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Abstract: In this paper we show that High-Definition (HD) maps provide strong
priors that can boost the performance and robustness of modern 3D object detec-
tors. Towards this goal, we design a single stage detector that extracts geometric
and semantic features from the HD maps. As maps might not be available every-
where, we also propose a map prediction module that estimates the map on the fly
from raw LiDAR data. We conduct extensive experiments on KITTI [1] as well as
a large-scale 3D detection benchmark containing 1 million frames, and show that
the proposed map-aware detector consistently outperforms the state-of-the-art in
both mapped and un-mapped scenarios. Importantly the whole framework runs at
20 frames per second.
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1 Introduction

Autonomous vehicles have the potential of providing cheaper and safer transportation. A typical
autonomous system is composed of the following functional modules: perception, prediction, plan-
ning and control [2]. Perception is concerned with detecting the objects of interest (e.g. vehicles) in
the scene and track them over time. The prediction module estimates the intentions and trajectories
of all actors into the future. Motion planning is responsible for producing a trajectory that is safe,
while control outputs the commands necessary for the self-driving vehicle to execute such trajectory.

3D object detection is a fundamental task in perception systems. Modern 3D object detectors [3, 4]
exploit LiDAR as input as it provides good geometric cues and eases 3D localization when compared
to camera-only approaches. In the context of real-time applications, single-shot detectors [5, 6, 7]
have been shown to be more promising than proposal-based methods [8, 4] as they are very efficient
and can produce very accurate estimates. However, object detection is far from solved as many
challenges remain, such as dealing with occlusion and the sparsity of the LiDAR at long range.

Most self-driving systems have access to High-Definition (HD) maps that contain geometric and
semantic information about the environment. While HD maps are widely used by motion planning
systems [9, 10], they are vastly ignored by perception systems [11]. In this paper we argue that
HD maps provide strong priors that can boost the performance and robustness of modern object
detectors. Towards this goal, we derive an efficient and effective single-stage detector that operates
in Bird’s Eye View (BEV) and fuses LiDAR information with rasterized maps. Bird’s eye view is
a good representation for 3D LiDAR as it is amenable to efficient inference and retains the metric
space. Since HD maps might not be available everywhere, we also propose a map prediction module
that estimates the map geometry and semantics from a single online LiDAR sweep.

Our experiments on the public KITTI BEV object detection benchmark [1] and a large-scale 3D
object detection benchmark TOR4D [3, 12] show that we can achieve significant Average Precision
(AP) gain on top of a state-of-the-art detector by exploiting HD maps. On TOR4D when HD maps
are available, we achieve 2.42%, 3.43% and 5.49% AP gains for ranges over 0-70 m, 30-50 m
and 50-70 m respectively. On KITTI, where HD maps are unavailable, we show that when using
a pre-trained map prediction module (trained on a different continent) we can still get 2.87% AP
gain, surpassing all competing methods including those which also exploit cameras. Importantly,
the proposed map-aware detector runs at 20 frames per second.
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Online Map Estimation 

Offline HD Maps

or

LiDAR Point Cloud

BEV Representation Detection Network BEV Detections

Figure 1: The overall architecture of the proposed map-aware single-stage 3D detector that operates
on bird’s eye view LiDAR representation.

2 Related Work

In this paper we show how modern 3D object detectors can benefit from HD maps. Here we revisit
literatures on 3D object detection from point clouds, as well as works that exploit priors from maps.

2.1 3D Object Detection in Point Clouds

Some detectors [13, 14, 15] search objects in 3D space densely via sliding window. Due to the spar-
sity of LiDAR point cloud, these approaches suffer from expensive computation, as many proposals
are evaluated where there is no evidence. A more efficient representation of point clouds is to exploit
2D projections. MV3D [4] uses a combination of range view and bird’s eye view projections to fuse
multi-view information. PIXOR [3] and FAF [12] show superior performance in both speed and ac-
curacy by exploiting the bird’s eye view representation alone. Apart from grid-like representations,
some works [16, 17] learn feature representations from un-ordered point sets for object detection.
In addition to point cloud based detection, many works [4, 17, 18] try to fuse data from multiple
sensors to improve performance.

2.2 Exploiting Priors from Maps

Maps contain geographic, geometric and semantic priors that are useful for many tasks. [11] lever-
ages dense priors from large-scale crowd-sourced maps to build a holistic model that does joint 3D
object detection, semantic segmentation and depth reconstruction. However, the priors are extracted
by rendering a 3D world from the map, which is very time-consuming. In [19, 20], the crowd-
sourced maps are also used for fine-grained road segmentation. 3D object detectors often use the
ground prior [21, 22]. However, they treat ground as a plane which is often inaccurate for curved
roads. In this paper, we exploit the point-wise geometric ground prior as well as the semantic road
prior for 3D object detection. In [23, 24], online estimated maps are used to reason the location
of objects in 3D. However, the proposed generative model is very slow and thus not amenable for
robotics applications. [25] uses HD maps to predict the intention of different traffic actors like
vehicles, pedestrians and bicyclists, which belongs to the more high-level prediction system.

3 Exploiting HD Maps for 3D Object Detection

HD maps are typically employed for motion planning but they are vastly ignored for perception
systems. In this paper we bridge the gap and study how HD maps can be used as priors for modern
3D object detectors. Towards this goal, we derive a single-stage detector that can exploit both
semantic and geometric information extracted from the maps (whether built offline or estimated
online). We refer the reader to Figure 1 for the overall architecture of our proposed map-aware
detector.

3.1 Input Representation

We project the LiDAR data to bird’s eye view (BEV) as this provides a compact representation that
enables efficient inference. Note that this is a good representation for our application as vehicles
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Figure 2: BEV LiDAR representation that exploits geometric and semantic HD map information.
(a) The raw LiDAR point cloud. (b) Incorporating geometric ground prior. (c) Discretization of the
LiDAR point cloud. (d) Incorporating semantic road prior.

drive on the ground. Figure 2 illustrates how we incorporate priors from HD maps into our BEV
LiDAR representation.

We treat the Z axis as feature channel and exploit 2D convolutions. This is beneficial as they are
much more efficient than 3D convolutions. It is therefore important to have discriminant features
along the Z axis. However, LiDAR point clouds often suffer from translation variance along the Z
axis due to the slope of the road, particularly at range. For example, 1 degree of road slope would
lead to 1.22 meters offset in Z axis at 70 meters distance. To make things worse, standard LiDAR
sensors have very sparse returns after 50 meters.

To remedy this translation variance, we exploit detailed ground information from the HD maps.
Specifically, given a LiDAR point cloud {(xi, yi, zi)}, we query the ground point at each location
(xi, yi) from the map, denoted as (xi, yi, z0i ) and replace the absolute distance zi with the distance
relative to the ground zi − z0i . We then discretize the resulting representation into a 3D occupancy
grid enhanced to also contain LiDAR intensity features following [3]. Specifically, we first define
the 3D dimension L × W × H of the scene that we are interested in. We then compute binary
occupancy maps at a resolution of dL × dW × dH , and compute the intensity feature map at a
resolution of dL × dW ×H . The discretized LiDAR BEV representation is of size L

dL
× W

dW
, with

H
dH

+ 3 channels1.

The LiDAR provides a full scan of the surrounding environment, containing moving objects and
static background (e.g. roads and buildings). However, in the context of self driving cars we mainly
care about moving objects on the road. Motivated by this, we exploit the semantic road mask
available on HD maps as prior knowledge about the scene. Specifically, we extract the road layout
information from the HD maps and rasterize it onto the bird’s eye view as a binary channel at
the same resolution as the discretized LiDAR representation. We then concatenate the road mask
together with the LiDAR representation along the channels to create our input representation.

3.2 Network Structure

We adopt a fully convolutional network for single-stage dense object detection. Figure 3 (left) shows
the detection network, which is composed of two parts: a backbone network that extracts multi-scale
features and a header network that outputs pixel-wise dense detection estimates.

Backbone network: consists of four convolutional blocks, each having {2, 2, 3, 6} conv2D layers
with filter number {32, 64, 128, 256}, filter size 3, and stride 1. We apply batch normalization [26]
and ReLU [27] after each conv2D layer. After each of the first three convolutional blocks there’s
a MaxPool layer with filter size 3 and stride 2. Multi-scale features are generated by resizing and
concatenating feature maps from different blocks. The total downsampling rate of the network is 4.

Header network: consists of five conv2D layers with filter number 256, filter size 3 and
stride 1, followed by the last conv2D layer that outputs pixel-wise dense detection estimates
(p, cos(2θ), sin(2θ), dx, dy, logw, log l). p denotes the confidence score for object classification,
where the rest denotes the geometry of the detection. Specifically, we parameterize the object orien-
tation (inXY plane) by (cos(2θ), sin(2θ)) with a period of π so that we do not distinguish between
heading forward and backward2. (dx, dy, logw, log l) are commonly used parameterization [28]

1Two additional occupancy channels are added to cover points outside the height range.
2Because they are the same in terms of IoU computation.
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Figure 3: Network structures for object detection (left) and online map estimation (right).

for object center offset and size. The advantages of producing dense detections are two-fold: it is
efficient to compute via convolutions and the maximum recall rate of objects is 100%.

3.3 Learning and Inference

Adding priors (semantic prior in particular) at the input level has both advantages as well as chal-
lenges. On one hand, the network can fully exploit the interactions between priors and raw data;
on the other hand, this may lead to overfitting issues, and potentially poor results when HD maps
are unavailable or noisy. In practice, having a detector that works regardless of map availability is
important. Towards this goal, we apply data dropout on the semantic prior, which randomly feeds
an empty road mask to the network during training. Our experiments show that data dropout largely
improves the model’s robustness to map availability.

We employ the commonly used multi-task loss [28] to train the detection network. Specifically,
we use focal loss [5] on the classification task and smooth `1 loss on the regression task. The
total loss is simply the combination of classification loss summed over all pixels and regression
loss summed over all positive pixels (no sampling strategy is required). We determine positive
and negative samples according to pixel distance to the nearest ground-truth box center. We also
normalize the regression targets to have zero mean and unit variance before training.

During inference, we pick all pixels on the output feature map whose confidence score is above
a certain threshold, and decode them into oriented bounding boxes. Non-Maximum-Suppression
(NMS) with 0.1 Intersection-Over-Union (IoU) threshold is then applied to get the final detections.

4 Online Estimation of HD Maps

So far we have shown how to exploit geometric and semantic priors from the already built HD maps.
However, such maps might not be available everywhere. To tackle this problem, we create the map
priors online from a single LiDAR sweep. In our scenario, there is no need to estimate dense 3D
HD maps. Instead, we only have to predict the BEV representation of the geometric and semantic
priors (shown in Figure 2). In this way, the estimated map features can be seamlessly integrated into
the current framework.

Network structure: We estimate online maps from LiDAR point clouds via two separate neural
networks that tackle ground estimation and road segmentation respectively. The network structure
for these two tasks are the same U-Net structure [29] as shown in Figure 3 (right). This has the
advantages of retaining low-level details and producing high-resolution predictions.

Ground estimation: Existing approaches [22, 21] assume that the ground is a plane. This is,
however, inaccurate, particularly at long range. Instead, in this paper we predict the ground height
value for every location on the BEV space. This results in a much more precise estimate. During
training, we extract ground-truth ground from existing HD maps, and compute `2 loss only on
locations where there exist LiDAR points. Empirically we find that ignoring empty locations during
training leads to better performance.
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Method HD Maps Ground Road Time (ms) AP@0.7IoU (%)
0-70 m 30-50 m 50-70 m

FAF [12] no N/A N/A 30 77.48 N/A N/A
PIXOR [3] no N/A N/A 17 78.82 N/A N/A
PIXOR++ no N/A N/A 17 81.78 78.34 61.04

HDNET (online) no

√
32 +0.91 +1.69 +0.92√
32 +0.88 +1.54 +1.87√ √
47 +1.33 +2.34 +1.88

HDNET (offline) yes

√
17 +1.58 +2.29 +3.24√
17 +1.05 +1.53 +2.52√ √
17 +2.42 +3.43 +5.49

Table 1: Evaluation results on TOR4D benchmark at different ranges. PIXOR++ is the baseline
detector without exploiting HD maps. HDNET (online) exploits online estimated map priors on top
of the baseline, while HDNET (offline) extracts priors from offline built HD maps.

Figure 4: Evaluation of online map estimation. Left: range-wise error of ground height estimation.
Right: the predicted road mask (1st row) versus the ground-truth road mask (2nd row).

Road segmentation: We predict pixel-wise BEV road segmentation as the estimated road prior.
During training we use the rasterized road mask as ground-truth label and train the network with
cross-entropy loss summed over all locations. We refer the reader to Figure 2 for an illustration.

5 Experiments

We validate the proposed method on two benchmarks: a large-scale 3D object detection benchmark
TOR4D [3, 12], which has over one million frames as well as corresponding HD maps; and the
public KITTI BEV object detection benchmark [1]. We denote our baseline detector without ex-
ploiting map priors as PIXOR++ since it follows the overall architecture of PIXOR [3], and denote
the map-aware detector which exploits map priors as HDNET.

5.1 Evaluation on TOR4D Benchmark

Implementation details: We discretize the LiDAR point cloud within the following 3D region
x ∈ [−70.4, 70.4], y ∈ [−40, 40], z ∈ [−2, 3.4] in vehicle coordinate system (with the ego-car
located at the origin). We use a discretization resolution of 0.2 meter in all three axes. The detection
network is trained with stochastic gradient descent with momentum for 1.5 epochs with a batch size
of 32. The initial learning rate is 0.02 and is multiplied by 0.1 after 1 and 1.4 epochs.

Baseline PIXOR++ detector: The baseline detector achieves 81.78% AP within 0-70 meters, out-
performing FAF [12] and PIXOR [3] by 4.3% and 2.96% respectively. What’s more, the baseline
detector runs at 17 ms per frame. In terms of performance at different ranges, we observe an AP
drop of 3.44% and 20.74% when evaluated at 30-50 m range and 50-70 m range. This suggests that
long range detection is significantly difficult.

Online map estimation: Figure 4 shows the evaluation results of the online map prediction module.
In ground height estimation task, we are able to achieve < 5 cm L1 error pixel-wise within 50 m
range. When the range becomes longer, the error increases since we have more sparse LiDAR
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Method Input Time (ms) AP@0.7IoU (%)
easy moderate hard

BirdNet [22] LiDAR 110 75.52 50.81 50.00
MV3D [4] LiDAR 240 85.82 77.00 68.94
PIXOR [3] LiDAR 35 81.70 77.05 72.95

VoxelNet [16] LiDAR 225 89.35 79.26 77.39
MV3D [4] LiDAR + Image 360 86.02 76.90 68.49

F-PointNet [17] LiDAR + Image 170 88.70 84.00 75.33
AVOD [18] LiDAR + Image 80 86.80 85.44 77.73

ContFuse [30] LiDAR + Image 60 88.81 85.83 77.33
PIXOR++ LiDAR 35 89.38 83.70 77.97
HDNET LiDAR + Map 50 89.14 86.57 78.32

Table 2: Evaluation results on KITTI BEV object detection benchmark (car). PIXOR++ is the
baseline detector, while HDNET exploits map priors from an online map estimation module pre-
trained on TOR4D dataset.

observations there. In road segmentation task, we achieve 97.70% pixel-wise accuracy and 92.86%
IoU on the validation set. Note that these results are from one single LiDAR sweep only.

Map-aware HDNET detector: As seen from Table 1, HDNET outperforms the baseline PIXOR++
by 1.33%/2.42% in settings with online/offline maps. When it comes to longer range, the gain in
both settings increases, especially for the offline one (with 5.49% gain in 50-70 m). This shows that
map priors are especially helpful for the more difficult long range detection. Comparing geometric
and semantic priors in both settings, we have three main observations: (1) geometric prior generally
helps more than semantic prior, while in online setting the advantage diminishes (especially in long
range) due to larger errors in online ground height estimation; (2) geometric prior and semantic prior
are very complementary to each other; (3) in all settings and all ranges, we show that exploiting map
priors could bring consistent gain over a state-of-the-art detector.

5.2 Evaluation on KITTI BEV Benchmark

Implementation details: We set the region of interest for the point cloud to [0, 70.4]× [−40, 40]×
[−3, 1] meter and use a discretization resolution of 0.1 × 0.1 × 0.2 meter. Following [3], we use
the same ResNet [31] based network structure that’s more robust to overfitting. Since KITTI has
only thousands of training frames and we do not use pre-trained weights for the network, we apply
the following data augmentation during training. For each frame of LIDAR point cloud, we apply
random scaling (0.9 ∼ 1.1 for all 3 axes), translation (−5 ∼ 5 meter for X and Y axes) and rotation
(−5 ∼ 5 degrees along Z axis). KITTI only annotates objects within the camera field of view
(FOV), therefore we ignore all pixels outside the camera FOV during training. We use α = 0.75 and
γ = 0.5 in the focal loss. We train the network with stochastic gradient descent with momentum for
50 epochs with a batch size of 16 frames. The initial learning rate is 0.01 and we decay it by 0.1
after 30 and 45 epochs respectively.

BEV object detection: We compare PIXOR++ and HDNET with other state-of-the-art detectors on
KITTI BEV object detection benchmark and show the evaluation results in Table 2. Our baseline
detector PIXOR++ has already surpassed all the competing LiDAR based detectors, outperforming
the second best VoxelNet [16] by 4.44% AP in moderate setting while being the fastest in runtime
(35 ms). Because KITTI doesn’t have HD maps information, we transfer the map prediction module
trained on TOR4D to KITTI without any fine-tuning. Note that we do not exploit any object labels
from the TOR4D dataset. With map priors added, HDNET achieves an absolute 2.87% AP gain in
moderate setting, setting the new record on the benchmark. Note that HDNET even outperforms
other competitors that exploit camera images (e.g. ContFuse [30]) or additional object labels from
outside datasets (e.g. F-PointNet [17]), which highlights the long-ignored value of HD maps in 3D
object detection.
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Method AP@easy AP@mod. AP@hard
baseline 87.31 79.29 76.02

+ground plane (3DOP [21]) 86.67 79.23 79.17
+ground surface (ours) 88.45 82.60 80.43

(a) Ground prior

Method AP
multi-task learning +0.25

output masking -1.14
input fusion (ours) +2.42

(b) Road prior

Map Avail. 0% 50% 100%
w/o dropout -11.57 -6.37 +0.77
w/ dropout -0.20 +0.34 +0.84
(c) Data dropout on road prior

Range 0-10 10-20 20-30 30-40 40-50 50-60 60-70 0-70
online map -0.15 +0.44 +1.17 +2.45 +1.88 +0.97 +1.03 +1.33
offline map -0.09 +0.65 +1.45 +2.93 +3.71 +4.25 +6.38 +2.42

(d) Detection performance at different ranges

Table 3: Ablation studies on different ways to exploit ground prior and road prior, robustness to
unavailable maps, and range-wise detection performances. All numbers are AP (%) values.

5.3 Ablation Studies

We conduct four ablation studies investigating different ways to exploit the geometry and semantic
priors, the effect of data dropout on robustness to unavailable maps, and the detection performance
with regard to different ranges using priors from online estimated maps or offline built maps.

5.3.1 Ground prior

We model the geometric prior as a point-wise ground surface, which is more flexible and accurate
than commonly used ground plane assumption [21, 22]. We compare these two design choices. For
the ground plane counterpart, we use the publicly available ground plane results from 3DOP [21],
which were generated by road segmentation and RANSAC fitting. In contrast, we directly predict
the point-wise ground. The way how the ground prior is used in detection is the same for these
two methods. We evaluate these two priors using HDNET on KITTI validation set (without data
augmentation) and show the results in Table 3a. Both methods can boost the detection performance
of the baseline, while our point-wise ground parameterization achieves significantly more gain.

5.3.2 Road prior

We incorporate semantic road prior into the input representation of the detector, while there are
methods that use such prior at the output level. Two variants are created for output level fusion:
multi-task learning and output masking. For multi-task learning, we add another output branch to
the detection network to predict the road mask during training. For output masking, we mask the
detection output with the road mask during both training and testing stages. We show the compara-
tive results using the road prior extracted from offline HD maps in Table 3b, where we see that our
input fusion performs the best among all three methods. For multi-task learning, we observe limited
performance gain from jointly learning road mask and object detection. Output masking hurts the
detection performance as errors in road prior is unrecoverable.

5.3.3 Data dropout

Data dropout is applied to the map prior during training stage to improve the model’s robustness
to missing maps. To validate the effectiveness of data dropout, we train two models with 100%
map availability. The only difference is that one model is trained with data dropout applied to the
road prior, while the other model doesn’t use data dropout. During testing, we manually control the
availability of road prior at {0%, 50%, 100%} and compare the performance.

The evaluation results are shown in Table 3c, where we see that without data dropout, AP drops by
11.57%/6.37% at 0%/50% map availability. However, when data dropout is introduced, the map-
aware detector is able to surpass the baseline when map’s available; and when map’s unavailable,
the performance is almost as good as the baseline.

5.3.4 Performance at various ranges

We define the range as the distance from the object to the ego-car on the XY plane. We divide the
full 70 meters range into 7 bins, and when evaluating on each range bin we ignore the detections
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Figure 5: Qualitative comparison of baseline PIXOR++ detector without map (1st row) and HDNET
with online map (2nd row) on KITTI BEV object detection benchmark validation set. We show
ground-truth labels in green, detection results in red, and detection scores in blue.

and labels outside this range bin. We conduct the fine-grained evaluation in both online and offline
settings and show results in Table 3d.

For offline setting, we see that the gain increases as the object range becomes larger. At> 40 meters
range, the gain is larger than 3%. This makes sense as the map priors help more when we have
fewer LiDAR observations. For online setting, we have the similar trending in near range (< 40
meters), but the gain starts to decrease at long ranges (> 40 meters). The reason is that map priors
are estimated from single LiDAR sweep, which is very sparse in long range.

5.4 Qualitative Results

We compare some qualitative results from two detector variants: the baseline PIXOR++ detector
without map, and the HDNET detector with online map estimation on the validation set of KITTI
BEV object detection benchmark in Figure 5.

From the figure we can easily identify false positives and false negatives in long range for PIXOR++.
However, when it comes to HDNET, the detection accuracy and localization precision at long range
increases remarkably. This shows that exploiting map priors does help the long range detection a
lot.

6 Conclusion

In this paper we address the problem of how to exploit HD maps information to boost the perfor-
mance of modern 3D object detection systems in the context of autonomous driving. We identify the
geometric and semantic priors in HD maps, and incorporate them into the bird’s eye view LiDAR
representation. Because HD maps are not available everywhere, we also propose a map prediction
module that estimates both map priors online from single LiDAR sweep. Experimental results on
the public KITTI BEV object detection benchmark and a large-scale 3D object detection benchmark
show that the proposed map-aware detector consistently outperforms the baseline detector whether
the HD maps are available or not. The whole framework also runs at over 20 frames per second due
to the use of BEV representation as well as the single-stage detection framework.
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