 % 17.12 % 18.10 % 15.51 % 16.40 %

GCS [26] 18.99 % 20.30 % 13.37 % 14.54 % 10.40 % 11.44 % 8.63 % 9.55 %
GCSF [39] 20.75 % 22.69 % 13.02 % 14.77 % 9.48 % 11.02 % 7.48 % 8.84 %
SDM [27] 15.29 % 16.65 % 10.98 % 12.19 % 8.81 % 9.87 % 7.44 % 8.39 %
ELAS [30] 10.95 % 12.82 % 8.24 % 9.95 % 6.72 % 8.22 % 5.64 % 6.94 %

OCV-SGBM [25] 10.58 % 12.20 % 7.64 % 9.13 % 6.04 % 7.40 % 5.04 % 6.25 %
ITGV [40] 8.86 % 10.20 % 6.31 % 7.40 % 5.06 % 5.97 % 4.26 % 5.01 %

Ours 6.25 % 7.78 % 4.13 % 5.45 % 3.18 % 4.32 % 2.66 % 3.66 %

Table 2. Comparison with the state of the art on the test set of KITTI [2]

Fig. 4. KITTI examples. (Left) Original. (Middle) Disparity. (Right) Disparity errors.

Compatibility potential: We introduce an additional potential which ensures
that the discrete occlusion labels match well the disparity observations. We do
so by penalizing occlusion boundaries that are not supported by the data

φocc
ij (yfront,yback) =

{
λimp if ∃p ∈ Bij : d̂i(p,yfront) < d̂j(p,yback)

0 otherwise

We also define φneg
ij (yi) to be a function which penalizes negative disparities

φneg
ij (yi) =

{
λimp if minp∈Bij

d̂i(p,yi) < 0

0 otherwise

We impose a regularization on the type of occlusion boundary, where we prefer
simpler explanations (i.e., coplanar is preferable than hinge which is more desir-
able than occlusion). We encode this preference by defining λocc > λhinge > 0.
We thus define our computability potential

φbdy2
ij (oij ,yi,yj) =


λocc + φneg

ij (yi) + φneg
ij (yj) + φocc

ij (yi,yj) if oij = lo

λocc + φneg
ij (yi) + φneg

ij (yj) + φocc
ij (yj ,yi) if oij = ro

λhinge + φneg
ij (yi) + φneg

ij (yj) + 1
|Bij |

∑
p∈Bij

∆dij if oij = hi

φneg
ij (yi) + φneg

ij (yj) + 1
|Si∪Sj |

∑
p∈Si∪Sj

∆di,j if oij = co

with ∆di,j = (d̂i(p,yi)− d̂j(p,yj))2.

Junction Feasibility: Following work on occlusion boundary reasoning [15,
16], we utilize higher order potentials to encode whether a junction of three
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> 1 pixel > 2 pixels > 3 pixels > 4 pixels > 5 pixels
N.-Occ All N.-Occ All N.-Occ All N.-Occ All N.-Occ All

GC+occ [36] 23.8 % - 16.6 % - 13.9 % - 12.5 % - 11.5 % -
EBP [41] 14.3 % - 10.3 % - 9.4 % - 9.0 % - 8.7 % -
GCS [26] 13.2 % - 9.0 % - 7.4 % - 6.5 % - 5.9 % -
SDM [27] 12.8 % - 9.3 % - 8.2 % - 7.7 % - 7.3 % -
ELAS [30] 7.1 % 17.0 % 4.7 % 11.7 % 3.9 % 9.2 % 3.5 % 7.9 % 3.2 % 7.3 %

OCV-SGBM [25] 7.0 % 14.6 % 5.9 % 12.5 % 5.5 % 11.5 % 5.3 % 10.9 % 5.2 % 10.4 %
Ours 4.4 % 11.2 % 2.8 % 8.1 % 2.4 % 6.9 % 2.1 % 6.3 % 2.0 % 5.8 %

Table 3. Comparison with the state-of-the-art on Middlebury high-resolution imagery.

Super- > 2 pixels > 3 pixels > 4 pixels > 5 pixels
pixels N.-Occ All N.-Occ All N.-Occ All N.-Occ All

UCM 95.3 53.38% 53.88% 48.67% 49.14% 45.59% 46.03% 43.32% 43.73%
SLIC 981.0 7.22% 8.56% 4.92% 6.05% 3.87% 4.84% 3.27% 4.11%
SLIC 1218.2 7.15% 8.63% 4.86% 6.15% 3.81% 4.93% 3.21% 4.20%

UCM+SLIC 1203.2 7.04% 8.42% 4.77% 5.94% 3.74% 4.73% 3.16% 4.01%

Table 4. Difference in performance when employing different segmentation methods to
compute superpixels on the validation set of KITTI. When employing an intersection
of SLIC+UCM superpixels works best for the same amount of superpixels.

planes is possible. We refer the reader to Fig. 1 for an illustration of these cases.
We thus define the compatibility of a junction {i, j, k} to be

φjct
ijk(oij , ojk, oik) =

{
λimp if impossible case

0 otherwise

We also defined a potential encoding the feasibility of a junction of four planes
(see Fig. 2) as follows

φcrspqrs(opq, oqr, ors, ops) =

{
λimp if impossible case

0 otherwise

Note that, although these potentials are high order, they only involve variables
with small number of states, i.e., 4 states.

Potential for color similarity: Finally, we employ a simple color potential to
reason about segmentation, which is defined in terms of the χ-squared distance
between color histograms of neighboring segments. This potential encodes the
fact that we expect segments which are coplanar to have similar color statistics
(i.e., histograms), while the entropy of this distribution is higher when the planes
form an occlusion boundary or a hinge. This trend is shown in Fig. 3 (left) for
KITTI [2] 1. We reflect these statistics in the following potential

φcol
ij (oij) =

{
min

(
κ · χ2(hi, hj), λcol

)
if oij = co

λcol otherwise

1 The statistics are less meaningful in the case of the Middelbury high resolution
imagery [1], as this dataset is captured in a control environment.
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with κ a scalar and χ2(hi, hj) the χ-squared distance between the color his-
tograms of segments i and j.

3.2 Inference in Continuous MRFs

Now that we have defined the model, we can turn our attention to inference,
which is defined as computing the MAP estimate, i.e., arg maxy,o p(y,o), with
p(y,o) defined in Eq. 2. Inference in this model is in general NP hard. Our
inference is also particularly challenging since, unlike traditional MRF stereo
formulations, we have defined a hybrid MRF, which reasons about continuous
as well as discrete variables. While there is a vast literature on discrete MRF
inference, only a few attempts have focussed on solving the continuous case. The
exact MAP solution can only be recovered in very restrictive cases, e.g., when the
potentials are quadratic and diagonally dominated, Gaussian Belief propagation
[42] returns the optimal solution. For general potentials, one can approximate
the messages using mixture models, or via particles.

Here we make use of particle convex belief propagation (PCBP) [19], a tech-
nique that is guarantee to converge and gradually approach the optimum. This
works very well in practice, yielding state-of-the-art results. PCBP is an iterative
algorithm that works as follows: For each random variable, particles are sampled
around the current solution. These samples act as labels in a discretized MRF
which is solved to convergence using convex belief propagation [32]. The current
solution is then updated with the MAP estimate obtained on the discretized
MRF. This process is repeated for a fixed number of iterations. In our imple-
mentation, we use the distributed message passing algorithm of [43] to solve
the discretized MRF at each iteration. Algorithm 1 depicts PCBP for our for-
mulation. At each iteration, to balance the trade off between exploration and
exploitation, we decrease the values of the standard deviations σα, σβ and σγ of
the normal distributions from which the plane random variables are drawn.

Algorithm 1 PCBP for stereo estimation and occlusion boundary reasoning
Set N
Initialize slanted planes y0

i = (α0
i , β

0
i , γ

0
i ) via local fitting ∀i

Initialize σα, σβ and σγ
for t = 1 to #iters do

Sample N times ∀i from αi ∼ N (αt−1
i , σα), βi ∼ N (βt−1

i , σβ), γi ∼ N (γt−1
i , σγ)

(ot,yt) ← Solve the discretized MRF using convex BP
Update σcα = σcβ = 0.5× exp(−c/10) and σcγ = 5.0× exp(−c/10)

end for
Return ot, yt

3.3 Learning in Continuous MRFs

Given a set of training images and corresponding depth labels, the goal of learn-
ing is to estimate the weights which minimize the surrogate loss (e.g., hinge loss
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Super- > 1 pixel > 2 pixels > 3 pixels > 4 pixels > 5 pixels
pixels N.-Occ All N.-Occ All N.-Occ All N.-Occ All N.-Occ All

UCM 259.0 38.5% 41.7% 30.2% 33.5% 25.7% 28.8% 22.8% 25.6% 20.6% 23.1%
SLIC 1787.6 4.8% 11.8% 3.1% 8.7% 2.7% 7.4% 2.4% 6.8% 2.3% 6.4%
SLIC 2066.1 4.6% 12.0% 3.0% 8.9% 2.6% 7.7% 2.4% 7.0% 2.2% 6.4%

UCM+SLIC 2042.6 4.4% 11.2% 2.8% 8.1% 2.4% 6.9% 2.1% 6.3% 2.0% 5.8%

Table 5. Performance changes when employing different segmentation methods to
compute superpixels on the Middlebury high resolution imagery.
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Fig. 5. Number of superpixels: KITTI validation results as a function of the number
of superpixels. Even with a small number our approach still outperforms the baselines.
(Right) Inference time scales linearly with the number of superpixels

for structured SVMs or log-loss for CRFs). In our model, we have a total of 5
weights, associated with φseg, φbdy1, φbdy2, φcol, as well as a shared weight for
φjct and φcrs. We would like to employ the algorithm of [20] for learning. How-
ever, our learning problem, as opposed to the one in [20], contains a mixture
of continuous and discrete variables. Therefore the surrogate loss in our setting
requires to integrate over the continuous variables. We note that our continu-
ous variables have robust quadratic potentials, thus integrating over them can
be efficiently approximated by discretizing the continuous variables. In practice,
summing over 30 particles gives a good approximation for the integral.

4 Experimental Evaluation

We perform exhaustive experiments on two publicly available datasets: Midde-
bury high resolution images [1] as well as the more challenging KITTI dataset
[2]. The high resolution Middebury images [1] have an average resolution of
1239.2 × 1038.0 pixels. We employ 5 images for training (i.e., Books, Laundry,
Moebius, Reindeer, Bowling2) and 9 images for testing (i.e., Cones, Teddy, Art,
Aloe, Dolls, Baby3, Cloth3, Lampshade2, Rocks2). We also evaluate our approach
on the KITTI dataset [2], which is the only real-world stereo dataset with ac-
curate ground truth. It is composed of 194 training and 195 test high-resolution
images (1237.1 × 374.1 pixels) captured from an autonomous driving platform
driving around in a urban environment. The ground truth is generated by means
of a Velodyne sensor which is calibrated with the stereo pair. This results in semi-
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Fig. 6. Importance of re-sampling iterations: on KITTI validation set.

Number of > 2 pixels > 3 pixels > 4 pixels > 5 pixels
training images Non-Occ All Non-Occ All Non-Occ All Non-Occ All

1 7.06 % 8.45 % 4.80 % 5.98 % 3.77 % 4.76 % 3.19 % 4.04 %
5 7.05 % 8.44 % 4.79 % 5.96 % 3.75 % 4.74 % 3.16 % 4.01 %
10 7.04 % 8.42 % 4.77 % 5.94 % 3.74 % 4.73 % 3.16 % 4.01 %
20 7.04 % 8.42 % 4.78 % 5.94 % 3.75 % 4.72 % 3.17 % 4.00 %

Table 6. Training set size: Estimation errors as a function of the training set size
on the validation set of KITTI. Very few images are needed to learn good parameters.

dense ground truth covering approximately 30 % of the pixels. We employ 20
images for training, and utilize the remaining 174 images for validation purposes.

For all experiments, we employ the same parameters which have been vali-
dated on the training set. We use a disparity difference threshold K = 5.0 pixels,
and set λocc = 15, λhinge = 3, λimp = 30 and λcol = 30. For the color potential,
we use a color histogram with 64 bins and set κ = 60. Unless otherwise stated,
we use 10 training images learning, 10 particles and 5 iterations of re-sampling
for PCBP [19], and run each iteration of convex BP to convergence. For learning,
we use a value of C equal to the number of examples and unless otherwise stated
use a CRF, i.e., ε = 1. We learned the importance of each potential, thus 6 pa-
rameters. We employ two different metrics. The first one measures the average
number of non-occluded pixels which error is bigger than a fixed threshold. To
test the extrapolation capabilities of the different approaches, the second metric
computes the same metric, but including the occluding pixels as well.

Robust SGBM: We begin our experimentation by developing a new criteria for
semi-global block matching which is more robust and accurate. It uses gradients
as well as Census transform [44]. Left-right consistency check is performed by
computing both left and right disparity maps. Table 1 shows the performance
improvement. Matching is performed on average in only 3.6s for each KITTI
image. We utilize this more robust matching criteria to create our potentials.

Comparison with the state-of-the-art: Table 2 and 3 depict results of our
approach and the baselines in terms of the two metrics for the KITTI and high
resolutions Middlebury datasets respectively. Note that our approach signifi-
cantly outperforms all the baselines in all settings (i.e., thresholds bigger than 2,
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> 2 pixels > 3 pixels > 4 pixels > 5 pixels
N.-Occ All N.-Occ All N.-Occ All N.-Occ All

Oracle 1.38% 1.70% 1.03% 1.27% 0.90% 1.10% 0.82% 0.99%
Initial fit 7.66% 9.28% 5.38% 6.85% 4.28% 5.61% 3.60% 4.81%
Ours 7.04% 8.42% 4.77% 5.94% 3.74% 4.73% 3.16% 4.01%

Table 7. Oracle performance: Oracle, our approach and initial fit on KITTI val.

> 1 pixel > 2 pixels > 3 pixels > 4 pixels > 5 pixels
N.-Occ All N.-Occ All N.-Occ All N.-Occ All N.-Occ All

Oracle 2.0% 6.2% 1.4% 5.5% 1.3% 5.3% 1.2% 5.2% 1.1% 5.1%
Initial fit 4.9% 13.4% 3.2% 10.5% 2.7% 9.4% 2.5% 8.7% 2.3% 8.2%
Ours 4.4% 11.2% 2.8% 8.1% 2.4% 6.9% 2.1% 6.3% 2.0% 5.8%

Table 8. Oracle performance: Oracle, our approach and initial fit on Middlebury.

3, 4 and 5 pixels). Fig. 4 depicts an illustrative set of KITTI examples. Despite
the challenges, our approach does a good job at estimating disparities.

Segmentation strategy: We next investigate how the segmentation strategy
affects the stereo estimation. Towards this goal we evaluate the results of our
approach when employing UCM segments [45], SLIC superpixels [46] or the
intersection of both as input. Table 4 depicts results on the KITTI dataset.
UCM performs very poorly as the number of superpixels on average is very
small, i.e., a single 3D plane is a poor representation for the disparities in the
large segments. SLIC performs quite well, but the intersection of SLIC and UCM
superpixels outperforms the other strategies. This is also expected, as UCM
respects the boundaries much better than SLIC. Note that as shown in Table 5
similar results are observed for the Middlebury dataset.

Number of superpixels: We next investigate how well our approach scales
with the number of superpixels in terms of computatinal complexity as well as
accuracy. Fig. 5 shows results for the KITTI dataset when varying the num-
ber of superpixels. Our approach reduces performance gracefully when reducing
the amount of superpixels. Note that inference scales linearly with the number
of superpixels, taking on average 5.5 minutes per high resolution image when
employing 1200 superpixels and 2.5 minutes when using 300.

Number of re-sampling iterations: We evaluate the effects of varying the
number of resampling iterations on the performance of our approach. As shown
in Fig. 6, our approach converges to a good local optima after only 2 resampling
iterations. This reduces the inference cost from 5.5 minutes per high-resolution
image for 5 iterations to 2.2 minutes for 2 iterations.

Training set size: We evaluate the effect of increasing the training set size in
Table 6. Even when training with a single image we outperform all baselines.

Oracle performance: We evaluate the best performance that our model can
achieve, by fitting the model to the ground truth disparities. This is an upper-
bound on the performance that our method could ever achieve if we were able to
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> 2 pixels > 3 pixels > 4 pixels > 5 pixels
Non-Occ All Non-Occ All Non-Occ All Non-Occ All

SGBM 8.19 % 9.39 % 5.55 % 6.52 % 4.26 % 5.05 % 3.47 % 4.13 %
Initial fit 7.66 % 9.28 % 5.38 % 6.85 % 4.28 % 5.61 % 3.60 % 4.81 %

MRF plain 7.23 % 8.62 % 5.03 % 6.22 % 3.99 % 5.01 % 3.37 % 4.27 %
MRF +color 7.08 % 8.48 % 4.88 % 6.06 % 3.86 % 4.87 % 3.27 % 4.14 %

MRF +color+junction 7.04 % 8.42 % 4.77 % 5.94 % 3.74 % 4.73 % 3.16 % 4.01 %

Table 9. Importance of potential functions: on the validation set of KITTI.

Noise 0 1 2 3 5
RMS (pixels) 0.44 0.80 1.37 2.24 4.40

Boundary error 0.3% 0.6% 1.9% 5.3% 8.9%

Table 10. Robustness to noise: RMS and boundary error as a function of noise.

learn an energy that has its MAP at the ground truth, and if we were able to solve
the NP-hard inference problem. Tables 7 and 8 depict the oracle performance in
terms of both the occluded an non-occluded pixels for both datasets. Note that
as KITTI does not release the test ground truth, we compute this values using
10 images for training and the rest of the training set for testing. We also report
performance of our initialization which is computed by fitting a local plane to
the results of our robust semi-global block matching. Note that the oracle can
achieve great performance, showing that the errors due to the 3D slanted plane
discretization are negligible.

Importance of Potentials: We evaluate the importance of each potential that
our model employs in Table 9. Note that for error > 3 pixels, the contribution
of junction potential is 18% of the gain from the initial fit.

Robustness to noise: We investigate the robustness of our approach to noise
by building a synthetic dataset, which is composed of 10 images for training and
90 images for test of resolution 320× 240. The average number of superpixels is
108.0. We create D(p) by sampling 3 to 5 points at random on the boundaries
and generating disparities by corrupting the ground truth with Gaussian noise
of varying standard deviation. Table 10 shows RMS errors for disparity as well
as percentage of boundary variables wrongly estimated.

5 Conclusion

We have presented a novel stereo slanted-plane MRF model that reasons jointly
about occlusion boundaries as well as depth. We have formulated the problem
as inference in a hybrid MRF composed of both continuous (i.e., slanted 3D
planes) and discrete (i.e., occlusion boundaries) random variables, which we
have tackled using particle convex belief propagation. We have demonstrated
the effectiveness of our approach on high resolution imagery from Middlebury as
well as the more challenging KITTI dataset. In the future we plan to investigate
alternative inference algorithms as well as other segmentation potentials.
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