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Abstract
In this work, we propose new ways to learn pose and motion priors models and show that
they can be used to increase the performance of 3D body tracking algorithms, resulting in
very realistic motions under very challenging conditions.

We first explored an approach to 3D people tracking that combines learned motion mod-
els and deterministic optimization. The tracking problem is formulated as the minimization
of a differentiable criterion whose differential structure is rich enough for optimization to
be accomplished via hill-climbing. This avoids the computational expense of Monte Carlo
methods, while yielding very good results under challenging conditions. To demonstrate
the generality of the approach we show that we can learn and track cyclic motions such as
walking and running, as well as acyclic motions such as a golf swing. We also show results
from both monocular and multi-camera tracking. Finally, we provide results with a motion
model learned from multiple activities, and show how these models can be used for recog-
nition and motion generation. The major limitation of these linear motion models is that
they required many noiseless, segmented and time warped examples to create a complete
database with good generalization properties.

We therefore investigated more complex non-linear statistical techniques. We advocate
the use of Scaled Gaussian Process Latent Variable Models (SGPLVM) to learn prior mod-
els of 3D human pose. The SGPLVM simultaneously optimizes a low-dimensional em-
bedding of the high-dimensional pose data and a density function that both gives higher
probability to points close to training data and provides a nonlinear probabilistic mapping
from the low-dimensional latent space to the full-dimensional pose space. The SGPLVM is
a natural choice when only small amounts of training data are available. We demonstrate
our approach with two distinct motions, golfing and walking. We show that the SGPLVM
sufficiently constrains the problem such that tracking can be accomplished with straightfor-
ward deterministic optimization. However, in the presence of very noisy or missing data,
for example due to occlusions, the simplistic second order Markov model we use is not
realistic enough to sufficiently constrain the algorithm. Moreover, when learning models
that contain stylistic diversity, from different people or from the same person performing
an activity multiple times, the SGPLVM results in models whose latent trajectories are not
smooth, and are therefore not suited for hill climbing tracking.

Finally, we present a more powerfull approach based on the Gaussian Process Dynamical
Models (GPDMs) that combines the strengths of the two previous ones. We advocate the
use of GPDMs for learning human pose and motion priors. A GPDM provides a low-
dimensional embedding of human motion data, with a density function that gives higher
probability to poses and motions close to the training data. With Bayesian model averaging
a GPDM can be learned from relatively small amounts of data, and it generalizes gracefully
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to motions outside the training set. Here we modify the GPDM to permit learning from
motions with significant stylistic variation. The resulting priors are effective for tracking a
range of human walking styles, despite weak and noisy image measurements and significant
occlusions.

Index words: Pose models, Motion models, Human Body Tracking
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Version Abrégée

Dans cette thèse, nous présentons de nouvelles méthodes d’apprentissage de modèles a
priori de poses et de mouvements, et montrons qu’ils peuvent être utilisés dans le but
d’améliorer les performances des algorithmes de suivi 3D de corps humain.

Dans un premier temps, nous avons exploré une approche de suivi 3D de personnes qui
combine le modèle de mouvement appris à une optimisation déterministe. Le problème de
suivi est posé sous la forme d’une minimisation d’un critère différenciable dont la structure
différencielle est suffisante pour optimiser selon une stratégie à hypothèse unique. Ceci per-
met d’éviter l’emploi de coûteuses méthodes de Monte Carlo tout en réalisant de très bons
résulats dans des conditions difficiles. Afin de démontrer la généralité de notre méthode,
nous montrons que nous pouvons aussi bien apprendre et suivre des mouvements cycliques,
comme la marche ou la course, que des mouvements acycliques, comme un swing de golf.
De plus, nous présentons des résultats de suivi obtenus soit en monoculaire, soit à l’aide
de plusieurs caméras. Finalement, nous présentons des résultats provenant d’un modèle de
mouvement appris à partir d’activités mutliples et montrons que ces modèles peuvent être
utilisés pour la reconnaissance et la synthèse de mouvements. La principale limitation de
ces modèles de mouvements est qu’ils nécessitent un grand nombre d’exemples non-bruités,
segmentés et alignés dans le temps afin de créer une base de données complète permettant
une généralisation suffisante.

Nous avons donc étudié des techniques statistiques non-linéaires plus complexes. Nous
préconisons l’utilisation de Scaled Gaussian Process Latent Variable Models (SGPLVMs)
pour l’apprentissage de modèles a priori de poses humaines 3D. Le SGPLVM optimise si-
multanément un plongement en basse dimension des données de poses en haute dimension,
ainsi qu’une fonction de densité qui donne une probabilité plus élevée aux points proches
des données d’apprentissage et fournit une correspondence probabiliste non-linéaire en-
tre l’espace latent en basse dimension et l’espace des poses en dimension complète. Le
SGPLVM est un choix approprié lorsqu’un nombre limité d’exemples d’apprentisage est
disponible. Nous démontrons l’efficacité de notre approche à l’aide de deux mouvements
distincts, le golf et la marche. Nous montrons que le SGPLVM contraint suffisamment
le problème pour que le suivi puisse être obtenu à l’aide d’une optimisation détermin-
iste directe. Malgré tout, en présence de données très bruitées ou manquantes, par ex-
emple lors d’occultations, le modèle simpliste de Markov du deuxième ordre que nous
utilisons n’est pas assez réaliste pour contraindre suffisamment l’algorithme. De plus, lors
de l’apprentissage de modèles présentant des styles différents d’un mouvement, provenant
de différentes personnes ou de la même personne effectuant plusieurs fois la même activité,
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le SGPLVM produit des modèles dont les trajectoires dans l’espace latent ne sont pas lisses,
et donc peu adaptées à du suivi à hypothèse unique.

Finalement, nous présentons une approche plus performante basée sur les Gaussian Pro-
cess Dynamical Models (GPDMs) qui combinent les avantages des deux méthodes précé-
dentes. Nous préconisons l’utilisation des GPDMs pour l’apprentissage de modèles a priori
de poses et de mouvements humains. Un GPDM fournit un plongement en basse dimen-
sion de données de mouvements humains, ainsi qu’une fonction de densité qui donne une
probabilité plus élevée aux poses et aux mouvements proches des données d’apprentissage.
En se basant sur le moyennage d’un modèle Bayesien, un GPDM peut être appris à l’aide
d’une quantité relativement faible de données et généralise agréablement les mouvements
n’appartenant pas à l’ensemble des données d’apprentissage. Dans cette thèse, nous mod-
ifions le GPDM afin d’autoriser l’apprentissage de mouvements présentant des variations
de style significatives. Les modèles a priori obtenus sont efficaces pour le suivi de marches
effectuées avec des styles différents, malgré des données images faibles et bruitées et des
occultations significatives.

Mot clefs: Modèles de pose, Modèles de movement, Suivi de corps humain
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7.5 GPLVM and GPDM for different parametrizations seen from the same
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7.16 Mean errors when tracking a training sequence with GPs. Each plot is
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1 Glossary of Notation and Acronyms

We include here the notation used in this work. In those few cases where a symbol has more
than one meaning, the context (or a specific statement) resolves the ambiguity. We use bold
letters for vectors and capital letters for matrices.

y Input variable, either pose or motion
x Latent variable. Low dimensional representation of y

xi I-th dimension of variable x

yi Input training point
xi Latent coordinate associate with training point yi

Y Training set Y ≡ [y1, · · · ,yN ]T

X Latent coordinate set X ≡ [x1, · · · ,xN ]T

|X| Cardinality of set X
N Number of training points, |X| = |Y| = N
D Observation dimension, yi ∈ RD

d Latent dimension, xi ∈ Rd

M Manifold
p(x) Probability of x

p(y|x) Conditional probability of y given x

p(x,y) Joint probability of variables x and y

N (x|µ,Σ) x is a random variable normally distribed, with mean µ, and covariance Σ.
I Identity matrix
x1:t Set of {x1, · · · ,xt}
n Noise random variable
g Mapping from the latent space to the observation space, g : x→ y

g−1 Inverse mapping (from the observation space to the latent space) g−1 : y→ x

∇ Laplacian
δ Displacement infinitesimally small
f Mapping that models the dynamics
B Parameters of the reconstruction mapping
A Parameters of the dynamics mapping
ϕ(x) Kernel that models the mapping from the latent space to the observation space
χ(x) Kernel that models the dynamics
Ψ Motion vector
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zt Global translation
ot Global rotation
g Global motion, gt = (zt,ot)
σ Variance
µt Normalize time or phase of the motion
Q Total variance of the training data capture by the subspace
λ Eigenvalue
Θ0 Mean motion
Θi I-th Eigenvector, when each example is compose of a motion
εi Residual error of the i-th constraint
nobs Number of observations
hi Primitive field function
hb Complete field function for body part b
B Number of body parts
SK Skin level set
KY Kernel reconstruction matrix of a GP
KX Kernel dynamics matrix of a GPDM
k(x,x′) Kernel function
M GP model
φ State variable
t time
It Image at time t
T Number of frames in the video sequence
τ + 1 Size of the temporal window
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We use the following abreviations.

Mocap motion capture
KF Kalmann filtering
EKF Extended Kalmann filtering
UKF Unscented Kalmann filtering
AR Auto-regressive model
LDS Linear dynamical system
PCA Principal Component Analysis
PPCA Probabilistic Principal Component Analysis
FA Factor Analysis
ICA Independent Component Analysis
CCA Canonical Correlation Analysis
MAF Maximum Autocorrelation Factors
GMM Gaussian Mixture models
EM Expectation Maximization algorithm
GMR Gaussian Mixture Regression
NLDR Nonlinear dimensionality reduction
LLE Locally Linear Embedding
MDS Multidimensional Scaling
MFA Mixture of Factor Analyzers
LWPR Locally Weighted Projection Regression
NN Neural Networks
RBF Radial Basis Functions
RVM Relevance Vector Machines
NLVM Nonlinear latent variable model
GTM Generative Topographic Mapping
GP Gaussian Process
GPLVM Gaussian Process Latent Variable Model
SGPLVM Scale Gaussian Process Latent Variable Model
GPDM Gaussian Proces Dynamical Model
B −GPDM Balanced Gaussian Proces Dynamical Model
MAP Maximum a posteriory estimate
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2 Introduction

The 3D estimation of human pose from video is often poorly constrained, owing to re-
flection ambiguities, occlusions, cluttered backgrounds, non-rigidity of tissue and clothing,
image blur, complex and rapid motions and poor image resolution. This can be addressed
by using several synchronized cameras, engineering the environment to facilitate the extrac-
tion of features such as silhouettes, or introducing prior models to constrain the tracking and
disambiguate difficult situations.

In this work, we investigate the latter approach with a view to deriving meaningful 3D in-
formation from single video sequences acquired without having to modify the environment.
Given the ubiquity of cameras ranging from cheap webcams to sophisticated movie cam-
eras, we believe that this approach has the potential to make video-based motion capture a
truly practical approach in a wide range of applications.

In the remainder of this chapter, we first describe some of these applications and outline
what we mean by prior models in this context. We then summarize our contributions and
provide an outline of this thesis.

2.1 Applications

Human Motion capture can be defined as digitally recording the movements of humans, or
creating a 3D representation of a live performance [93]. It is of broad interest for a very
wide range of applications, such as clinical studies, movies, computer games, sports, or
surveillance. Video-based motion capture is the most attractive approach since it is both
cheap and non invasive. It does not require any special hardware, since ordinary cameras
can be used to provide input data.

Gait analysis, orthopedics and neurology studies are representative examples of medi-
cal applications. Nowadays almost all hospitals have a motion capture system, usually an
optical or electro magnetic one. Gait analysis is useful to measure the degree of change
(range of motion, shaking) in conditions such as arthritis, Parkinson or strokes. It is also
used to evaluate gain in performance after operations, evaluate different prothesis, and so
on. The use of gait signature for recognition, monitoring of elder people or people suffering
diseases like dementia, the detection of atypical motions to prevent unsafety situations, are
examples of typical Surveillance applications.

Athletic coaching provides another application domain, which involves capturing and
analyzing the motion of athletes. Comparison with other motions helps prevent and detect
mistakes that may degrade performance. Golfers, tennis players and skiers are representa-
tive of the athletes that can benefit from such techniques.
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However, entertainment is by far the biggest application field. Special effects for films
such as the Lord of the Rings or Matrix, and particularly 3D computer animated films such
as Nemo, The Incredibles, Shreck, Final Fantasy, or the Polar Express, animate their char-
acters by using motion capture data. The artists adapt the capture motions to the particular
shape and characteristics of the characters, for example to caricature the motions. Computer
games also represent a big portion of the motion capture market. Automatic comments from
video or automatic video indexing are some of the goals of the TV market.

2.2 Prior models

Unfortunately, because of the high-dimensional parameterization of human models, learn-
ing or manually designing prior models is difficult.

The simplest prior models are those that enforce smoothness across time, typically by in-
troducing priors derived using first or second order Markov models. Because human motion
can involve abrupt accelerations and orientation changes, the resulting models are neither
particularly realistic nor effective at constraining a video-based reconstruction algorithm.

These models can be augmented by introducing joint limits that prevent physiologically
impossible postures. While this usually helps, it does not remove the ambiguities inherent
to monocular human motion tracking. They usually involve several anatomically possible
poses whose projections produce roughly the same 2D outlines.

In this work, we investigate the use of statistical learning techniques to automate this task
and learn effective prior models from motion-capture data. Although this is in principle
more restrictive, it is in most of the cases necessary to resolve ambiguities. A pose can be
defined as a combination of joint angles or spatial joint locations. Similarly, a motion can
be described as a combination of poses, and the human spatial behavior as combination of
motions. Moreover, nothing prevents us from having different models working in parallel,
each one modeling a restricted set of activities. For example, this could be achieved by
choosing the one that performs better. We therefore distinguish three kinds of models.
• Pose models. The priors are defined over human body configurations. We will show

that they can be effectively learned using non-linear statistical techniques using rela-
tively small amounts of training data. They are used in combination with dynamical
models, usually simple first and second order Markov models, which model a prior
over consecutive poses.

• Motion models. The priors are defined over a sequence of poses across several tem-
poral frames. Surprisingly, these models can be learned using simpler linear tech-
niques than the ones necessary to model poses, but at the cost of requiring larger
amounts of training data.

• Pose dynamical models. The priors are defined both over human body configura-
tions, and over consecutive poses. We will show that they can be learned, within
a common framework in a single step, using non-linear statistical techniques from
small amounts of training data.
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2.3 Contribution of the thesis

Pose models can be learned from a database of poses without temporal information, and
from small amounts of data. Motion models contain a dynamical model and are easier to
learn, but they require relatively large amounts of noiseless segmented and time warped
training data. Pose dynamical models combine the advantages of both methods. They con-
tain a dynamical model. They can model different activities at the same time and be learned
from small amounts of training data. Finally they do not require noiseless segmented and
time warped training data.

2.3 Contribution of the thesis

In this work, we explore new ways to learn pose, motion and pose dynamical models, and to
impose them as priors for 3D body tracking from ordinary monocular video. We show that
if we use motion models, then simple linear techniques can be used to achieve good tracking
results and perform activity and subject recognition, and stylistic motion generation.

However, they require large amount of noiseless segmented and time warped training
data. We have therefore investigated more complex non-linear statistical techniques. We
showed that Gaussian Process can be used to learn pose models from much smaller amounts
of training data than competitive techniques, while generalizing well to motions that are
very different from the training ones. This yields very robust in the presence of occlusions
and noisy data, resulting in very realistic motions.

2.3.1 Pose Models

We exploit the recently developed Scaled Gaussian Process Latent Variable Model (SG-
PLVM) [54, 78] to learn a low-dimensional embedding of high-dimensional human pose
data. The SGPLVM provides a continuous, kernel-based density function over positions in
a low-dimensional latent space and positions in the full pose space that is generally non-
Gaussian and multimodal. Importantly, it provides a natural preference for poses close to
the training data, smoothly falling off with distance. The model also provides a simple,
nonlinear, probabilistic mapping from the latent space to the full pose space. Its variance
reflects the uncertainty of the mapping.

We show that the model can be learned from much smaller amounts of training data than
competing techniques such as [41, 130]. Learning can be achieved using as little as one
exemplar of each motion and involves very few manual parameter tuning , while resulting
in very realistic motions.

2.3.2 Motion Models

While complex non-linear methods are required to learn pose models, we demonstrate that
one can use simple algorithms such as PCA to learn effective motion models. This may
seem surprising as one would expect the learning of a lower dimensional space (pose) to
be less complex than the learning of a higher dimensional one (motion), which contains the
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smaller one. But learning clean segmented and time warped motion databases is equivalent
to learning pose models with the phase of the motion as hidden state. This means that,
using motion models a pose is obtained by combining poses performed at similar phase
times, resulting in more convex spaces.

With such motion models we can formulate and solve the tracking problem in terms of
continuous objective functions whose differential structure is rich enough to take advantage
of standard optimization methods, resulting in much faster methods.

Moreover, we show that these subspace motion models are much more discriminative
than pose models and that one can perform motion-based recognition of individuals and
activities.

We present a new method for motion extrapolation, where these motion models are used
to infer new motions of a subject that is observed once performing a given activity, while
respecting his/her particular style.

2.3.3 Pose Dynamical Models

Simple first order and second order Markov models are not good enough to track while
dealing with very few or noisy image features with outliers, for example in the presence of
severe occlusions. Moreover, smooth SGPLVMs that contain stylistic diversity cannot be
learned.

Here, we propose a new form of Gaussian Process Dynamical Models (GPDM) [159],
called Balanced GPDM, to model pose and complex dynamics with stylistic diversity. The
GPDM is a latent variable model with a nonlinear probabilistic mapping from latent posi-
tions to human poses, and a nonlinear dynamical mapping on the latent space. It provides
a continuous density function over poses and motions that is generally non-Gaussian and
multimodal. Given training sequences, one simultaneously learns the latent embedding, the
latent dynamics, and the pose reconstruction mapping. We show that these models can be
learned from smaller amount of training data than competitive techniques, while producing
realistic motions and generalizing well for motions very different from the training ones.

2.4 Thesis outline

Chapter 3 discuss related approaches to 3D people tracking. Chapter 4 deals with our linear
motion models, showing their properties and limitations and their application to tracking,
activity and subject recognition and motion generation. The motion models are shown first
since the pose models and pose dynamical models we explore are related. Chapter 5 handles
GPLVMs to model pose priors, showing their properties, problems and their application to
tracking. Chapter 6 the novel pose dynamical models, showing how to modify the GPDM
for learning multiple sequences, and how to use these models for tracking. We will show
how these models solve some of the problems of the GPLVM. The different issues when
learning Gaussian Process human pose models for tracking are discussed in Chapter 7. This
chapter also includes comparative tracking results for the different pose and motion models
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for synthetic and real data. Finally Chapter 8 gives our conclusions and presents possible
future extensions.
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Our goal is to perform motion capture from a single camera. This is the cheapest, non-
invasive technique that can be performed in an uncontrolled environment, resulting in a
truly practical approach in a wide range of applications. The most important ones are the
film industry, computer games, surveillance and medical applications. Unfortunately, it is
also by far the most difficult approach, and remains essentially unsolved. In this chapter we
present an overview of different motion capture techniques. First, we will discuss briefly
existing commercial systems, followed by a more detailed survey on video-based motion
capture approaches.

3.1 Motion Capture Techniques

None of the existing commercial motion capture systems use video as input, instead they
rely on mechanical, electro-magnetic, acoustic or optical features to perform the motion
estimation. These systems provide the 3D position and/or orientation of a set of markers.
Some of them incorporate facilities to estimate the 3D position and orientation of the joints
from those set of markers. In this section we review the different motion capture techniques
and we briefly discuss different approaches to estimate joint locations and orientations from
the tracked markers.

3.1.1 Mechanical Motion Capture

There are two main systems to perform mechanical motion capture: exo-skeletons, and
ambulatory systems. An exo-skeleton is an electro-mechanical system that consists of a
suit with small gyroscopes attached to the actor’s limbs or other body parts. They detect
the exact motions of all the body parts to which they are attached. The angular changes
are collected on the suit and transmitted to a computer in real-time. An example of an
exo-skeleton, is the Gypsy system of Meta Motiontm [94] (Fig. 3.1 (a)). In the case of am-
bulatory systems, such as the Physilog [110] (Fig. 3.1 (b)), accelerometers and gyroscopes
are placed on the subject. A small digital portable recorder digitizes, filters, amplifies and
saves the signals that are transmitted at the end of the day to a computer. They are used in
medical, orthopedict and gait analysis applications.

Unlike magnetic systems, which have important problems with metal in the environment,
and optical systems that need a lot of dedicated controlled space, the mechanical systems are
less restrictive. However they are always used in controlled environments. Although they
are less expensive than other techniques, such as optical motion capture, they remain much
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(a) (b)

Figure 3.1: Mechanical commercial motion capture systems. (a) Gypsy system. (b)
Physilog system.

(a) (b) (c) (d)

Figure 3.2: Electro-magnetical motion capture systems. (a) Liberty mocap system from
PolhemusTM [112]. (b) Cabled Flock of Birds system from AscensionTM [7].
(c) Wireless electro-magnetical mocap system Motion Star from AscensionTM .
(d) The motion capture for Lara Craft movie was performed by Motion Star.

more expensive than video-based approaches. Moreover they are cumbersome, invasive
and they suffer from drift.

3.1.2 Electro-Magnetic Motion Capture

Magnetic motion capture systems measure the low-frequency magnetic field generated by
a transmitter source from sensors placed on the body. The sensors and source transmit
to an electronic control unit that correlates their reported locations within the field. The
electronic control units transmit this information to a computer that estimates 3D positions
and rotations.

The data is usually noisy; the markers tend to move during capture sessions, requiring
readjustment and recalibration. Moreover, when capturing multiple people at the same time,
sensors from different actors interfere with each other, providing distorted results. Their use
is very restrictive and cumbersome, since even in their wireless or cabled configurations,
the system experiments interference through the presence of any magnetic field or metallic
objects. However it is relatively a low cost solution. Fig. 3.2 depicts two commercial
wireless magnetical motion capture systems, LibertyTM of Polhemus [112], and the Motion
Star from Ascension.
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(a) (b)

(c) (d)

Figure 3.3: Optical motion capture systems. (a) Capture using a ViconTM system [155].
(b) Capture performed for the film IRobot using a Motion AnalysisTM [100]
system. (c) Animal motion capture using Motion AnalysisTM . (d) Screen-shots
from The Polar Express film that used motion capture obtained from a ViconTM

system.

3.1.3 Acoustic Motion Capture

Acoustic motion capture systems use high-frequency sound waves in order to determine the
position of the transmitters. They require the presence of at least three audio receivers in
the capture volume. Each transmitter sequentially outputs a short sound, and each receiver
measures the time it takes for the sound to travel to them and generates positional data by
triangulation.

The major advantages are that they do not have occlusion problems, like the mechanical
and electro-magnetical systems, and their low cost. However they have some disadvantages,
the cabling restricts the performance of the actor; the area of capture is limited by the speed
of sound and the number of transmitters. They are not suitable for high-speed movements.
Moreover they suffer from possible interferences from other sound sources.

3.1.4 Optical Motion Capture

There exist two main technologies used in optical motion capture: Reflective and Pulsed-
LED (light emitting diodes). Small, reflective balls, or pulsed LEDs, called markers are
attached to the performer at various positions, as depicted by Fig. 3.3 (b,c). These markers
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are tracked by proprietary cameras. Reflective systems use IR pass filters placed over the
camera lens and Infrared (IR) LEDs mounted around the camera lens. Optical motion cap-
ture systems based on Pulsed-LEDs measure the Infrared light emitted by the markers rather
than light reflected from them. To help identifying the markers, some systems incorporate
markers that can emit different frequencies.

These techniques are popular because they require no cabling, but they are very sensitive
to marker occlusions, resulting in off-line manual interactions. There must be at least three
cameras in order for the computer to be able to correctly determine the three-dimensional
position of each marker. Moreover their cost is higher than other techniques. Fig. 3.3
depicts different optical motion capture systems. However nowadays, they remain the most
used technique for motion capture.

3.1.5 Inferring 3D joint orientation and position

Inferring the 3D joint orientation and position is a problem encountered with all the com-
mercial systems described above, since they provide the 3D position and/or orientation of
a set of markers, and not the joint ones. Some of the previously described systems pro-
vide specific software to perform this task, as the recently developed Vicon IQ. But most
of the animation studios that use these systems rely on other commercial softwares (e.g.,
MotionBuilder).

There has been much effort dedicated to help automate this process. Herda et al. [55]
proposed an approach to marker tracking and joint estimation that uses an anatomical hu-
man model to increase the robustness and reduce the manual interaction required when
occlusions happen or marker identification fails. O’Brien et al. [105] devised an algorithm
to estimate skeletons from magnetic motion capture data. Because magnetical systems pro-
duce both position and orientation of the markers, they are able to solve the joint location
estimation problem with a linear system. Other methods have been proposed by the com-
puter graphics [128], computer vision [117], or robotics [25, 71] communities.

Kirk et al. [72] presented an approach to estimate the skeletal structure, by automatically
clustering markers into segment groups, and to estimate the positions of the locating joints,
without knowing a priori the structure of the skeleton.

These methods use global priors to ensure smoothness. These priors are of the form
of simplistic first or second order Markov models. Given y1:t, a set of poses at times
(1, · · · , t), the first and second order Markov assumptions are

p(yt|y1:t−1) = p(yt|yt−1), (3.1)

and
p(yt|y1:t−1) = p(yt|yt−1,yt−2), (3.2)

respectively.
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3.2 Generic models: ensure smoothness and joint limits

3.1.6 Video based Motion Capture

Modeling and tracking the 3D human body from video is of great interest, as attested by
recent surveys [96, 97], yet existing approaches remain brittle. The causes of the vari-
ous problems include joint reflection ambiguities, occlusion, cluttered backgrounds, non-
rigidity of tissue and clothing, complex and rapid motions, and poor image resolution. This
implies that there is not a general method that works in all possible situations. One can
consider three main possibilities to simplify the pose estimation problem:

• Add markers to be tracked from the video sequences, or use special clothes designed
to simplify the task of identifying body parts (e.g. each body part is of a different
color). By adding markers one simplifies the problem of tracking by the one of
tracking and identifying the individual markers, and the one of estimating the 3D
joint location and orientation from the marker position. This can be solved with the
methods discussed in Section 3.1.5.

• Use multiple cameras and/or simplify the feature extraction process. For example,
using backgrounds easy to segment, and knowing the camera internal and external
parameters.

• Add an a priori knowledge of what we are going to observe to constrain the search
space.

The work presented in this thesis falls into the last category, where one relies on activity-
specific models that strongly constrain the 3D tracking and help resolving the potential
ambiguities, but at the cost of having to infer the class of motions, and learn the models.

We now turn into discuss the different markerless motion capture approaches, that can
be classified in terms of the prior information they use. The most general ones are the ones
that use generic models that try to ensure smoothness between consecutive frames and try
to respect the joint limits. The second category is more restrictive, and build prior models
of the activities to be observed, and can be categorized in pose and motion prior models.

3.2 Generic models: ensure smoothness and joint limits

People tracking is comparatively simpler if multiple calibrated cameras can be used si-
multaneously. Techniques such as space carving [17, 26], 3D voxel extraction from sil-
houettes [95], fitting to silhouette and stereo data [32, 39, 53], and skeleton-based tech-
niques [19, 28] have been used with some success. If camera motion and background
scenes are controlled, ensuring that body silhouettes are easy to extract, these techniques
can be very effective. Nevertheless, in natural scenes, with monocular video, cluttered
backgrounds with significant depth variation, and many moving objects, the problem re-
mains very challenging.

Typically approaches to tracking use simplistic primitives, such as ellipses, or cylinders to
represent the human body. To represent more accurately the human body more complicated
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(a) (b) (c) (d)

Figure 3.4: Complex primitives for 3D Human Body Tracking. (a) Superquadrics [133],
(b-c) Implicit surfaces for hand [34] and upper body [111] tracking. (d) Texture
mesh [135].

Figure 3.5: Modeling dynamic textured scenes. Realistic texture-mapped human synthe-
sized from new motions, from Starck and Hilton [135]. This method requires a
well-engineered capture environment.

shape models have been investigated, such as superquadrics [133], implicit surfaces [56,
111, 34], or meshes [23, 45, 135, 136], as depicted by Fig. 3.4.

An important emerging field is to model dynamic textured scenes, where instead of esti-
mating the 3D joint positions and orientations, one tries to recover the 3D shape and texture
of the articulated object [23, 135, 136]. By using enough cameras and backgrounds easy to
extract, these methods result in impressive photo-realistic 3D models, as depicted by Fig.
3.5, that can be used for modeling characters in games or films.

Tracking involves pose inference at one time instant given state information (e.g., pose)
from previous time instants. Tracking often fails as errors accumulate through time, pro-
ducing poor predictions and hence divergence. This can be usually mitigated by introducing
sophisticated statistical techniques for a more effective search [27, 30, 33, 133].

Given yt the state to estimate (i.e., pose), p(yt|I1:t−1) represents all information about
the state at time t that is deducible from the entire data-stream up to that time, I1:t. Using
Bayes rule and assuming a first order Markov model, the tracking problem can be written
as

p(yt|I1:t) = ktp(It|yt)p(yt|I1:t−1), (3.3)
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where It is an image at time t, and

p(yt|I1:t−1) =

∫

xt−1

p(yt|yt−1)p(yt−1|I1:t−1)dxt−1, (3.4)

and kt is a normalization constant that does not depend on yt.
These two equations are called the filtering equations, and are key for most tracking ap-

proaches. Eq. 3.3 is called the propagation rule and should be interpreted as the Bayes rule
for inferring posterior state density from data for the time-varying case [63]. p(yt|I1:t−1)
is a prediction taken from the posterior p(yt−1|I1:t−1) from the previous time-step, where
the dynamical model, p(yt|yt−1), is taken into account. In general because the observation
density is non-Gaussian, p(yt|I1:t) is also non-Gaussian. The problem is how to apply a
nonlinear filter to evaluate the state density over time, without being computationally too
expensive.

The Kalman filtering [44] assumes that the distributions are Gaussian. Extended Kalman
filtering (EKF) approximates the nonlinear dynamics and observation mappings with lo-
cally linear mappings around the current state. For motions with sudden acceleration, the
local linearization could produce highly inaccurate estimation. The unscented Kalman filter
(UKF) [69] is an alternative method that approximates the arbitrary state distribution with
a Gaussian, but makes no assumption for the nonlinear mapping.

Monte Carlo sampling methods [27, 30, 33, 87, 133], such as the well-known Conden-
sation algorithm [63], try to represent the filtering distribution p(yt|I1:t−1) with a number
of weighted discrete samples. At each time the samples are propagated through the dynam-
ics p(yt|yt−1), and re-weighted using the observation likelihood p(It|yt), to generate the
estimate of the distribution of p(yt|I1:t).

The methods presented above use global dynamical priors modeling p(yt|yt−1) to ensure
smoothness, in the form of simplistic first and second order Markov models. They are
usually combined with simplistic min-max Euler angle joint limits [27, 132, 133]. The study
of the joint limits has been a field of significant research in the Robotics and Biomechanical
communities, that have developed more complex approaches, such as Joint Sinus Cones
[43, 92], Spherical Polygons [73, 8], Bezier patches [146] or Single or Hierarchical Implicit
Surface joint limits representations [58, 56].

In [58] we introduced sophisticated joint limits as constraints for video based motion
capture. The joint limits were modeled from optical motion capture data as a closed, con-
tinuous implicit surface approximation for the quaternion orientation-space boundary. Its
interior represents the complete space of valid orientations. In [57] we model hierarchical
joint limits by representing the space of valid configurations for a child joint as function of
the position of its parent joint, as depicted by Fig. 3.6.

Although imposing joint limits constrains much the tracking it does not solve all the
problems. For example, ambiguities in monocular tracking still remain a problem when the
different probable poses do not violate the joint limits. Another way to mitigate errors is to
use strong pose and motion prior models, that we now turn into discuss.

The most common approach to learning motion or pose models has been to use optical
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(a) (b) (c) (d)

Figure 3.6: Tracking using hierarchical joint limits. (a) Implicit surface representation of
the limits for the parent joint. (b) Hierarchical representation. The child joint
limits are a function of the rotation of the parent joint. (c) Tracking result pro-
jected into the image. (d) 3D tracking result from a view different than the ones
used for tracking.

motion capture data from one or more people performing a specific activity. In the reminder
of the chapter we discuss the different approaches to model pose and motion.

3.3 Activity-specific pose models

Recent approaches to people tracking can be viewed in terms of those that detect and those
that track. Detection involves pose recognition from individual frames. It has become
increasingly popular in recent research [1, 41, 99, 137], since it has the potential to make
the algorithms more robust, but requires large sets of training poses to be effective.

Tracking involves pose inference at one time instant given state information (e.g., pose)
from previous time instants. Tracking often fails as errors accumulate through time, pro-
ducing poor predictions and hence divergence. This can be usually mitigated by introducing
sophisticated statistical techniques [63, 27, 30, 33, 133], or by using strong prior motion
models [3, 106, 126, 152, 149]. The optimum approach for motion estimation uses detec-
tion techniques for initialization and search, while tracking to smooth the results and gain
in accuracy.

3.3.1 Linear models

One way to cope with high-dimensional data is to learn low-dimensional models. The
simplest case involves a linear subspace projection. Principal Component Analysis (PCA)
is the most well known linear dimensionality reducing technique. It finds a basis for the
projected subspace maximizing the variance of the projected data. The basic form of PCA
does not provide a probabilistic model of the data. Probabilistic PCA (PPCA) [120, 145]
is a latent variable model which assumes that the observed data y is generated by a lower-
dimensional data x

y = Bx + b + ny. (3.5)
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It has an underlying Gaussian model, where p(x) = N (x|0, I), and p(ny) = N (ny|0, σ
2I).

PPCA is a special case of a more general class of latent variable models known as Factor
Analyzers that model p(x) = N (x|0,P), and p(ny) = N (ny|0,Q). These linear models
were used in [13, 38].

Independent component Analysis (ICA) [62] is a linear model (e.g. Eq. 3.5 holds) that
projects the dataset onto a basis that best represents the statistical distribution of the data.
ICA searches directions by minimizing the statistical dependence between components.
This is done by maximizing the non-gaussianity of the independent components. ICA has
proven very effective to solve the Blind deconvolution problem, defined as the separation
of the sources of a given signal, especially in the case of sound sources. It has never been
very effective when modeling poses compared to other linear techniques. PCA and ICA
were used by Calinon et al. [21] to model robot gestures for imitation.

Canonical Correlation Analysis (CCA) [16] is also a linear model, but the basis are
chosen minimizing the correlation between them, while having the maximum spatial or
temporal correlation within each component. A similar approach is called Maximum Au-
tocorrelation Factors (MAF) [139].

Linear models are tractable and produce interesting results, but they lack the ability to
capture the nonlinearities of human pose. Moreover, the underlying probabilistic model is
far too simple; it assumes that the highest probable sample is the mean pose. For example,
when learning pose models for walking or running, the mean pose is far from the training
data, and the probabilistic model is not realistic.

To handle multimodal densities one can use density estimation techniques, such as Gaus-
sian Mixture Models or Parzen Window (e.g. [60]). See [11] for an overview of different
density estimation techniques.

The Gaussian Mixture Models (GMM) [11] model the probability of the latent space
as a mixture of Gaussians

p(x) =
K∑

k=1

πkN (x|µk,Σk), (3.6)

where πk is the prior probability on the Gaussian component k. Typically the GMM is
estimated using an Expectation-Maximization (EM) algorithm, that interactively estimates
πk in the E-step, and the mean and variance of each component µk,Σk in the M-step. The
EM algorithm for estimating the parameters of a mixture of Gaussians is sensitive to the
initialization of the parameters and in some cases can result in an inaccurate prior model.

Calinon et al. [22] use GMM to model the statistical representation of a robot task. Howe
et al [60] use a mixture model density estimation to learn a distribution of short sequences
of poses. With such high dimensional data, density estimation will have problems of under-
and over-fitting unless one has large amounts of training data. In particular, the number
of parameters quickly becomes untenable, and it can be extremely difficult to choose a
reasonable number of (Gaussian) component densities.

Parzen Window density estimation [11] is a non-parametric scheme that directly uses
the samples xi drawn from an unknown distribution to model its density. The general form
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of the density is then

p(x) =
1

N

N∑

i=1

R(x− xi), (3.7)

where R is a smoothing function. The choice of R is important and conditions the quality
of the estimate. The most popular one is the Gaussian distribution.

3.3.2 Mixture of Linear Models

Mixture of experts [65] such as Mixture of Principal Component Analysis [70], Mixture of
Factor Analysis [46, 122] or Locally Weighted Projection regression [157] are other ways
to cope with the complexity of the pose space. They try to characterize the complex global
structure of the manifold by collections of simpler models, each of which describes a locally
linear neighborhood.

Howe et al. [60] use a Mixture of Factor Analyzers (MFA) learning its density model
with a GMM. They used it as a prior for monocular 3D tracking. MFA has been used for
detecting heads in images [165]. Li et al. [83] use a Coordinated MFA [122] to create a low
dimensional representation of the walking, and use it as a prior for monocular 3D tracking.

Locally Weighted Projection Regression (LWPR) [157, 156] is a supervised algorithm
to approximate the nonlinear functions by means of piecewise linear models. The region of
validity bk of each linear model is computed from a Gaussian function

bk = exp

(
−

1

2
(x− ck)

TDk(x− ck)

)
, (3.8)

where ck is the center of the k-th linear model. Given an input vector x, each linear model
calculates a prediction yk. The total output of the networks is the weighted mean of all
linear models

y =

∑K
k=1 bkyk∑K

k=1 bk
. (3.9)

It can be learned in an incremental way. LWPR was used by [40] to learn the inverse
kinematics problem for a robot.

Linear methods are efficient and easy to implement, but they are not suitable (too sim-
plistic) for many problems. To cope with the complexity of modeling human poses, more
sophisticated machine learning techniques are needed.

3.3.3 Non-parametric models

Non-parametric models match the image data to a large database of examples. They can
handle complex motions, but they require very large amounts of training data [80, 127, 24,
123]. Further, they do not produce a density function. Mori and Malik [98] estimate the
centers of the joints in the image by using shape context image matching against a set of
training images with prelabeled centers. They reconstruct the 3D by using [140], which re-
constructs the joint locations from point correspondences on single images. Shakhnarovich
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et al. [123] use locality sensitive hashing to efficiently match local models from the input
data to large exemplar sets.

Richer parameterizations of human pose and motion can be found through non-linear
dimensionality reduction (NLDR) [41, 116, 130, 160]. Following [158] the NLDR meth-
ods can be classified in two main categories, Geometrically-motivated manifold learning
and Nonlinear latent variable models.

3.3.4 Geometrically-motivated manifold learning

Geometrically-motivated manifold learning recovers the embedding of the data without
providing in general a density model or a mapping back to the output space y. They can
be classified in global and local, depending if they tend to preserve the global or local
geometry of the data.

Locally Linear Embedding (LLE) makes the assumption that all smooth manifolds are
locally linear if they are sufficiently sampled. This implies that given the samples yi, there
exists a set of constant weights dij ∈ R such that

yi ≈
∑

j

dijyj (3.10)

where yj are the neighbored samples of yi. The dij can be obtained in a closed form by
minimizing

ε(D) =
∑

i

‖yi −
∑

j

dijyj‖
2 (3.11)

where D = {dij}, dij = 0 for all j, such that yj is not in the neighborhood of yi, and∑
j dij = 1. The latent coordinates are computed by assuming that the same linearity

occurs in the latent space, i.e. xi ≈
∑

j dijxj , and is obtained by minimizing

ε(x) =
∑

i

‖xi −
∑

j

dijxj‖
2, (3.12)

where the dij are the ones obtained by minimizing Eq. 3.11. This can also be done in a
closed form.

Another similar technique is the Laplacian Eigenmaps [10]. Given a manifoldM, such
that ∀i,yi ∈ M, a mapping g−1 from the manifold to the latent space can be computed by
minimizing ∫

M
‖∇g−1(y)‖2. (3.13)

This produces an embedding that best preserves the average locality. This is true because
points near each other inM will be mapped near each other in x since for any derivable
function f , the following inequality holds for ||δy|| small enough

‖f(y + δy)− f(y)‖ ≤ ‖∇f(y)‖‖δy‖. (3.14)
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In particular this is true for f = g−1.
In Multidimensional Scaling (MDS), given a measure of dissimilarity between pairs of

training data (yi,yj), a low-dimensional manifold is recovered while trying to preserve this
dissimilarity in latent space. Using different dissimilarity measures, different structures can
be recovered. Isomap [141] and its variants C-Isomap, L-Isomap [31], and ST-Isomap
[66], are global techniques that extend MDS. In the Isomap algorithm a geodesic distance
is employed, measuring the separation on a path in the manifold, and not the distance in the
observation space. The ST-Isomap incorporates temporal information by penalizing, in the
distance function, samples that are far in time.

However, while LLE [121], Isomap [141], and spectral embedding techniques [10] pro-
vide a low-dimensional representation of the data, they do not produce a density model in
the embedding space, nor do they provide straightforward mappings between the embed-
ding space and the full pose space. Of course, one can first learn the embedding, and then
learn a density model and the inverse mapping. The density model can be learned with any
of the density estimation techniques described above, such as GMM or Parzen windows.
Wang et al. [160] use Isomap to learn the embedding. Then they assume a MFA and an
approximate linear model based onK-nearest neighbors to learn a latent density and a map-
ping to the full state space. This mapping will generally be discontinuous and is therefore
inappropriate for continuous optimization.

Non-linear mappings, such as Radial Basis Functions, Neural Networks or Relevance
Vector Machines, are more suitable to cope with the complexity of the human pose space.
A nonlinear mapping is usually defined as a generic parametric function g such that

y = g(x,B) + ny. (3.15)

Radial Basis Function (RBF) regression assumes that the mapping can be written as

y =
∑

i

biϕ(x,xi) + ny, (3.16)

where B = [b1,b2, . . . ]. If the kernel ϕ is a radial basis kernel, such as ϕ(x,x′) =
exp(−‖x− x′‖2/σ2), then Eq. 3.16 minimizes any cost function of the form

∑

i

V (g(xi,B)) + ‖g(xi)‖
2. (3.17)

Relevance vector machines (RVM) [143, 144] are a sparse Bayesian approach to re-
gression and classification, where

yt =
∑

k

bkϕk(xt) + ny = BF + ny. (3.18)

The parameters of the mapping bk are learned by minimizing

‖BF−Y‖2 + λ
∑

k

log ‖bk‖. (3.19)
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The RVM automatically selects the most relevant basis function to describe the problem,
resulting in a sparse solution that can be very efficient, but requires a large training set.

Neural Networks (NN) [11] approximate the function g from basis functions that are
adaptive (i.e. they depend on other parameters). A two layers feed-forward neural network
can be written as

g(x,B) =
H∑

h=1

b
(2)
h ϕ

(
I∑

i=1

b
(1)
hi χ(xi) + b

(1)
ho

)
+ b

(2)
0 , (3.20)

where ϕ and χ can be any type of function. Typically linear, sigmoid and hyperbolic tangent
functions are used.

Although we just mention three different techniques for nonlinear regression, there exist
a wide broad range of approaches, such as Self Organizing Maps (SOM). Their study is
out of the scope of this work. Here, we described briefly three techniques that were used by
relevant tracking papers.

Sminchisescu and Jepson [130] use spectral embedding for 3D pose data. Given the
embedding, they learn a GMM as a density model for the training data in the embedding
space, and then a mapping from the embedding to the pose space using RBF regression. To
learn a prior model for walking they used several thousand training poses. Moreover, LLE
and Isomap assumed that the observed data is obtained from a densely sampled manifold.

Alternatively, instead of learning a generative model that models p(y|x), one can learn a
discriminative model (i.e., models p(x|y)), and model the pose as a function of the images
features [4, 41, 131]

Rosales and Sclaroff [118] used a set of NN to learn, after clustering, the mapping be-
tween visual features and body configurations. They use it as a discriminative model to
perform 2D body tracking from Hu moments [61]. These moments are invariant to trans-
lation, scaling and rotation on the image plane features that are extracted from silhouettes.
They use the image likelihood to decide the best estimate between the different mappings
(one per cluster).

Elgammal and Lee [41] proposed a discriminative model that uses LLE to learn a low
dimensional manifold from silhouettes. They learned both mappings, from latent space to
silhouette and pose spaces, using RBFs. 3D pose is then inferred from observed silhouettes
by computing the inverse mapping to the latent space and using the RBF mapping to the
pose space.

3.3.5 Non-linear latent variable models

A very useful set of models are Non-linear latent variable models (NLVM). They are
latent variable models that are capable to model data generated from a nonlinear manifold.
Examples of NLVM are density network models [89], Generative Topographic Mapping
[12], and Gaussian Process Latent Variable Models [78].

Density network models [89] are an extension of supervised Bayesian Neural Networks
to the unsupervised problem of density estimation. The mapping is modeled as a generic
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parametric function approximation (Eq. 3.15). B is obtained by performing gradient based
minimization of the negative log posterior. Assuming independence of the observation data

p(Y|B) =
∏

i

p(yi|B), (3.21)

where p(yi|B) is normally evaluated by Monte Carlo sampling from

p(yi|B) =

∫
p(yi|xiB)p(xi)dxi. (3.22)

Inference is obtained using Bayes rule and evaluating the posterior distribution p(xi|yiB).
Assuming a regularly sampled discrete prior on xi, and approximating g(x,B) by an

RBF network, the density network model can be solved without Monte Carlo simulation,
and is called Generative Topographic Mapping (GTM) [12].

In the Gaussian Process Latent Variable Model (GPLVM) [78, 76], g takes the fol-
lowing form

g(x,B) =
∑

j

bjϕj(x). (3.23)

Since g is linear with respect to B = [b1,b2, · · · ], it can be marginalized out. This is not the
case in general for x. If the kernel is linear ϕ(x) = x, then g is also linear with x, and can
be marginalized out, resulting in PPCA. Lawrence [76] has shown that in the linear case,
PPCA formulation can be obtained by marginalizing out either B or x. For any function
that results in a non-negative definite kernel matrix for all possible X, the marginalization
results in

p(Y |X, β̄) =
1√

(2π)ND|K|D
exp

(
−

1

2
tr
(
K−1YYT

))
, (3.24)

where K is a kernel matrix,Kij = k(xi,xj), and β̄ are the parameters of the kernel function
used to compute the kernel matrix.

Grochow et al. [54] introduced the Scaled Gaussian Process Latent Variable Model
(SGPLVM) to take into account the differences in variance of the different dimensions of y.
They learn a SGPLVM of human pose for interactive computer animation. More recently,
Tian et al. [142] used a GPLVM as a discriminative model to constrain the estimation of
2D upper-body poses from 2D silhouettes. In Chapter 5 we advocate the use of SGPLVM
to learn a generative model with a continuous mapping between the latent space and the
full pose space, even for very small training sets, using it as a prior for monocular 3D body
tracking [151].

While powerful, the (S)GPLVMs are static models; they have no intrinsic dynamics and
do not always produce smooth latent paths given smooth time-series data. Simple dynam-
ical models added to the SGPLVM (e.g., [142, 151]) are weak, often failing because of
occlusions or anomalous jumps in the latent space.
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3.4 Dynamical models

In this section we review the dynamical models that have been used for tracking.

3.4.1 Simple models

The dynamical models used in many tracking algorithms are weak. Most models are linear
with Gaussian process noise, including simple first- and second-order Markov models [27,
67] (see Eq. 3.1 and 3.2), and learned linear auto-regressive (AR) models [104]. A Linear
AR model of order k defines the pose at a given time t as a function of the previous poses

yt =
k∑

i=1

aiyt−i + b + nt, (3.25)

where ai are scalar weights, b is a vector representing usually the mean pose, and nt is
an independent (for each sample) noise, normally assumed Gaussian. [13, 38] learn an
AR model in a linear subspace. These two types of models are often suitable for low-
dimensional problems, and admit closed-form analysis, but they apply to a restricted class
of systems. For high-dimensional data, the number of parameters that must be manually
specified or learned for AR models is untenable. When used for people tracking they
usually include large amounts of process noise, and thereby provide very weak temporal
predictions.

3.4.2 Non-linear dynamical models

Switching LDS and Hybrid Dynamics provide much richer classes of temporal behaviors
[64, 104, 108]. Nevertheless, they are computationally challenging to learn, and require
large amounts of training data, especially as the dimension of the state space grows.

Agarwal and Triggs [4] used RVM to learn a discriminative model for monocular 3D
tracking. They extend the RVM by including a second order prediction term to model the
dynamics. Given zt, the image features at time t, the discriminative model is defined as
follows

yt = Aŷt +
∑

k

bkϕk(ŷt, zt) + ny (3.26)

ŷt = (I + C)(2yt−1 − yt−2) + Dyt−1, (3.27)

where ϕk(y, z) is a product of two independent kernels, one modeling the similarity in pose
and the other in image features.

Rahimi et al. [116] proposed a discriminative model that learns an embedding through a
nonlinear RBF regression with a linear AR dynamical model to encourage smoothness in
the latent space. This is a natural way to produce well-behaved latent mappings for time
series data.
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Troje [147] considered a related class of subspace models in which, after applying PCA,
the basis functions exhibited are sinusoidal (Fourier series). A pose yt, is then expressed as

yt = e0 + e1sin(wt) + e2sin(wt+ ψ2) + e3sin(wt+ ψ3) + e4sin(wt+ ψ4), (3.28)

where ei are the eigenvectors computed from applying PCA to individual poses, and ψi are
scalars representing the shifted phases of each sinusoidal. He finds that a subspace modeled
with only three harmonics is sufficient for reliable gender classification from optical motion
capture data. Calinon et al. [22] proposed a relatively similar approach, but they used
Gaussian Mixture Regression (GMR) [138] instead of Fourier series to model poses of a
robot.

3.4.3 Modeling motions

An alternative to modeling the space of plausible human poses is to directly model the
space of motions. For example, linear subspace models have been used to model human
motion, from which realistic computer animations have been produced [5, 14, 18, 154].
Subspace models learned from multiple people performing the same activity have been
used successfully for 3D people tracking [106, 126, 164]. For the restricted class of cyclic
motions, Ormoneit et al. [106] developed an automated procedure for the alignment of
training data as a precursor to PCA.

Linear subspace models also provide natural statistical priors that generalize naturally to
motions not in the training set. This makes them amenable for Bayesian formulations of
3D people tracking. Indeed, most existing trackers use some form of multiple-hypothesis
algorithm, such as a particle filter, within a probabilistic framework. In Chapter 4, we
exploit the fact that this class of models permits a formulation of the tracking problem as
one of minimizing differentiable objective functions, which might be accomplished much
more efficiently with simple deterministic optimization. We consider both cyclic motions
and acyclic motions, and we demonstrate models learned from multiple activities, for which
one can both track and recognize the class of motion. Moreover, these models can also be
used for motion extrapolation. We will show how to use them to infer new motions of a
subject that is observed once performing a given activity, while respecting his/her particular
style.

But these models required a relatively big amount of training data compared to Gaussian
Process. Using the same philosophy as [130] one can learn the (S)GPLVM, and then learn
a complex dynamical model for the latent space, such as the AR models, Switching LDS
[64, 104, 108], Hybrid Dynamics, or RVM [4] described above. The learning of the low
dimensional space and of the dynamical model is not done at the same time; not being
optimal. This is not the case when learning non-linear dynamical latent variable models.

3.4.4 Non-linear dynamical latent variable models

An alternative to modeling complex dynamics is to use the Gaussian Process Dynamical
Model (GPDM) proposed by Wang et al. [159]. The GPDM comprises a mapping from a
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latent space to the data space, and a dynamical model in the latent space. These mappings
are typically non-linear. The first-order GPDM assumes

xt = f(xt−1,A) + nx =
∑

j

ajϕj(xt−1) + nx,t (3.29)

yt = g(xt,B) + ny =
∑

j

bjχj(xt) + ny,t. (3.30)

By marginalizing out the mapping parameters, A and B, this results in two Gaussian pro-
cesses, one modeling the reconstruction and one modeling the dynamics [159].

While powerful, the GPDM still suffers from jumps in the latent space when the dimen-
sionality of the observations is high with respect to the latent dimension. In this work we
introduce a new set of models, called Balanced-GPDMs that assume narrow priors for the
dynamics to avoid the reconstruction overfitting present in the GPDM when learning high-
dimensional spaces [150]. In Chapter 6 we use the Balanced-GPDM to facilitate tracking in
the presence of very noisy data and significant occlusions. This is similar in spirit to [116],
however we employ non-linear dynamics and obtain a simple generative mapping from the
latent space to the pose space, all within a consistent probabilistic framework [150].
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4 Motion Models

Prior models of pose and motion play a central role in 3D monocular people tracking,
mitigating problems caused by ambiguities, occlusions, and image measurement noise.
While powerful models of 3D human pose are emerging, there has been comparatively
little work on motion models. Most state-of-the-art approaches rely on simple Markov
models that do not capture the complexities of human dynamics. Accordingly, this often
results in a more challenging optimization (or inference) problem, for which Monte Carlo
techniques (e.g., particle filters) are often used to cope with ambiguities and local minima
[27, 33, 63, 126, 133]. Most such methods suffer computationally as the number of degrees
of freedom in the model increases.

In this chapter, we use activity-specific motion models to help overcome this problem.
We show that, while complex non-linear methods are required to learn pose models, one can
use simple algorithms such as PCA to learn effective motion models, both for cyclic motions
such as walking and running, and acyclic motions such as a golf swing (e.g., see Figs. 4.1
and 4.2). This may not be intuitive, one expects the learning of a lower dimensional space
(pose) to be less complex than the learning of a higher dimensional one (motion), whose
input vectors are concatenations of the lower dimensional ones. But learning noiseless
segmented and time warped motion models is equivalent to learn pose models with the
phase of the motion as hidden state. This means that, under the motion models a pose is
obtained by combining poses performed at similar phase times, resulting in more convex
spaces.

With such motion models we formulate and solve the tracking problem in terms of con-
tinuous objective functions whose differential structure is rich enough to take advantage of
standard optimization methods. This is significant because the computational requirements
of these methods are typically less than those of Monte Carlo methods. This is demonstrated
here with two tracking formulations, one for monocular people tracking, and one for mul-
tiview people tracking. Moreover, with these subspace motion models we also show that
one can perform motion-based recognition of individuals and activities. Finally we present
a new method for motion extrapolation, where these motion models are used to infer new
motions of a subject that is observed once performing a given activity, while respecting
his/her particular style.

4.1 Linear Motion Models

This chapter extends the use of linear subspace methods for 3D people tracking. In this
section we describe the protocol we use to learn cyclic and acyclic motions, after which we
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4 Motion Models

Figure 4.1: Monocular Tracking a walking motion of 43 frames. First two rows: The
skeleton of the recovered 3D model is projected onto the images. Bottom two
rows: Volumetric primitives of the recovered 3D model projected into a similar
view.

discuss the important properties of the models. We show how they tend to cluster similar
motions, and that the linear embedding tends to produce convex models. These proper-
ties are important for the generalization to motions outside of the training set, to facilitate
tracking with continuous optimization, and for motion-based recognition.

We represent the human body as the set of volumetric primitives attached to an articulated
3–D skeleton, like those depicted in Figs. 4.1 and 4.2. A pose is given by the position
and orientation of its root node, defined at the sacroiliac, and a set of joint angles. More
formally, let D denote the number of joint angles in the skeletal model. A pose at time t is
then given by a vector of joint angles, denoted ψt ∈ R

P , along with the global position and
orientation of the root, denoted gt ∈ R

6.
A motion is a temporal sequence of poses, comprising a sequence of joint angle vectors

and a sequence of global positions and orientations:

y = [ψT
1 , · · · , ψ

T
M ]T ∈ RP M , (4.1)

G = [gT
1 , · · · ,g

T
M ]T ∈ R6 M , (4.2)

whereM is the number of time steps at which the underlying continuous motion is sampled.
The dimensionality of my observations is D = P ∗M , much higher than in pose space
models. We choose the sampling rate to be sufficiently high so that we can interpolate the
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4.1 Linear Motion Models

Figure 4.2: Monocular Tracking a full swing in a 45 frame sequence. First two rows: The
skeleton of the recovered 3–D model is projected into a representative subset of
images. Middle two rows: Volumetric primitives of the recovered 3–D model
projected into the same views. Bottom two rows: Volumetric primitives of the
3–D model as seen from above.
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continuous pose signal. Finally, instead of using the sample times, n ∈ [1,M ], we define
the normalized time, or phase of the motion, as

µn =
n− 1

M − 1
, µn ∈ [0, 1]. (4.3)

Here, µn increases linearly from 0 at the beginning of the motion to 1 at the end.

4.1.1 PCA Motion Model

Linear subspace motion models are learned from optical motion capture data, given one
or more people performing the same activity several times. Because different people per-
form the same activity with some variability in speed, we first dynamically time-warp and
re-sample each training sample. This produces training motions with the same number of
samples, and with similar poses aligned. To this end, we first manually identify a small
number of key postures specific to each motion type. We then linearly time warp the mo-
tions so that the key postures are temporally aligned. The resulting motions are then re-
sampled at regular time intervals using quaternion spherical interpolation [125] to produce
the training poses {ψj}

M
j=1.

Given a training set of N such motions, denoted, {yj}
N
j=1, we use Principal Component

Analysis to find a low-dimensional basis with which we can effectively model the motion.
In particular, the model approximates motions in the training set with a linear combination
of the mean motion Θ0 and a set of eigen-motions {Θi}

d
i=1 :

y ≈ Θ0 +

d∑

i=1

xiΘi = Θ0 + Bx , (4.4)

where B = [Θ1, · · · ,Θd]. This is equivalent to Eq. 3.5 with b = Θ0. The scalar coeffi-
cients, xi, characterize the motion, and d ≤ D controls the fraction of the total variance of
the training data that is captured by the subspace, denoted by Q(d):

Q(d) =

∑d
i=1 λi∑D
i=1 λi

, (4.5)

where λi are the eigenvalues of the data covariance matrix, ordered such that λi ≥ λi+1. In
what follows we typically choose m so that Q(d) > 0.9.

4.1.2 Cyclic motions

We first consider models for walking and running. We used a Vicontm optical motion
capture system to capture the motions of two men and two women on a treadmill:

• walking at 9 speeds ranging from 3 to 7 km/h, by increments of 0.5 km/h, for a total
of 144 motions;
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Figure 4.3: Motion models. First two PCA components for (a) 4 different captures of 4 sub-
jects walking at speeds varying from 3 to 7km/h, (b) the same subjects at speeds
ranging from 6 to 12km/h, (c) the multi-activity database composed of the walk-
ing and running motions together. The data corresponding to different subjects
is shown in different styles. The solid lines separating clusters have been drawn
manually for visualization purposes. (d) Percentage of the database that can be
generated with a given number of eigenvectors for the walking (dashed red),
running(solid green) and the multi-activity databases(dotted blue).
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Figure 4.4: Walking motion eigenvectors. The first one appears in red, green the second,
blue the third, cian the fourth and magenta for the last one. Eigenvectors of the
flexion-extension in the sagittal plane of the upper leg on the top and flexion-
extension in the sagittal plane of the lower leg on the right.

• running at 7 speeds ranging from 6 to 12 km/h, by increments of 1.0 km/h, for a total
of 112 motions.

The body model had P = 84 degrees of freedom. While one might also wish to include
global translational or orientational velocities in the training data, these were not available
with the treadmill data, so we restricted ourselves to temporal models of the joint angles.
The start and end of each gait cycle were manually identified. The data were thereby broken
into individual cycles, and normalized so that each gait cycle was represented withM = 33
pose samples. The dimension of the observation space y is then D = 33∗84 = 2772. Four
cycles of walking and running at each speed were used to capture the natural variability of
motion from one gait cycle to the next for each person.

In what follows we learn a motion model for walking and one for running, as well as
multi-activity model for the combined walking and running data. In Fig. 4.3(d) we display
Q(d) in (4.5) as a function of the number of eigen-motions for the walking, running and the
combined datasets. We find that in all three cases five eigen-motions out of a possible 144
for walking, 112 for running and 256 for the multi-activity data, capture more than 90% of
the total variance. In the experiments below we show that these motion models are sufficient
to generalize to styles that were not captured in the training data, while eliminating the noise
present in the less significant principal directions.
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4.1 Linear Motion Models

The first five walking eigenvectors, Θi, for the upper and lower leg rotations in the sagit-
tal plane are depicted by Fig. 4.4 as a function of the gait phase µt. One can see that they
are smooth and therefore easily interpolated and differentiated (numerically). Fig. 4.5 il-
lustrates the individual contributions of the first five eigen-motions. The first row shows
the mean motion alone. In each subsequent row we show a linear combination of the mean
motion and the ith eigen-motion, for i = 1...5. Each row therefore illustrates the influence
of a different eigen-motion. While one cannot expect the individual eigen-motions to have
any particular semantic meaning, their behavior provides some intuitions about the nature
of the underlying model.

4.1.3 Golf Swing

We use the same approach to learn the swing of a golf club. Toward this end, we used
the N = 9 golf swings of the CMU database [29]. The corresponding body model has
P = 72 degrees of freedom. We identified the 4 key postures depicted in Fig. 4.6, and
linearly time-warped the swings so that the same key postures are temporally aligned. We
then sampled the warped motions to obtain motions vectors with M = 200 poses. The
sampling rate here is higher than the one used for walking and running since a golf swing
contains fast speeds and large accelerations. The dimensionality of the observation space
is then D = 200 ∗ 72 = 14400. Given the small number of available training motions we
only used d = 4 coefficients, capturing more than 90% of the total variance.

4.1.4 Motion Clustering

Troje [147] claims that with effective motion models one can perform interesting motion-
based recognition. He showed that one can classify gender and other individual attributes
including emotional states. In this context it is of interest to note that the subspace motion
models learned here exhibit good inter-subject and inter-activity separation, suggesting that
these models may be useful for recognition. For example, Fig. 4.3(a) shows the walking
training motions, at all speeds, projected onto the first two eigen-motions of the walking
model. Similarly, Fig. 4.3(b) shows the running motions, at all speeds, projected onto the
first two eigen-motions of the running model. The closed curves in these figures were
drawn manually to help illustrate the large inter-subject separation. One can see that the
intra-subject variation in both models is much smaller than the inter-subject variation.

The motion model learned from the combination of walking and running training data
shows large inter-activity separation. Fig. 4.3(c) shows the projection of the training data
onto the first two eigen-motions of the combined walking and running model. One can see
that the two activities are easily separated in this subspace. The walking components appear
on the left of the plot and form a relatively dense set. By contrast, running components are
sparser because inter-subject variation is larger, indicating that more examples are required
for a complete model.

While the motion models exhibit this inter-subject and inter-activity variation, we would
not expect pose models to exhibit similar structure. As an example to demonstrate this, we
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Figure 4.5: Individual contribution of the eigenvectors. The top row shows equispaced
poses of the mean walk. The next 5 rows illustrate the influence of the first
5 eigen-motions. The second row shows a linear combination of the mean
walk and the first eigen-motion, Θ0 + 0.7Θ1. Similarly, the third row depicts
Θ0 +0.7Θ2 to show the influence of the second eigen-motion, and so on for the
remaining 3 rows.
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Figure 4.6: Key postures for the golf swing motion capture database that are used to align
the training data: Beginning of upswing, end of upswing, ball hit, and end of
downswing. The body model is represented as volumetric primitives attached
to an articulated skeleton.

also learned a pose model from the walking poses in the walking dataset. Fig. 4.7 shows
poses from the walking data projected onto the first four eigen-directions of the subspace
model learned from poses in the walking motions. It is clear that there is no inter-subject
separation in the pose model.
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Figure 4.7: Poor clustering in a pose subspace. The solid lines that delimited clusters
have been manually done for visualization purposes. (a) Projection of training
poses onto the first two eigen-directions of the pose subspace. (b) Projection of
training poses onto the third and fourth eigen-directions of the pose subspace.
While in the motion motion there is strong inter-subject separation, with the
pose model in this figure, there is no inter-subject separation.

4.1.5 Model Convexity

PCA provides a subspace model within which motions are expressed as (arbitrary) linear
combinations of the eigen-motions (4.4). With probabilistic PCA [145] one further con-
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Figure 4.8: Sampling the single activity databases. In each plot we show the most proba-
ble sample that is at the origin, and a sample with very low probability (far from
the origin) for the (a) walking, (b) running, and (c) golfing databases. Their
respective motions are shown in Fig. 4.9. The dashed curves are one standard
deviation ellipses for the underlying Gaussian density model for the data.

strains the model with a multivariate Gaussian density. A key property of such linear models
is the convexity of the motions, i.e., that linear combinations of motions (or eigen-motions)
are legitimate motions.

While convexity is clearly violated with pose data (cf., Fig. 4.7(a), we find that with the
subspace motion models convexity is satisfied to a much greater extent. In other words,
we find that random samples from the subspaces, according to a subspace Gaussian model
for walking, running and the golf swing, all produce plausible motions. Fig. 4.9 depicts
two motions from each of (a) the walking model, (b) the running model, and (c) the golfing
model. The first row in each case depicts the mean motion for each model, corresponding to
the origin of the respective subspaces. As shown in Fig. 4.8 the origin is relatively far from
any particular training motion, yet these motions look quite plausible. The second motion
in each case corresponds to a point drawn at random that is far from the origin and any
training motion (as shown in Fig. 4.8). These points, typical of other random samples from
the underlying Gaussian density, also depict plausible motions. Accordingly, the models
appear to generalize naturally to points relatively far from the training data.

The multi-activity model learned from the combined running and walking data does not
satisfy convexity to the same extent. Fig. 4.10 shows the subspace spanned by the first two
eigen-motions of the combined model. In addition to the training data, the figure shows the
locations of four points that lie roughly between the projections of the walking and running
data. The four rows of Fig. 4.11 depict the corresponding motions (for which the remaining
subspace coefficients, xj = 0, 3 ≤ j ≤ d, were set to zero). While three of the motions
are plausible mixtures of running and walking, the top row of Fig. 4.11 clearly shows an
implausible motion. Here we find that points close to the training data generate plausible
motions, but far from the training data the motions become less plausible.

Nevertheless there are regions of the subspace between walking and running data points
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that do correspond to plausible models. These regions facilitate transitions between walking
and running that are essential if we wish to be able to track subjects through such transitions
(as shown below).

4.2 Tracking Framework

In this section we show how the motion models of Section 4.1 can be used for 3D people
tracking. Our goal is to show that with activity-specific motion models one can often for-
mulate and solve the tracking problem straightforwardly with deterministic optimization.
Here, tracking is expressed as a nonlinear least-squares optimization, and then solved using
Levenberg-Marquardt [114].

The tracking is performed with a sliding temporal window. At each time instant t we find
the optimal target parameters for f frames within a temporal window from time t to time
t+ τ . Within this window, the relevant target parameters include the subspace coefficients,
{xi}

d
i=1, where xi is the i-th dimension of the latent variable x, the global position and

orientation of the body at each frame {gj} and the phases of the motion at each frame
{µj}, for t ≤ j ≤ t+ τ :

φt = [x, µt:t+τ ,gt:t+τ ] . (4.6)

While the global pose and phase of the motion vary throughout the temporal window, the
subspace coefficients are fixed over the window.

After minimizing an objective function over the unknown parameters phit, we retain
the pose estimate at time t given by the estimated latent variable x̂, along with the global
parameters and phase at time t, i.e., ĝt and µ̂t. Because the temporal estimation windows
overlap from one time instant to the next, the estimated target parameters tend to vary
smoothly over time. In particular, with such a sliding window the estimate of the pose at
time t is effectively influenced by both past and future data. It is influenced by past data
because we assume smoothness between parameters at time t and estimates already found
at previous time instants t − 1 and t − 2. It is influenced by future data as data constraints
on the motion are obtained from image frames at times t+ 1 through t+ τ .

4.2.1 Objective Function

We use the image data to constrain the target parameters with a collection of nobs constraint
equations of the form

O(xi, φ) = εi , 1 ≤ i ≤ nobs , (4.7)

where the pi are 2D image features, O is a differentiable function whose value is zero for
the correct value of φ and noise-free data, and εi denotes the residual error in the ith con-
straint. Our objective is to minimize the sum of the squared constraint errors. Because some
measurements may be noisier than others, and our observations may come from different
image properties that might not be commensurate with one another, we weight each con-
straint of type type with a constant, γtype. In effect, this is equivalent to a model in which
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(a)

(b)

(c)

Figure 4.9: Sampling the first five components of each single activity database produce
physically possible motions. The odd rows show the highest probability sample
that for each single-motion database, which is the at the origin xi = 0, ∀i.
The even rows show some low probability samples very far from the training
motions to demonstrate that even those samples produce realistic motions. The
coefficients for these motion are shown in Fig. 4.8 (a,b,c) respectively. First
two rows (a): Walking, Middle rows (b): Running, Last two rows (c): Golf
swing samples.
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Figure 4.10: Sampling the multi-activity subspace. The 4 samples that generate the mo-
tions of Fig. 4.11 are depicted.

the constraint residuals are IID Gaussian with isotropic covariance, and the weights are just
inverse variances.

Finally, since image data are often noisy, and sometimes under-constrain the target pa-
rameters, we further assume regularization terms that encourage smoothness in the global
model. We also assume that the phase of the motion varies smoothly. The resulting total
energy to be minimized at time t, Ft, can therefore be expressed as

Ft =
nobs∑

i=1

γtypei
∥∥Otypei(pi, φ)

∥∥2
+ γz

t+τ∑

j=t

‖zj − ẑj‖
2 (4.8)

+γo

t+τ∑

j=t

‖oj − ôj‖
2 + γµ

t+τ∑

j=t

(µj − µ̂j)
2 + γx‖x− x̂‖2 ,

where Otype is the function that corresponds to a particular observation type, zt and ot are
the global translation and rotation such that gt = (zt,ot), γz , γo, γµ and γx are scalar
weights, and x̂i denote the coefficients estimated in the previous window of τ + 1 frames.
The deterministic predictions, ẑj , ôj and ŷj , assume zero acceleration and therefore take
the form:

ẑj = 2zj−1− zj−2 , ôj = 2oj−1− oj−2 , µ̂j = 2µj−1− µj−2 .

The variables zt−1, zt−2, ot−1, ot−2, µt−1 and µt−2 are taken to be the values estimated
from previous two time instants, and are therefore fixed during estimation at time t.

Given a function Ft that is differentiable, and bearing in mind that the derivatives of
Ft with respect to the D individual joints angles ∂Ft

∂θj
can be easily computed [111], the

estimation of the Jacobian simply involves computing

∂Ft

∂xi
=

D∑

j=1

∂θj

∂xi
·
∂Ft

∂θj
,

∂Ft

∂µt
=

D∑

j=1

∂θj

∂µt
·
∂Ft

∂θj
, (4.9)
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Figure 4.11: Sampling the first two components of a multi-activity database compose of
walking and running motions can produce physically impossible motions. The
coefficients of the motions depicted in this figure are shown in Fig. 4.10. Top
row: Physically impossible motion. The input motion space compose of walk-
ing and running is not convex. Middle row: Physically possible motion close
to a walking. Bottom row: Motion close to a running. As the convexity of
the input space is assumed when doing PCA, and it may not be the case, the
resulting motion as a combination of principal directions can be physically
impossible.
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where ψ ≡ [θ1, · · · , θD], and y ≡ [ψ1, · · · , ψN ] is given by (4.4). Because the θj are
linear combinations of the Θi eigenvectors, ∂θj

∂xi
reduces to Θij , the jth coordinate of Θi.

Similarly, we can write
∂θj

∂µt
=

m∑

i=1

xi
∂Θij

∂µt
,

where the ∂Θij

∂µt
can be evaluated using finite differences and stored when building the mo-

tion models.

4.2.2 Computational Requirements

Monte Carlo approaches, like that in [126], rely on randomly generating particles and eval-
uating their fitness. Because the cost of creating particles is negligible, the main cost of each
iteration comes from evaluating a log likelihood, such as Ft in (4.9), for each particle. In a
typical particle filter, like the Condensation algorithm [63], the number of particles needed
to effectively approximate the posterior on a D-dimensional state space grows exponen-
tially with D [27, 88]. With dimensionality reduction, like that obtained with the subspace
motion model, the state dimension is greatly reduced. Nevertheless, the number of particles
required can still be prohibitive [126].

By contrast, the main cost at each iteration of our deterministic optimization scheme
comes from evaluating Ft and its Jacobian. In our implementation, this cost is roughly
proportional to 1 + log(D) times the cost of computing Ft alone, where D is the number
of joint angles of (4.9). The reason this factor grows slowly with D is that the partial
derivatives, ∂Ft

∂θj
, which require most of the computation, are computed analytically and

involve many intermediate results than can be cached and reused. As a result, with R
iterations per frame, the total time required by our algorithm is roughly proportional R(1 +
log(D)) times the cost of evaluating Ft. Since we use a small number of iterations (less
than 15 for all experiments in this chapter), the total cost of our approach remains much
smaller than typical probabilistic methods.

4.3 Monocular Tracking

We first demonstrate our approach in the context of monocular tracking [149]. Since we
wish to operate outdoors in an uncontrolled environment, tracking people wearing normal
clothes, it is difficult to rely solely on any one image cue. Here we therefore take advantage
of several sources of information.

4.3.1 Projection Constraints

To constrain the location of several key joints, we track their approximate image projec-
tions across the sequence. These 2D joint locations were estimated with a 2D image-based
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Figure 4.12: 2D Tracking using the WSL tracker. Top row: Tracking the chest, knees,
head, ankles and visible arm. The tracked upper body joints are shown in red,
with the head and tracked lower joints points shown in yellow. Bottom row:
Regions used for tracking the ankles, knees, and head are shown.

tracker. Fig. 4.12 shows the 2D tracking locations for two test sequences; we track 9 points
for walking sequences, and 6 for the golf swing.

For joint j, we therefore obtain approximate 2–D positions pj in each frame. From the
target parameters φ we know the 3–D position of the corresponding joint. We then take the
corresponding constraint function,Ojoint(pj, φ), to be the 2–D Euclidean distance between
the joint’s projection into the image plane and the measurement of its 2-D image position.

4.3.2 Foreground and Background

Given an image of the background without the subject, we can extract rough binary masks
(silhouettes) of the foreground, like those in Fig. 4.13. Because the background in our video
is not truly static the masks are expected to be noisy. Nevertheless, they can be exploited as
follows. We randomly sample the binary mask, and for each sample pi we define a Back-
ground/Foreground function Ofg/bg(pi, φ) that is 0 if the line of sight through xi intersects
the model. Otherwise, it is equal to the 3D distance between the line of sight and the nearest
model point. In other words, Ofg/bg is a differentiable function that introduces a penalty
for each point in the foreground binary mask that does not back-project onto the model.

Minimizing Ofg/bg in the least squares sense tends to maximize the overlap between the
model’s projection and the foreground binary mask. This helps to prevent target drift.

4.3.3 Point Correspondences (Optical Flow)

We use 2–D point correspondences in pairs of consecutive images as an additional source
of information: We project the 3–D model into the first image of the pair. We then sample
image points to which the model projects and use a normalized cross-correlation algorithm
to compute displacements of these points from that frame to the next. This provides us with
measurement pairs of corresponding points in two consecutive frames, pi = (p1

i ,p
2
i ). The

correspondence penalty function, Ocorr(pi, φ) is given as follows: We back-project p1
i to
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4.3 Monocular Tracking

Figure 4.13: Poor quality foreground binary mask. First row: Extracted from the walk-
ing sequence of Fig. 4.1 and Second row: from the golf swing of Fig. 4.17.

the 3–D model surface and reproject it to the second image. We then take Ocorr(pi, φ) to
be the Euclidean distance in the image plane between this reprojection and corresponding
p2

i .

4.3.4 Experimental Results

The results shown here were obtained from uncalibrated images. The motions were per-
formed by subjects of unknown sizes wearing ordinary clothes that are not particularly
textured. To perform our computation, we used rough guesses for the subject sizes and
for the intrinsic and extrinsic camera parameters. For each test sequence we manually ini-
tialize the position and orientation of the root node of the body in the first frame so that
it projects approximately to the right place. Similarly we manually give the 2D locations
of the joints to be tracked by WSL. This entire process requires only a few mouse clicks
and could easily be improved with the use of automated posture detection techniques (e.g.,
[1, 3, 41, 99, 137]).

Simple methods were used to detect the key postures defined in Section 4.1 for each
sequence. Using spline interpolation, we assign an initial value for µt for all the frames in
the sequence, as depicted in Figs. 4.14(b) and 4.16(b). Finally, the motion is initially taken
to be the mean motion Θ0, i.e., the subspace coefficients αi are initially set to zero. Given
these initial conditions we minimize Ft in (4.9) using Levenberg-Marquardt.

4.3.4.1 Walking

Fig. 4.1 shows a well-known walking sequence [126, 127, 2]. To perform the 2D tracking
we used a version of the WSL tracker [67]. WSL is a robust, motion-based 2D tracker
that maintains an online adaptive appearance model. The model adapts to slowly changing
image appearance with a natural measure of the temporal stability of the underlying image
structure. By identifying stable properties of appearance the tracker can weight them more
heavily for motion estimation, while less stable properties can be proportionately down-
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Figure 4.14: Automatic Initialization of the normalized time parameter µt for the walk-
ing sequence of Fig. 4.1. (a) Width of the detected silhouette. (b) Spline
interpolation for the detected key-postures.

weighted. This gives it robustness to partial occlusions. In the first frame we specified 9
points that we wish to track, namely, the ankles, knees, chest, head, left shoulder, elbow
and hand.

To initialize the phase parameter, µt, we used a simple background subtraction method
to compute foreground masks (e.g., see Fig. 4.13). Times at which the mask width was
minimal were taken to be the times at which the legs were together (i.e., µt = 0.25 or
µt = 0.75). Spline interpolation was then used to approximate µt at all other frames in
the sequence (see Fig. 4.14b). More sophisticated detectors [1, 41, 99, 137] would be
necessary in more challenging situations, but were not needed here.

The optimal motion found is shown in Figure 4.1. There we show the estimated 3D model
projected onto several frames of the sequence. We also show the rendered 3D volumetric
model alone. The tracker was successful, producing a 3D motion that is plausible and well
synchronized with the video. Note that even though the right (occluded) arm is not well
reconstructed by the model (does not fit the image data), since it was not tracked by the
WSL tracker, and hence was only weakly constrained by the objective function, it has a
plausible rotation.

4.3.4.2 Golf Swing

As discussed in Section 4.1.3, the golf swings used to train the model were full swings from
the CMU database. They were performed by neither of the golfers shown in Figs. 4.2, 4.17
and 4.18. With the WSL tracker we tracked five points on the body, namely, the knees,
ankles and head (see Fig. 4.12). Because the hand tends to rotate during the motion, to
track the wrists we have found it more effective to use a club tracking algorithm [82] that
takes advantage of the information provided by the whole shaft. Its output is depicted by the
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Figure 4.15: Detected hand trajectories for the full swing in Fig. 4.2 and the approach
swing in Fig. 4.18. The left and right hand positions (pixel units) are repre-
sented in black and red respectively.

first row of Fig. 4.15, and the corresponding recovered hand trajectories by the second row.
This tracker does not require any manual initialization. It is also robust to mis-detections
and false alarms and has been validated on many sequences. Hypotheses on the position
are first generated by detecting pairs of close parallel line segments in the frames, and then
robustly fitting a 2D motion model over several frames simultaneously. From the recovered
club motion, we can infer the 2D hand trajectories of the bottom row of Fig. 4.15.

For each sequence, we first run the golf club tracker [82]. As shown in Fig. 4.16(a), for
each sequence, the detected club positions let us initialize the phase parameters by telling
us in which four frames the key postures of Fig. 4.6 can be observed. With the times of
the key postures, spline interpolation is then used to assign a phase to all other frames in
the sequence (see Fig. 4.16(b)). As not everybody performs the motion at the same speed,
this time is only a guess, which is refined during the actual optimization. Thus the temporal
alignment does not need to be precise, but it gives a rough initialization for each frame.

Figures 4.2 and 4.17 show the projections of the recovered 3D skeleton in a representative
subset of images of two full swings performed by subjects whose motion was not used in
the motion database. Note the accuracy of the results. Fig. 4.18 depicts a short swing that
is performed by a different person. Note that this motion is quite different both from the full
swing motion of Fig. 4.2 and from the swing used to train the system. The club does not
go as high and, as shown in Fig. 4.15, the hands travel a much shorter distance. As shown
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Figure 4.16: Assigning normalized times to the frames of Fig. 4.2. (a) We use the automat-
ically detected club positions to identify the key postures of Fig. 4.6. (b) The
corresponding normalized times are denoted by red dots. Spline interpolation
is then used to initialize the µt parameter for all other frames in the sequence.

by the projection of the 3D skeleton, the system has enough flexibility to generalize to this
motion. Note, however, that the right leg bends too much at the end of the swing, which
is caused by the small number of training motions and the fact that every training swing
exhibited the same anomaly. A natural way to avoid this problem in the future would be to
use a larger training set with a greater variety of motions.

Finally, Fig. 4.19 helps to show that the model has sufficient flexibility to do the wrong
thing given insufficient image data. That is, even though we use an activity-specific motion
model, the problem is not so constrained that we are guaranteed to get valid postures or
motions without using the image information correctly.

Figure 4.17: Monocular tracking a full swing of 68 frames. The skeleton of the recovered
3–D model is projected onto the images.
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4.3 Monocular Tracking

Figure 4.18: Monocular Tracking a short swing during which the club goes much less
high than in a driving swing. The skeleton of the recovered 3–D model is
projected onto the images.

(a) (b) (c) (d) (e) (f)

Figure 4.19: Tracking using only joint constraints vs using the complete objective func-
tion. (a) Original image. (b) 2–D appearance based tracking result. (c) 2–D
projection of the tracking results using only joint constraints. The problem is
under-constrained and a multiple set of solutions are possible. (d) 3–D tracking
results using only joint constraints. (e) and (f) The set of solutions is reduced
using correspondences.
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4.4 Multi-view Tracking

When several synchronized video streams are available, we use a correlation-based stereo
algorithm [152] to extract a cloud of 3–D points at each frame, to which we fit the motion
model.

4.4.1 Objective Function

Recall from section 4.1 that we represent the human body as a set of volumetric primitives
attached to an articulated 3–D skeleton. For multi-view tracking we treat them as implicit
surfaces as this provides a differentiable objective function which can be fit to the 3D stereo
data while ignoring measurement outliers. Following [111] the body is divided into several
body parts; each body part b includes nb ellipsoidal primitives attached to the skeleton.
Associated with each primitive is a field function hi, of the form

hi(p, φ) = bi exp(−aidi(p, φ)) , (4.10)

where p is a 3–D point, ai, bi are constant values, di is the algebraic distance to the center
of the primitive, and φ, is the state vector in (4.6). The complete field function for body part
b is taken to be

hb(p, φ) =

nb∑

i=1

hi(p, φ) , (4.11)

and the skin is defined by the level set

SK(p, φ) =
B⋃

b=1

{p ∈ R3|hb(p, φ) = C} (4.12)

whereC is a constant, andB is the total number of body parts. A 3D point p is said attached
to body part b if

hb(p, φ) = min
1≤i≤B

|hi(p, φ)− C| (4.13)

For each 3D stereo point, pi, we write

Ostereo(pi, φ) = hb(pi, φ)− C . (4.14)

Fitting the model to stereo-data then amounts to minimizing (4.9), the first term of which
becomes

t+f−1∑

j=t

B∑

b=1

∑

pi∈b

(hb(pi,j , φ)− C)2 , (4.15)

where pi,j is a 3D stereo point belonging to frame j. Note that Ostereo is differentiable and
its derivatives can be computed efficiently [111].
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4.4 Multi-view Tracking

Figure 4.20: Tracking a running motion. The legs are now correctly positioned in the
whole sequence.

Figure 4.21: Input stereo data for the running sequence of Fig. 4.20. Side views of the 3–
D points computed by the Digiclops tm system. Note that they are very noisy
and lack depth because of the low quality of the video sequence.

4.4.2 Experimental Results

We use stereo data acquired using a Digiclopstm operating at a 640× 480 resolution and a
14Hz frame rate. Because the frame rate is slow, the running subject of Fig. 4.20 remains
within the capture volume for only 6 frames. The data shown in Fig. 4.21 are noisy and
have low resolution for two reasons. First, to avoid motion blur, we used a high shutter
speed that reduced exposure. Second, because the camera was fixed and the subject had to
remain within the capture volume, she projected onto a small region of the image during
the sequences. Of course, the quality of this stereo data could have been improved by using
more sophisticated equipment. Nevertheless, our results show that the tracker is robust
enough to exploit data acquired with cheap sensors.

Initially, the motion subspace coefficients are set to zero, as above. We manually initial-
ized the phase of the motion µt in the first and last frame of the sequence. These points
were then interpolated to produce an initial phase estimate in every frame. The initial guess
does not have to be precise because the tracking does not work directly with the images but
with the 3D data.

Fig. 4.22 shows results on walking sequences performed by two subjects whose motion
capture data were also used as training data for the motion models. One can see from the
figures that the legs are correctly positioned. The errors in the upper-body are caused by the
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Figure 4.22: Multi-view walking tracking. Using low resolution stereo data to track the
two women whose motions were not used to learn the motion model. The
recovered skeleton poses are overlaid in white.

large amount of noise in the stereo data.
Figure 4.23 depicts results from a walking sequence with a subject whose motion was not

included in the training data. In this case he was also wearing four gyroscopes on his legs,
one for each sagittal rotation of the hip and knee joints. The angular speeds they measured
were used solely for comparison purposes. Their output was integrated to yield the absolute
angles shown as dotted curve in Fig. 4.24. We overlay on these plots the values recovered
by our tracker, showing that they are close, even though the left leg is severely occluded.
Given the position of the visible leg, the PCA motion model constrains the occluded one to
be in a plausible position close to the real one.

Figure 4.20 shows results for the running sequence of Fig. 4.21 using the running mo-
tion model. The pose of the legs is correctly recovered. The upper body tracking remains
relatively imprecise because average errors in the stereo data are larger than the distance
between the torso and the arms. Improving this would require the use of additional in-
formation, such as silhouettes. Here we restrict ourselves to stereo data to show that our
framework can be used with very different objective functions.
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4.4 Multi-view Tracking

Figure 4.23: Tracking a walking motion from a subject whose motion was not recorded in
the database. The legs are correctly positioned.
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Figure 4.24: Comparing recovered rotation angles using visual tracking (solid curve), and
by integrating gyroscopic data (smooth curve) for the walk of Fig. 4.23. Left
column: Right hip and knee sagittal rotations. Right Column: Same thing for
the left leg. Note that both curves are very close in all plots, even though the
left leg is severely occluded.
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Figure 4.25: Tracking the transition between walking and running. In the first four
frames the subject is running. The transition occurs in the following three
frames and the sequence ends with running. The whole sequence is shown.

Having a set of subspace coefficients per frame gives the system the freedom to automat-
ically evolve from one activity to another. To demonstrate this we used our motion model
learned for the combined running and walking data to track a transition from walking to
running (see Fig. 4.25). In the first few frames the subject is walking, then for a couple
of frames she performs the transition and runs for the rest of the sequence. The arms are
not tracked because we focus on estimating the motion parameters of the lower body only.
Here again, the legs are successfully tracked with small errors in foot positioning that are
due to the fact that ankle flexion is not part of the motion database.

4.4.3 Recognition

The motion style is encoded by the subspace coefficients in (4.4). They measure the de-
viation from the average motion along orthogonal directions. Recall that during tracking
above, the subspace coefficients are permitted to vary from frame to frame. For recognition,
we reconstruct the 3D motion of the person with a single set of subspace coefficients for
the entire sequence [153].

In more detail, the tracking algorithm used for recognition is divided into two steps. First,
the normalized time µt and the global motion gt are optimized frame by frame, assuming
a constant style equal to the mean motion Θ0. This provides a good initial estimate for a
second step, where a global optimization is performed. In the global fit, the normalized time
and global motion parameters are allow to vary in every frame, but only one set subspace
coefficients is used to represent the entire motion sequence. This is equivalent to minimizing
(4.9), where the size of the sliding window is τ + 1 = T .

Figure 4.26 (a) depicts the first two xi coefficients for the database used for the track-
ing. The four subjects of the subspace are well separated in the first two dimensions. The
estimated coefficients for each one of the two examples depicted by Fig. 4.22 are shown
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4.4 Multi-view Tracking

(a) (b) (c)

Figure 4.26: Recognition of the walking person from stereo data. Different subjects ap-
pear in different colors and symbols. (a) Clusters formed by the first two PCA
coefficients in the database used for tracking, composed of 4 subjects. Black
circles represent tracking results for database subjects. The black triangle rep-
resent tracking result for a new subject. Note that when the database is con-
formed of this five subjects it does not cluster anymore in 2–D. (b) Fist two
components of a bigger database than the one used for tracking, composed of
9 subjects. Black circles represent tracking results for database subjects and
black triangles for a subject whose motions was not recorded when building
the database. Note that the database clusters in 4–D. (c) Third and Fourth
coefficients of the 9 subjects database.

as circles and a triangle represents the estimated value for the subject in Fig. 4.23 whose
motion is not included in the training dataset. For both women, the first two recovered co-
efficients fall in the center of the cluster formed by their recorded motion vectors. Also note
that while the new subject’s motion does appear consistent with one of the training subjects
in the first two subspace dimensions, they are quite different in the next two dimensions.

Figure 4.26 (b,c), depicts the first four xi coefficients for a model learned using nine sub-
jects. The estimated coefficients for each one of the two examples depicted in Fig. 4.22 are
shown as circles and as triangles for the subject of Fig. 4.23 whose motion is not recorded
in the database. Once more, for both women, the first four recovered coefficients fall in
the center of the cluster formed by their recorded motion vectors using optical motion cap-
ture, meaning that they have been well estimated. Higher order coefficients exhibit small
variations that can be attributed to the fact that walking on a treadmill changes the style.
Typically the subjects tend to bend the back more when performing the walking in a tread-
mill to maintain balance. For the man whose motion was not recorded in the database, the
recovered coefficients fall within two different clusters when looking at the first two coef-
ficients or at the third and fourth, meaning that this person forms a different cluster in four
dimensions. It is not recognized as none of the nine persons of the database.
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4.5 Motion Generation

Representing motions as linear sums of principal components has become a widely ac-
cepted animation technique [5, 48, 84, 147]. These principal components are computed by
motion capturing as many people as possible performing a specific activity, representing
each motion as a temporally quantized vector of joint angles, and performing a Principal
Component Analysis (PCA) [68] on the resulting database of motion vectors. Linear com-
binations of these vectors can then be considered as valid motions and used to produce new
animations.

While powerful, the simplest version of this approach is not particularly well suited to
modeling the specific style of an individual whose motion had not yet been recorded when
building the database: It would take an expert to adjust the PCA weights to obtain a mo-
tion style that is indistinguishable from his. Consequently, when realism is required, the
current practice is to perform a full motion capture session each time a new person must be
considered.

In this section, we show that the PCA approach can be extended so that this requirement
can be drastically reduced: For whole classes of cyclic and non-cyclic motions such as
walking, running or jumping, it is enough to observe the newcomer walking or running only
once at a particular speed or jumping a particular distance using either an optical motion
capture system or a simple pair of synchronized video cameras. This one observation is
used to compute a set of principal component weights that best approximates the motion
and to extrapolate in real-time realistic animations of the same person moving at different
speeds or jumping at different distances. This has an important advantage over traditional
blending approaches that simply rely on a linear combination of the captured data to create
new styles [48, 74, 119]: Extrapolation allows us to reach a comparatively larger subspace
of physically correct motions. Furthermore, unlike techniques such as the one described
in [18], our approach does not need fine parameter settings for initialization purposes. Our
animations are produced in real-time, with potential changes of physical motion properties
such as walking speed or jumping distance.

We first validated our approach for both cyclical and non-cyclical motions by exclusively
using reliable optical motion capture data: We built a walking database by capturing nine
people walking at speeds ranging from 3 to 7 km/h, a running database by capturing five
people running at speeds ranging from to 6 to 12 km/h, and a jumping database by capturing
jumps ranging from 40 to 120 cm in length for four different people. Given a PCA decom-
position and a new captured motion that had not been used to perform this decomposition,
we project it into PCA space and compute distances, that weights the influence of each PCA
component, to database motions corresponding to the same speed or jump length. These
can then be used to synthesize new motions corresponding to different speeds or jumping
lengths and we have verified that these synthesized motions and the actual ones that we
have also recorded are both statistically and visually close.

We then replaced the optical motion capture data for the new person by stereo imagery
acquired with a cheap and commercially available device [35]. To this end, we take advan-
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tage of the technique described in section 4.2 to estimate the PCA weights from the video
sequences. This step replaces the projection into PCA space discussed above and allows us
again to speed-up or slow-down the motion while preserving the style.

Note that, even though the database we used for validation purposes is specific to three
kinds of motions, the approach itself is completely generic. Transposed onto a production
set, it has great labor saving potential: The actors’ motion need only be captured once to
generate a whole range of realistic and personalized animations, thus sparing the need for
time-consuming motion capture sessions and expensive gear.

In the remainder of this section, we will first discuss briefly related work on motion
generation and show our approach to computing PCA weights for observed motions that
are not part of the initial motion database and using them to extrapolate new ones. Finally,
we will validate it using both optical motion capture and video data.

4.5.1 Related Work on Motion Generation

We include here a related work section, since in chapter 3 we have discuss only the state of
the art in tracking, and not in motion generation since it is not the goal of this work but an
application of our motion models.

The literature on walking and running animation is so rich that a full chapter would
be necessary to discuss the advances for walking alone since the last major review of the
field [101]. Three main classes of approach can nevertheless be distinguished.
Inverse kinematics. This involves specifying at each key time the corresponding key po-
sitions of some joints and obtaining the joint angles according to biomechanical data infor-
mation. This can be done efficiently [9, 47] but there is no guarantee of physical realism
and this often leads to overly mechanical movements.
Inverse Dynamics. These techniques look for the correct forces and torques to apply to
joints to reach a given position. This produces smooth results but may involve postures that
are not humanly feasible. It therefore becomes necessary to check and potentially correct
these postures by applying appropriate constraints [59, 86, 85, 163].
Motion Capture and Editing. New motions are typically created by blending and inter-
polation. Composite motions can then be obtained by combining several captured ones.
Comparable methods presented in [6, 75, 80, 148] do this by connecting them into a di-
rected graph. Its edges represent motion clips and nodes are potential connecting points
between clips. The user can generate new motions by moving along an optimized path in
the graph.

To synthesize a motion that closely resembles that of a specific person, as opposed to a
generic virtual human, using motion capture data is clearly the favored approach because
there is no easy way to set the parameters for either Inverse Kinematics or Inverse Dynamics
to achieve the desired goal. The latter class of techniques is therefore the most widely used.
However, they are not usually designed to allow the modification of intrinsic properties of
the database motions, which is the issue we address in this section and discuss in more
details below.
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4.5.1.1 Motion Editing

Constraint-based techniques, discussed and classified in [51], alter an original motion while
preserving some specific geometric features. Between them, space-time constraint [50, 81]
or physically-based approaches [113, 86] provide effective tools to interactively manipulate
a motion clip by changing some important properties of the movement. While performing
almost in real-time, these methods are appropriate for slight modifications of the motion
but not to introduce stylistic variations, mainly because they are difficult to formulate as
mathematical constraints.

A motion can be treated as a time-varying signal. Signal processing techniques have
therefore been developed both to edit the complete motion by varying the frequency bands
of the signal [20], or the Fourier coefficients [148], and to randomize the original mo-
tion [109]. However, controlling the randomization is far from straightforward and may
yield unpredictable results that can be physically impossible.

Blending or interpolation are the typical approaches to generating new motions. For
example, Ashraf and Wong [52] interpolate walking and running motions in 3D space where
the axes correspond to significant parameters of a locomotion cycle. The method uses
bilinear interpolation to synthesize a new motion given four motions having different values
for each of the three dimensions. This approach, however, is limited to a small number of
input motions and parameters.

Multivariate interpolation can be used to solve this problem. In [119], multivariate in-
terpolation is performed on a wide range of motion capture data. Motions are defined
by B-Spline coefficients and manually classified according to their characteristics, which
yields a parameter vector for each motion. Similar motions are time-normalized using a
time warping process that structurally aligns them. New ones are then generated by apply-
ing polynomial and Radial Basis Function interpolation between the B-Spline coefficients.
Kovar and Gleicher [74] present a general method allowing motions generation from a vari-
ous input motions. They introduce registration curves that ensure a consistent time-warping
and root alignment and apply physical constraints to produce blended motions.

While powerful, these methods are highly dependent on the weights values the animators
assign to a set of input motions. Thus, determining a good combination of these weights be-
comes difficult for the creation of a very specific motion. To enhance this control, a possible
alternative is presented in [37]. A motion is modified interactively by an animator manipu-
lating a reflective device whose motions are captured by an optical system and transferred
to a virtual character.

The approaches presented above have the disadvantages that the newly generated motion
cannot be retargeted to subjects of different sizes. Park et al. [107] propose a locomotion
generation, adaptable to any target character, based on the motion interpolation of [119,
129]. A motion retargeting based on the approach introduced by Shin et al. [124] provides
a real-time animation framework. However, even if stylistic variations were incorporated
into this approach, generating the motions corresponding to a specific person will involve
the same problems as before.
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4.5.1.2 Principal Component Analysis for motion synthesis

The methods discussed above suffer from a number of limitations: First, there is no intuitive
way to create a motion with specific characteristics. Second, they do not provide for extrap-
olation. As a result, to create a whole range of motions such as those of a specific athlete
running at varying speeds, one must perform a full motion capture session of that athlete
actually running at a number of different speeds. This can prove cumbersome and the tech-
nique we advocate in this section takes advantage of Principal Components Analysis (PCA)
to alleviate this problem by giving our system an extrapolation capability.

PCA [14, 84, 147] has recently been extensively used in motion synthesis. It has also
been used to compress keyframed animation data [5] and to emphasize similarities between
instances of objects such as heads [15, 36] to deform them for example by changing their
apparent age or gender. Unfortunately for walking, running and jumping motions, the PCA
weights have no obvious direct interpretation. More sophisticated blending techniques are
required. Glardon et al. [48] used hierarchical structures to isolate specific motion parame-
ters. It can be used to extrapolate new motions but is not designed to reproduce the specific
style of an individual whose motions are not in the motion database. In theory, it could
be modeled as a weighted sum of database motions, which would require finding the right
weights. However, in practice, finding the weights by hand is very difficult and that is pre-
cisely what the technique proposed in this section lets us do from a single example for each
new style.

While our intention is quite similar to [18], by automatically extrapolating stylistic an-
imations, we enhance the motion creation process by offering a separate control of its
physical parameters (speed for walking and running, length for jumping) and the ability
to retarget the motion to virtual humans of different sizes. Moreover, we provide a mathe-
matical framework that does not depend on a specific parameterization and fulfills real-time
constraints.

4.5.2 Models for Motion Synthesis and Analysis

In this section, we introduce the motion models we use both to synthesize walking, running
and jumping animations and to capture such motions from video sequences.

4.5.2.1 Walking and Running

We use bigger walking and running databases than the ones used for tracking, sampled
at a higher frequency. To build walking models, we used a Vicon optical motion capture
system [155] to capture nine people walking at speeds ranging from 3 to 7 km/h by incre-
ments of 0.5 km/h on a treadmill. Similarly, to build a running model, we captured five
people running at speeds ranging from 6 to 12 km/h by increments of 1 km/h. The data
was segmented into cycles and sampled at regular time intervals using quaternion spherical
interpolation [125] so that each example can be treated as M = 100 samples of a motion.

89



4 Motion Models

0 20 40 60 80 100 120 140
0.4

0.5

0.6

0.7

0.8

0.9

1

num components

%
 d

at
ab

as
e

−10

−5

0

5

10

15
−8−6−4−20246

−8

−6

−4

−2

0

2

4

6

1st

2nd

3r
d

(a) (b)

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−15
−10

−5
0

5
10−10

−5
0

5
10

−8

−6

−4

−2

0

2

4

6

1st component
2nd component

3r
d 

co
m

po
ne

nt

(c) (d)

Figure 4.27: The motion database. (a) Percentage of the database that can be generated
with a given number of eigenvalues for the running database. (b) Clustering
behavior of the first 3 xi coefficients of Eq. 4.4 for the 140 motion vectors
measured for 5 subjects running at speeds ranging from 6 to 12 km/h. They
form relatively compact clusters in 3–D space that can be used for recognition
purposes. c) Percentage of the database that can be generated with a given
number of eigenvalues for the jumping database. d) Clustering behavior of the
first 3 components for 48 motions vectors measured for 4 subjects jumping
distances ranging from 40 to 120 cm. They cluster in 3–D.
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4.5 Motion Generation

As different subjects may be shorter or taller, size normalization is required. Mur-
ray [102] has shown that, for adults, relative angles for the hip, knee and ankle in the sagittal
plane have very similar trajectories for the same value of normalized speed V , obtained by
dividing the walking velocity v by the hip joint height H that represents the leg length.
Glardon et al. [48] generalized this approach to running and jumping. We normalize the
training motions by dividing the translation values of the humanoid root by the leg length
of the captured subject. This process produces N = 324 (9 subjects, 9 speeds, 4 cycles)
angular motion vectors for walking and 140 (5 subjects, 7 speeds, 4 cycles) for running.

Fig. 4.27 (a) depicts Q(d) as a function of d for the runnning database. It is taken to be
0.9 for the walking and 0.95 for the running databases, given d ' 10.

The top row of Fig. 4.27 depicts the first three xi components of the original running
motion vectors when expressed in terms of the Θi eigenvectors. Note that the vectors cor-
responding to specific subjects tend to cluster. The walking database exhibits the same
clustering behavior but in higher dimension as depicted in Fig. 4.26 (b,c). This is due to the
fact that the inter-variability between subjects is smaller than for a running motion. This
was expected since the number of subjects that compose the walking database is higher than
in the ones of the running database.

4.5.2.2 Jumping

To build the jumping database, we also used a Vicon optical motion capture system to
capture four people jumping distances ranging from 40 to 120 cm by increments of 40 cm.
The data was segmented into key-events, such as start and end of the jump, and sampled
at regular time intervals using spherical interpolation, so that each example has M = 100
samples. The same procedure as in the case of the walking and running motions can then
be applied with N = 48 (4 subjects, 3 jumps, 4 trials). The vectors of the jumping database
corresponding to specific subjects tend also to cluster, validating the proposed approach, as
depicted in the bottom row of Figure 4.27.

4.5.3 Motion Generation

In this subsection, we show how to extrapolate from a motion that is captured after the mo-
tion database of Section 4.5.2 has been built. This is a two-step process: First, we project
the new motion into the PCA space and measure its distance to each recorded motion cor-
responding to the same speed or jump length. The generated motion is then taken to be a
weighted average of motions at the target speed with the weights being inversely propor-
tional to those distances.

More precisely, let yp,s be the motion vector of Eq. 4.4 corresponding to database person
p, where s represents either the speed or the jump length. In the remainder of the section
we will refer to s as the motion parameter. Each one of these vectors can be approximated
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by its projection in PCA space ˆyp,s computed as

ŷp,s = Θ0 +
∑

i

xp,s
i Θi , (4.16)

xp,s
i = (yp,s −Θ0) ·Θi , (4.17)

where the Θi are the principal component vectors of Eq. 4.4, and the xp,s
i are the scalar

coefficients that characterize each motion.
Let Ψx,s1 be a vector characterized by motion parameter s, corresponding to a motion

performed by person x who has not been captured before. The length is arbitrary and we
wish to extrapolate motion Ψx,s2 of the same person moving with motion parameter s2 6= s1
from it. As before, if the motion is cyclic we break Ψx,s1 into cycles and perform quaternion
spherical interpolation [125] to produce a set of yx,s1 motion vectors of the same dimension
as the principal component vectors. If the motion is non-cyclic, we identify the start and
end of the key-events of the motion and use the resulting vector of taking the frames in
between such key-events in the same way as a cycle in a cyclic motion. By projecting one
of these cycles into PCA space, we can the corresponding latent variable xx,s1 analogous
to the one of Eq. 4.17.

Because the influence of each Θi principal component vector is proportional to the corre-
sponding λi eigenvalue, we use the normalized distance of Eq. 4.18 instead of the Euclidean
distance to compare motion vectors. For each p in the database, we therefore take the dis-
tance between yx,s1 and yp,s1 to be

dm(yx,s1 ,yp,s1) =

√∑
i λi(x

x,s1

i − xp,s1

i )2∑
i λi

. (4.18)

Kovar [75] defined a more realistic distance function in terms of the distances between
meshes. However the cost of using such distance is prohibitive in our context since we
would need to evaluate M ∗ S distances between meshes, where S is the total number of
subjects and M the number of frames. The distance proposed in this section requires only
d ∗ S norm evaluations, where d is the number of eigenvalues (dimensionality of the latent
space), allowing a real-time animation of multiple subjects. The only preprocessing needed
is the generation of the PCA database, which takes a few seconds.

The weights are then taken to be the normalized inverse of these distances.

wx,p =
[dm(yx,s1 ,yp,s1)]−1

∑
q [dm(yx,s1 ,yq,s1)]−1

(4.19)

This completes the interpolation step of our motion synthesis scheme and we are now ready
to generate a new motion. If s2 is one of the motion parameters recorded in the database,
we can simply take the new motion ỹ

x,s2
s1

to be an extrapolation of yx,s1 :

ỹx,s2

s1
= Θ0 +

∑

i

x̃x,s2

i Θi (4.20)

x̃x,s2

i =
∑

p

wx,pxp,s2

i .
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4.5 Motion Generation

Otherwise, to produce smooth transitions between motion parameters, we take the x̃x,s2

i

coefficients to be Cubic Spline Interpolations of those computed as described above.

4.5.4 Validation and Results

In this section we use a cross-validation framework to validate statistically and visually
our approach. For each database subject p in turn, we remove all the yp,s motion vectors
that correspond to him or her and perform a new PCA. For any two motion parameters s1

and s2, we can then use the procedure of Section 4.5.3 to synthesize ỹ
p,s2
s1

from yp,s1 and
compare it to ˆyp,s2 , the actual projection of the recorded motion. Ideally, the Mahalanobis
distances of these two motions should be zero for all p, s1 and s2.

In practice, this can of course never be exactly true. As discussed in Section 4.5.2, recall
that the database contains, for each subject, several motion cycles at the same speed and that
they are never exactly similar to one another. We then show how our technique is capable
of extrapolating walking styles completely different from the standard ones use for training.
Finally examples of extrapolation from video are shown.

4.5.4.1 Animation Results

We now show running and walking animation results obtained by synthetically varying the
speed of a motion captured at one single speed. These animations are visualized using the
time and space normalization described in [48], which allows smooth transitions between
motions and adaptation to different human sizes.

To perform size normalization, the root node translation is simply multiplied by the hip
joint height Hi of the subject to animate. Recall from section 4.5.2.1 that all input mo-
tions have been re-sampled to a fixed number of frames, N . A time normalization stage
establishes a correspondence between the elapsed time ∆t and the normalized time µt,
0 ≤ µt ≤ 1 of Eq. 4.3. Given C, the cycle frequency, defined as an adapted version of the
Inman law [48], the current normalized time µt is used to defined the frame j to display as:

µt = µt−1 + ∆tC (4.21)

j = µtN. (4.22)

Figure 4.29 depicts running at speeds increasing from 6 to 12 km/h. For comparison
purposes, we superpose the results with an animation obtained by interpolating the actual
motion capture data at all the relevant speeds. Note that the two synthetic characters are
superposed almost perfectly. To highlight the quality of the results, in the bottom of Fig-
ure 4.29, we superpose two animations corresponding to two different women. There the
differences are obvious. The same phenomenon can be seen in Figure 4.28 where we plot
the alpha coefficients as a function of speed.

Figure 4.30 depicts a similar behavior for walking at speeds ranging from 3 to 7 km/h.
Again, as can be seen in the top row, the motions generated from a single example and those
interpolated using a whole set of examples match very well, except for small discrepancies
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Figure 4.28: Cubic Spline interpolations of the first two components as a function of
the speed for the running database. The synthesized motion depicted in Fig-
ure 4.29 is generated from a single optical motion at 6 km/h and is shown in
solid black. The original captured motion is depicted in dashed black while
the database subjects are shown in different dotted colors.
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4.5 Motion Generation

Figure 4.29: Running at speeds increasing from 6 to 12 km/h. Top row: Superposition
of the synthesized motion generated from a single optical motion capture at 6
km/h, in yellow, to an animation observed in the actual motion capture data at
all the relevant speeds, in blue. Note that the two synthesized characters are
superposed almost perfectly. Bottom row: Superposition of the animations
corresponding to two different women. Note the big differences compared to
the results in the top row.

of the arm motion. As will be discussed below, this can be ascribed to the fact that people
do not perform a motion twice in exactly the same fashion.

The same principle can then be applied to jumping motion, but instead of parameterizing
as a function of the speed, we parametrize as a function of the jump length. Figure 4.31
depicts two jumps of 40 and 120 cm generated from a single example of 80 cm. Note that
the interpolated results and the original sequence again superpose very well. Once more
small discrepancies appear at the arm level. Figure 4.32 depicts the entire sequence of
a 120 cm jump extrapolated from an original 80 cm one. Note that both superpose well
during the whole sequence.

The physical correctness of the results could be further improved by correcting the output
animations by using standard inverse kinematic techniques to avoid the foot penetration into
the floor or sliding effects.

4.5.4.2 Statistical Validation

We now introduce the statistical cross-validation framework we use to validate the results
shown above. To this end, we define the following quantitative measures:
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Figure 4.30: Walking at speeds ranging from 3 to 7 km/h. Top row: Superposition of
the motions generated from a single example, in yellow, to those observed
in the optical motion capture, in blue. They matched very well except from
small discrepancies of the arm motion, that can be ascribed to the fact that
people do not perform a motion twice exactly in the same fashion. Bottom
row: Superposition of the animation corresponding to two different subjects.
Note the big differences compared to the results in the top row. Note that the
motion captured has not been corrected. This is the reason why the left leg is
penetrating into the floor.

• Interpolation Error: The average over all subjects and pairs of speeds of the normal-
ized distance, dm of Eq. 4.18, between the recorded and synthesized motion vectors
discussed above.

• Intra-variability: The dispersion between different realization by the same subject
of the same motion at the same speed. It is taken to be the mean over all subjects
and all speeds of the distance of the ŷp,s motion vectors corresponding to different
cycles.

• Inter-variability: The dispersion between different clusters belonging to different
subjects. It is calculated as the mean over all subjects of the distance between motion
vectors corresponding to different cycles and speeds.

In Figure 4.33, we give the Interpolation Errors, Intra-variability and Inter-variability val-
ues for our walking, running and jumping databases. Because we perform cross-validation,
we take each person out of the databases in turn and therefore list as many values as there
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Figure 4.31: Motion generation from a jump of length 80 cm. Top row: 40 cm jump.
Bottom row: 120 cm jump. We superpose motions generated from a single
example (80 cm), in yellow, to those observed by the optical motion capture,
in blue. They match very well except for small discrepancies in the arms.

are subjects in each one. Note that the interpolation error is consistently larger than the
intra-variability but much smaller than the inter-variability. In other words, our motion
generation scheme, while not perfect, nevertheless yields motions that are close enough to
those of their rightful owner to be associated with him or her rather to anybody else.

The inter-variability of jumping is bigger than the one of the walking or running because
it is more difficult for a subject to perform a jump twice in the same fashion, and to control
the jump length while behaving normally. The interpolation error of the walking database is
smaller than the others because the number of subjects in larger. This is also the reason why
the inter-variability is smaller: The larger the number of subjects the smaller the distance
between clusters.

4.5.4.3 Stylistic extrapolation

The motion generation technique presented in Section 4.5.3 can now be used to generate
walking styles completely different from the standard ones that form the walking database.
The principle is the same as before: The new stylized motion is projected into the motion
database. Weights are then computed based on the distance of Eq. 4.18 and used to create
the same style at a different speed. Figure 4.34 depicts a sneaking motion at 7 km/h gen-
erated by using a single example at 4.5 km/h and the standard walking database. Note that
the subject bends her back and increases the step size when the speed increases, which is
very realistic since that is what humans do while accelerating the motion in order to keep
their balance.
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Figure 4.32: Superposition of the 120 cm jumping motion generated from a single example
of length 80 cm, in yellow, to those observed by the optical motion capture, in
blue. Top row: Frames 1-40. Bottom row: Frames 41-80.

4.5.4.4 From Video to Animation

In this subsection we show that we can replace the optical motion capture data we have used
so far by synchronized video-sequences acquired using an inexpensive commercial prod-
uct [35]. The PCA coefficients extracted from the images are accurate enough to produce
valid and realistic motions used as input by our motion generation scheme.

The set of coefficients recovered by the tracking used for recognition and discuss in
Section 4.4.3 is used to generate animations of the subjects shown in the first two rows of
Figure 4.22 and 4.23 walking at different speeds.

Fig. 4.35 depicts a side view of the optical motions captured from 3 to 7 km/h (yellow)
superposed on the synthesized motion extrapolated from the video-sequence of Fig. 4.22
where the person was walking at a speed of 5 km/h. For the legs the correspondence is
almost perfect. The small differences in the arms stem from three different reasons: the
intra-variability of the walking motion, the low resolution of the images in which the arms
contain less than 10 pixels, and the fact that the optically captured motions were performed
using a treadmill which is not the case for the video-sequence. Note that the motion capture
data has not been corrected, which is why the left leg is penetrating into the floor.

Finally, we show how our framework can generate movements from a large space by
tracking a subject that is not part of the database depicted in Fig. 4.23 at 3 km/h and by
synthesizing his movement from 3 to 7km/h. The motion remains natural and physically
possible even though it is different from all the recorded motions. In Fig. 4.36, we highlight
this difference by superposing the generated motion to the closest one in the database,
which is clearly dissimilar. This was to be expected because, as shown in Fig. 4.26, the
corresponding alpha coefficients do not match any of the clusters that correspond to specific
individuals.
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Running 1 2 3 4 5
Intra Variability 0.22 0.21 0.22 0.19 0.20
Inter Variability 3.17 2.45 3.19 3.05 3.97

Interp Error 0.38 0.78 0.92 0.34 0.51

Walking 1 2 3 4 5 6 7 8 9
Intra Variability 0.24 0.21 0.21 0.22 0.23 0.23 0.24 0.23 0.20
Inter Variability 1.17 1.16 1.10 1.22 1.13 1.24 1.20 1.19 1.13

Interp Error 0.35 0.62 0.76 0.47 0.35 0.63 0.49 0.55 0.60

Jumping 1 2 3 4
Intra Variability 0.50 0.63 0.52 0.63
Inter Variability 1.82 1.88 1.73 1.97

Interp Error 0.93 0.73 0.72 0.87
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Figure 4.33: Interpolation Errors, Intra-variability and Inter-variability values. Top row:
Running. Second row: Walking. Third row: Jumping. Bottom row: Graphic
depiction of the above tables. Note that the interpolation error is consistently
larger than the intra-variability but much smaller than the inter-variability in
the three databases.
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Figure 4.34: Generation of stylized motion. Top row: Original sneaking walking at 4.5
km/h. Bottom row: Walking with a sneaking style at 7km/h generated using
only one example of such style at 4.5 km/h. Note that the database used is
composed only of normal walking styles.

4.6 Conclusion and Future Work

We have presented an approach to incorporating strong motion models that yields full 3–
D reconstruction using a single-hypothesis hill-climbing approach. This results in much
lower computational complexity than the current multi-hypothesis techniques. We have
demonstrate the effectiveness of our approach for monocular and multi-view tracking of
cyclic motions as walking and running and acyclic motions as golf swinging. Moreover, we
have shown that the tracking is accurate enough to perform subject identity recognition.

In the actual context we have traded the complexity of tracking for the complexity of
knowing which model to apply. This might mean keeping several models active at any one
time and selecting the one that fits best. This brings us back to multiple hypotheses tracking,
but the multiple hypotheses are over models and not states. This might be much more
effective than what many particle filters do because it ensures that the multiple hypotheses
are sufficiently different to be worth exploring.

We have presented a real-time motion generation technique that allows us to generate the
motion of a particular individual performing parameterized displacement activities. More
specifically, we have investigated the case of walking, running, and jumping. The first two
are cyclical and parametrized by speed. The third one is non-cyclical and parametrized
in terms of jump length. Given one single example, we can modify the speed, length, or
body size while preserving the individual’s specific style. The required example can be
obtained using either a sophisticated optical motion capture system or a much simpler set
of synchronized cameras. While we have only validated our approach in the case of three
specific cyclic and non-cyclic motions, we believe it to be fully generic and applicable to a
whole range of activities.

Currently the crucial limitation of the motion generation method comes from the fact
that we have not investigated the curvilinear motion patterns that would be required by a
complete system to blend the straight line motion sequences we synthesize. We did not
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Figure 4.35: Walking at speeds from 3 to 7 km/h. Superposition of the video of Fig-
ure 4.22, in blue, on a whole set of optical motion capture examples, in yellow.
The leg motion matches almost perfectly, which results in the lower body of
the two figures being almost perfectly superposed. Small discrepancies in the
arms are due to the intra-variability of the motion, the low resolution of the
video, and the fact that the optical motions were performed using a treadmill.
Note that the motion capture data has not been cleaned-up, which is why the
left leg is penetrating the floor.

include such motions into our database because they cannot be captured on a treadmill
and therefore require a more complex experimental set-up than the one we have. However,
since they are also controlled by a well-identified parameter, namely the radius of curvature,
we believe them to be amenable to our approach. Of course, increasing our repertoire
of motions could result in non-linearities, which may require us to replace PCA by more
sophisticated statistical tools such as Isomap [141] or the Gaussian Processes techniques
described in chapters 5 and 6, that allow the same kind of treatment for non-linear models.

Another area that requires further investigation is the combination of our motion genera-
tion and tracking methods with inverse kinematics technique to clean up the artifacts, such
as foot sliding, which can be observed in some of our results. The simplest approach would
be to use Inverse Kinematics in a post-processing step. A more ambitious approach would
be to detect foot support phases in real-time and enforce them with an IK solver [9, 49].

The major limitation of these linear motion models is the number of examples needed
to create a complete database with good generalization properties. Moreover, as shown in
Section 4.1.5 when learning multi-activity databases the convexity assumption is violated,
and better probabilistic models are needed in order to allow the model to produce only
physically possible motions. Chapters 5 and 6 describe non linear techniques that reduce
considerably the number of examples required [151], and that provide more realistic prob-
abilistic models of the probability of the latent coordinates than the simplistic underlying
Gaussian model used here.
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Figure 4.36: Side view of the original and synthesized motion from 3 to 7 km/h for the
subject of the video sequence of Figure 4.23. The subject is compared to its
closest neighbor in the database according to the Mahalanobis distance. The
original motion capture data is represented in blue, and the synthesized one in
yellow. They are quite different, which goes to show that our approach can
generate a wide range of realistic styles.
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5 Gaussian Process Latent Variable
Models for 3D people Tracking

The 3D estimation of human pose from video, specially in the monocular case, is often
poorly constrained, owing to reflection ambiguities, self-occlusion, cluttered backgrounds,
non-rigidity of tissue and clothing, and poor image resolution. As a consequence, prior
information is essential to resolve ambiguities, minimize estimator variance, and to cope
with partial occlusions. Unfortunately, because of the high-dimensional parameterization
of human models, learning prior models is difficult with small or modest amounts of training
data. Manual design of suitable models is also very difficult.

In Chapter 4, we showed that learning motion models, as opposed to pose models, lets
us use simple linear models to perform the tracking. These models are very useful since
they are easy to learn and provide a dynamical model. However, the amount of training
data they need, although not immensely large, can be prohibitive for some applications.
For example the golf database composed of 9 swings performed by the same subject is
too small to generalize well and to produce accurate tracking results. The training data
has to be composed of segmented and time warped sequences (motions), instead of just
poses. Moreover, it is difficult to learn transitions between motions because they need to
be parameterized in terms of the same motion phase variable (Eq. 4.3), and their linear
combination may result in unfeasible motions, or in motions very different from the ones
used for training.

In this chapter, we therefore come back to pose models and show that, when used in
conjonction with the appropriate non-linear statistical techniques, they can also be very
effective. We exploit the recently developed Scaled Gaussian Process Latent Variable
Model [54, 78] (SGPLVM) to learn a low-dimensional embedding of high-dimensional
human pose data. The model can be learned from much smaller amounts of training data
than competing techniques, such as [41, 130], and it involves very few manual parameter
tuning.

SGPLVM provides a continuous, kernel-based density function p(x,y) over positions x

in a low-dimensional latent space and positions y in the full pose space. The density func-
tion is generally non-Gaussian and multimodal. Importantly, it provides a natural preference
for poses close to the training data, smoothly falling off with distance. The model also pro-
vides a simple, nonlinear, probabilistic mapping from the latent space to the full pose space.
As explained below, y conditioned on x is a Gaussian random variable. Its variance reflects
the uncertainty of the mapping, and therefore increases with the dissimilarity between x

and the training data. This explicit representation of the variance is extremely useful.
This chapter explores the use of SGPLVM priors for monocular 3D people tracking. To
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Figure 5.1: Tracking of a 62-frame short golf swing. Top two rows: The skeleton of the
recovered 3D model is projected into a representative subset of images. Middle
two rows: Volumetric primitives of the recovered 3D model projected into the
same views. Bottom two rows: Volumetric primitives of the 3D model as seen
from above.
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Figure 5.2: Graphical model: for the (S)GPLVM.

this end we consider two distinct domains, golfing and walking, and show that prior models
can be learned from a single exemplar of each motion class. Both of these examples last just
a second but are, nevertheless, shown to be sufficient for tracking. The generative model
for the tracker comprises the SGPLVM, a simple likelihood function, and a second-order
dynamical model. On-line tracking is accomplished with straightforward deterministic op-
timization.

5.1 Gaussian Process Models

Gaussian Processes are often introduced in the context of regression, to learn a mapping
y = g(x,B) from training pairs {xi,yi} [90]. In least-squares regression, the quality of
the result often depends greatly on the specific form of g that one fits. Gaussian Processes
arise from a Bayesian formulation in which one marginalizes over a family of functions for
g. In this way, one mitigates common problems due to overfitting and underfitting. One
can additionally learn the smoothness and noise parameters. Remarkably, for functions
expressed as a linear combination of nonlinear basis functions {χj},

y =
∑

j

bj χj(x) + ny (5.1)

with IID Gaussian noise ny, and a Gaussian prior over {bj}, the marginalization produces
a Gaussian process model [90]. Fig. 5.2 depicts its graphical model.

5.1.1 Gaussian Process Latent Variable Models

In contrast to regression problems, here we are given training data, {yi}, but not the cor-
responding latent positions {xi}. As a consequence, we need to learn the unknown latent
positions {xi} along with the mapping from x to y. Toward this end, the GPLVM [78]
and SGPLVM [54] models formulate the likelihoods of the training data points {yi}

N
i=1,

yi ∈ R
D, in terms of Gaussian processes for which the corresponding values {xi} are ini-

tially unknown. These formulations can be viewed as a generalization of probabilistic PCA
[145] where, instead of marginalizing over latent variables x to find the linear mapping
from x to y, we marginalize over mapping functions and optimize the latent positions {xi}.

105



5 Gaussian Process Latent Variable Models for 3D people Tracking

A kernel function is introduced to allow for nonlinear mappings [78]. Scaling of individual
data dimensions was introduced by Grochow et al. [54] to account for different variances
of different dimensions of the data.

More formally1, let Y ≡ [y1, · · · ,yN ]T be a matrix, each row of which is one of the
training data points. We assume that the mean µ ∈ RD has been subtracted from the data,
so that the yi are mean zero. Marginalizing over B,

p(Y|M) =

∫

B

p(Y,B|M)dB =

∫

B

p(Y|B,M)p(B|M)dB, (5.2)

results for a variety of functions in a Gaussian Process [78]. Under the Gaussian Process
model, the conditional density for the data is multivariate Gaussian

p(Y |M) =
|W|N√

(2π)ND|KY |D
exp(−

1

2
tr(K−1

Y YW2YT ) ) . (5.3)

Here,M ≡ {{xi}, {βi}, {wj}
D
j=1} comprises a vector of all the unknown SGPLVM model

parameters. In particular, the matrix KY is called a kernel matrix, the elements of which are
given by a kernel function, (KY )ij = kY (xi,xj), the specific form of which depends on
the form of the basis functions in (5.1). Following [54, 78], we use a RBF kernel function,
with parameters βi given by

kY (xi,xj) = β1 exp(−
β2

2
‖xi − xj‖

2) +
δxi,xj

β3
. (5.4)

Here δxi,xj
is the Kronecker delta function, β3 is the variance of the additive noise in (5.1),

while β1 and β−1
2 represent the overall scale and the width of the RBF kernel. Finally,

W ≡ diag(w1, ..., wD) denotes a diagonal matrix containing one scale factor for each data
dimension. In effect, the SGPLVM can be viewed as a GPLVM in which there are different
kernel functions for each dimension, i.e., with kY,d(xi,xj) ≡ kY (xi,xj)/w

2
d for dimension

d, or to a Warped GP [134] with warping YW.
Finally, we combine the data likelihood in (5.3) with prior distributions for the latent

positions and the kernel hyperparameters and obtain a posterior density over the model M :

p(M |Y) ∝ p(Y |M) p(M) = p(Y|M) p(X) p(β̄)p(W) . (5.5)

In what follows we adopt simple prior models [78], namely a IID mean-zero Gaussian prior
over latent positions with unit covariance, an inverse prior over kernel hyperparameters, and
a uniform prior over the weights:

p(X) =
∏

i

N (xi|0, I) , p(β1:3) ∝
3∏

i=1

1

βi
, (5.6)

1We refer the interested reader to [54, 78, 90] for more details.
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Learning: During training, we learn the model parameters M by maximizing the pos-
terior p(M |Y). In doing so, we simultaneously learn the latent positions corresponding to
the training data points, along with a continuous mapping from the latent space to the full
pose space. By contrast with other techniques (e.g., [41, 130, 160]), where the embedding
is specified first and a mapping is then learned separately.

The maximization of the posterior in (5.6), given the priors in (5.6), is equivalent to
minimizing the negative log posterior. Up to an additive constant the negative log posterior,
− ln p(M |Y), is given by

Llearn =
D

2
ln |KY | +

1

2
tr
(
K−1

Y YW2YT
)

+
1

2

∑

i

‖xi‖
2 +

3∑

i=1

ln(βi) − N ln |W| .

(5.7)
Learning requires the choice of the latent dimension and an initial guess for the latent po-
sitions and kernel hyperparameters, after which we use a scaled conjugate gradient method
to minimize (5.7). More details and examples are given below.

Pose Prior: Once the model parameters M are learned, the joint density over a new
latent position x and an associated pose y is given by [90, 151]

p(x,y |M,Y) = p(y |x,M,Y)p(x |M,Y) =
p(y,Y |x,M)

p(Y |X,M)
p(x |M,Y). (5.8)

Ignoring the terms that are constant for our maximization, the joint density becomes

p(x,y |M,Y) ∝
|W|N+1

√
(2π)(N+1)D|K̂Y|D

exp(−
1

2
tr(K̂−1

Y ŶW2ŶT )) exp(−
xTx

2
)(5.9)

where Ŷ ≡ [y1, · · · ,yN ,y]T comprises the training data points and the new pose y, and
K̂Y is the corresponding new kernel matrix:

K̂Y =

(
KY kY(x)

kY(x)T kY (x,x)

)
, (5.10)

where kY(x) ≡ [kY (x1,x), · · · , kY (xN ,x)]T .
Following [54, 90], one can derive a more useful expression for the likelihood of a new

pair (x,y). That is, up to an additive constant, the negative log probability,− ln p(x,y |M,Y),
is equal to

L(x,y) =
‖W(y − µy(x))‖2

2σ2(x)
+
D

2
lnσ2(x) +

1

2
‖x‖2 , (5.11)

with
µY(x) = µ+ YTKY

−1kY(x) , (5.12)
σ2

Y (x) = kY (x,x)− kY(x)TKY
−1kY(x) . (5.13)
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Here, µY(x) is the mean pose reconstructed from the latent position x, i.e., the mean of
p(y |x,M,Y). Using (5.12), the mapping from the latent space to the pose space is con-
tinuous and relatively simple to compute. The variance, σ2

Y (x), gives the uncertainty of
the reconstruction; it is expected to be small in the vicinity of the training data, and large
far from them. Therefore, minimizing L(x,y) aims to minimize reconstruction errors (i.e.,
to keep y close to µY (x)), while keeping latent positions close to the training data (i.e.,
to keep σ2

Y (x) small). The third term in (5.11) is the result of a broad prior over latent
positions that usually has relatively little influence on the optimized latent positions.

5.1.2 Human Body parametrization

In our specific application, each training point, yi, is a vector of joint angles that describes
a body pose. We represent the human body as an articulated structure with 84 degrees of
freedom for walking and 72 for golfing. These numbers are those in the training databases
over which we had no control. While careful choice of joint representations can have a
large influence on the success of parameter estimation and tracking, here we simply used
the data as provided in the motion capture databases. The influence of the different pa-
rameterizations will be discuss in detail in chapter 7. We remove the joint angles from
the training data that appear irrelevant (i.e., do not vary) in order to prevent the weighting
matrix to becoming degenerate. While one might also wish to include global information,
such as translational or orientational velocity, here, we do not since our walking data were
obtained from a subject walking on a treadmill, for which we could not easily obtain global
translation.

We chose the dimensionality of the latent space to be 2, since it is the smallest dimension
to represent the motions we want to track. This was confirmed by Isomap; the error was
smaller for that dimension. Moreover, for tracking we want to use a small dimension, since
the less the parameters to estimate the easiest is in terms of minimization.

5.1.3 Sparsification and Overfitting

There are two goals when learning any type of prior model: We want the models to be com-
putationally not expensive, and to be learned from small amounts of training data avoiding
overfitting.

The main computational burden when learning a Gaussian Process is the inversion of the
N×N kernel matrix, whereN is the number of data samples. Its computational complexity
is O(N3). We also wish to limit the size of KY in order to obtain a sufficiently smooth
prior and avoid overfitting. When doing tracking we wish the prior models not to be over-
confident with the training data, having similar variances in a wide neighborhood of the
training data, and not just in the proximity of them, in order to allow a wide variety of
motions, since it is often the case that the motions used for training and the motions to track
are quite different.

The easiest way to decrease the computational complexity is to reduce the number of
input data N . This can be done by subsampling the original training sequences. Fig. 5.3
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Figure 5.3: Reducing the complexity by subsampling: without sparsification. The
grayscale plot represents −D

2 lnσ2(x) − 1
2‖x‖

2. The blue crosses are the op-
timized xi positions associated with the training poses. (a) SGPLVM using the
139 samples, sampling at 120 Hzs (b) SGPLVM sampling at 60 Hzs. (b) SG-
PLVM sampling at 40 Hzs.

depicts different walking latent spaces with different sampling frequencies. The grayscale
plot represents−D

2 lnσ2(x)− 1
2‖x‖

2, thus depicting the regions of latent space that produce
more likely poses. The walking model was learned from a single walk cycle performed on
a treadmill, comprising 139 poses obtained with an optical motion capture system at 120
Hz.

When reducing the sampling frequency, one may filter the high frequencies, and intro-
duce aliasing. Moreover, as depicted in Fig. 5.3, the model clearly overfits, and only poses
very close to the data are likely (i.e., the variance is small only close to the training data).
Instead, one can consider sparsification. Sparsification methods for Gaussian Process have
been deeply investigated in the last years; see [115] for a complete review. One can also
combine sparsification with subsampling.

The simplest possible sparse approximation is to only use a subset of the data (SoD[115]).
Following [78, 79], while learning is based on the entire training set; the SGPLVM is con-
structed from a subset of the data referred to as the active set. In a greedy fashion, data
points are added to the model one point at a time; at each step one chooses the point with
the highest reconstruction variance (5.13). In this way, the active set tends to include train-
ing data points that are reasonably well spaced throughout the latent space.2 The computa-
tional complexity is reduced to O(m3), where m is the cardinality of the active set [115].
Fig. 5.4 depicts latent spaces learned using different sizes of the active set. Note that by
using m = 35 or m = 80, the latent positions are very similar, while the complexity is
very different. One of the consequences of using SoD with m small is that the overfitting
decreases; when decreasing their number, the prior looks more and more smooth.

The sparse approximation using active sets suffers from a variety of problems: It does not
get a realistic picture of the uncertainties, since only points in the training data are consider

2See [78] for details concerning the active set and heuristics used during learning and
http://www.dcs.shef.ac.uk/ neil/gplvm/ for the GPLVM code.
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Figure 5.4: Smoothing the prior by decreasing the number of points in the active set:
Learned SGPLVMs with (a) 80, (b) 35, (c) 15 points in the active set.

Initial Guess Circle PCA Isomap LEIG LLE
Llearn (Fig. 5.5) (right) -380.43 -558.51 -816.16 -574.75 -776.54

Table 5.1: Reconstruction log likelihood Llearn: for the 2D latent spaces shown in Fig.
5.5. Note that the reconstruction errors are clearly dependent of the initial con-
ditions.

for the active set [115]. The solution can flip between two very different solutions, and it is
very sensitive to initial conditions.

Fig. 5.5 (right) depicts the result of fitting an SGPLVM with the same cardinality of the
active set starting from different initial conditions (left). Note that the learned spaces and
their reconstruction errors (see Table 5.1), are very sensitive to the initial conditions.

Quinonero et al. [115] described a detailed set of different sparse approximations that
defined the kernel matrix KY in terms of a set of m points that may or may not be part
of the training set. This results in an algorithm fully convergent where the final mapping
from latent space to data space takes into account all of the data (not just the points in the
active set), resulting in a better approximation to the uncertainty of the model than the one
obtained with SoD. In our particular application, because we want a smooth model, these
methods provide less useful priors for tracking, and they do not produce good results with
such small amounts of training data.

5.1.4 Non-smooth latent trajectories

One of the major problems with SGPLVM and GPLVM is that they often contain disconti-
nuities3 in the mapping. The main reason is that there is no prior in that points close in the
input space (i.e., yi ' yj), should be close in the latent space, (i.e., xi ' xj). This is in
contrast with geometric techniques such as LLE that specifically imposed that. The oppo-

3We define a discontinuity as the fact that two poses that are close in pose space are very far in latent space.
When considering a temporal sequence, this fact produces non-smooth latent trajectories.

110



5.1 Gaussian Process Models

Circle

PCA

Isomap

Laplacian
Eigenmap

LLE

Init SGPLVM

Figure 5.5: SGPLVMs learned starting from different initial conditions for the golfing
sequence sampled at 30Hzs. (Left) Initial latent coordinates. From top to bot-
tom: Circle, PCA, Isomap, Laplacian Eigenmaps, and LLE. (Right) Learned
SGPLVM with active sets and m = 19.

111



5 Gaussian Process Latent Variable Models for 3D people Tracking

site is true; points close in the latent space are close in the input space, since the Gaussian
Process is modeling a mapping from x to y.

This is shown in Fig. 5.6 where L(yi,x) is depicted as a function of x, for different
training vectors yi. Each plot represents a specific training vector. The x that are close to
xj , with ||yj − yi|| À, are strongly unlikely. The minimun of L(yi,x) is depicted as a
black dot. Note that the x far away from the training data are also very likely, and may
results in discontinuities when learning.

These discontinuities appear more frequently when the initialization contains loops, as
depicted for the golf sequence sample at 60Hz on the left column of Fig. 5.5. In the
intersection of the loop the two latent positions x are similar, while their associated input
vectors y are different. This is fortly penalized by the SGPLVM. Both latent positions are
pushed far apart, resulting in a discontinuity. Once this happens, there is no prior to attract
them back together, and the discontinuities remain while learning. As a consequence, the
SGPLVM cannot be learned from random initial conditions.

Sometimes the loops can be avoided by changing the initial conditions. Fig. 5.7 depicts
results for the golfing sequence sampled at 60Hzs. The PCA initialization contains a loop at
the end of the upper swing and beginning of the down swing, resulting in a big discontinuity.
When using other initial positions, such as the ones given by LLE or Laplacian Eigenmaps,
the learned latent spaces contain smooth latent trajectories.

But it is not always the case that changing the initial conditions will results in smooth
latent trajectories. Better solutions exist. Lawrence [77] has proposed the use of back-
constraints that force the latent points to be a smooth function of the data points. This
means that points that are close in data space are constrained to be close in latent space.
This requires an a priori knowledge to choose the type of back-constraints, and it does not
necessary model a prior over the X, that will justify them mathematically.

One can also run the optimization without searching for the maximum likelihood esti-
mates of the latent positions, and only optimize the kernel hyperparameters and the scales
wi, given X by some other dimensionality reduction technique (e.g., PCA, LLE, Lapla-
cian Eigenmaps). This is similar in spirit to [130], but replacing the RBF mapping and the
GMM by the Gaussian Process. Fig. 5.8 shows a SGPLVM learned from fix PCA, LLE and
Laplacian Eigenmaps latent positions, for the golfing sequence of Fig. 5.7. The reconstruc-
tion errors are worse than the ones obtained when learning SGPLVMs with the same initial
conditions.

The use of all these methods are out of the scope of this work, and will be a subject of
future research. We include them as possible solutions to some of the problems addressed
in this chapter.

A better way to obtain smoothness is to model the dynamics, for example by using a
Gaussian Process Dynamical Model (GPDM) [159]. GPDM consists in two Gaussian Pro-
cess working in parallel modeling the pose reconstruction, and the dynamics. Implicitly,
the GPDM forces two consecutive (in time) poses to be close in latent space. Chapter 6 will
discuss how to use these models to learn pose dynamical models.
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(a) (b)

(c) (d)

Figure 5.6: SGPLVM likelihood: L(yi,x) of Eq. 5.11 for a given yi ∈ Y as a function of
x, for the walking sequence, composed of N = 139 poses sampled at 120Hz.
(a) L(y1,x), (b) L(yN/4,x), (c) L(yN/2,x), (d) L(y3N/4,x). The minimun of
each plot is depicted as a black dot. The xi that are part of the active set are
depicted as blue crosses, and the rest of the data as red crosses. White colors
depict the most probably positions (L(y,x) small), and the dark ones the less
probable ones (big L(y,x)). Note that there is a very likely flat valley far from
the training data, which may result in discontinuities.
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Figure 5.7: Jumps in the latent space: can be produce when the initialization contains
loops. Top row: Init conditions. Botom row: latent coordinates learned using
a GPLVM without active sets, and the golfing sequence sampled at 60 Hzs.

PCA LLE Laplacian

Figure 5.8: GP models: where the X are given by PCA, LLE and Laplacian Eigenmaps
using the same input data as for the models of Fig. 5.7.
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Figure 5.9: 2D SGPLVM latent spaces used for tracking. The training data is compose
of, (left): 139 frames sampled at 120Hz of a walking cycle performed on a
treadmill and retaining 22, (right): 35 frames sampled at 30Hzs of a golf swing
and retaining 19 active set points.

5.1.5 Reconstruction Error vs Tracking

While the reconstruction error is the minimization criteria when learning a Gaussian Pro-
cess, it may not be the most desirable property for tracking. Instead one wants a smooth
prior that do not overfit and generalize well to motions not in the training set. Moreover,
since in hill climbing tracking, temporal consistency between consecutive frames is required
not to get trap in local minima, we wish the latent trajectories to be smooth. This could be
solved by using multi-hypothesis trackers, but may result in non-smooth results.

If we wish to use the SGPLVM as a prior for detecting individual frames, then the recon-
struction error becomes more important since there is no need for smooth latent trajectories
[142].

5.1.6 Learning Specific Motions for Tracking

When learning small amounts of training data, SGPLVM produces a smooth density func-
tion over training poses that can be used as a prior for tracking [151]. Fig. 5.9 depicts latent
spaces for a walking and a golfing sequence that were used for tracking the sequences of
Fig. 5.1, 5.12 and 5.13. PCA was used for initialization. For both models we used a 2D
latent space, in part for simplicity and to allow for periodic motions.

An active set of 22 points was chosen for the walking to reduce the computational com-
plexity and avoid overfitting. Even though the walking cycle is not exactly symmetric, as
indicated by the gap between the beginning and end of the gait cycle on the right side of
Fig. 5.9 (left), the SGPLVM effectively completes the curve with a low variance region that
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fills the gap.
The golfing model was learned from a single full swing composed of 35 poses sampled

at 30 Hzs from the CMU database [29]. The active set contains 19 points and produces the
smooth model shown in Fig. 5.9 (right). We choose this model, which uses subsampling
and active sets, since the uncertainty is clearly under estimated (the model is very smooth).
This is necessary since the motions to track are very different from the ones use for learning,
especially the sequence of Fig. 5.1 that is a short swing.

5.2 Monocular Tracking

Our tracking formulation is based on a state-space model, with a SGPLVM prior over poses
and a second order Markov model. The state at time t is defined as φt = [gt,yt,xt],
where gt denotes the global position zt and orientation ot of the body, yt denotes the
articulated joint angles, and xt is a latent position. The goal is to estimate a state sequence,
φ1:T ≡ (φ1, ..., φT ), given an image sequence, I1:T ≡ (I1, ..., IT ), and a learned SGPLVM,
M .

At each time t we form the posterior distribution over a subsequence of τ+1 states

p(φt:t+τ | I1:t+τ , M) = c p(It:t+τ |φt:t+τ ) p(φt:t+τ | I1:t−1, M) . (5.14)

The sliding window allows us to exploit the influence of past data on estimates of the state
at time t, as well as data from a small sequence of “future” observations. This typically
produces smoother tracking results, but at the cost of a small delay of τ frames.

Rather than approximating the full posterior distribution we adopt a simple approximate
MAP estimator. In particular, given previous MAP estimates, we use a simple form of hill-
climbing to find new MAP estimates within the temporal window. In effect, this assumes
the following approximation:

p(φt:t+τ | I1:t+τ , M) ≈ c p(It:t+τ |φt:t+τ ) p(φt:t+τ |φ
MAP
1:t−1 , M) (5.15)

where φMAP
1:t−1 denotes the MAP estimate history. In other words, it is assumed that all rele-

vant information about past observations is contained solely in the previous MAP estimates.
To find the MAP estimates at each time step we minimize the negative log posterior over
states from time t to time t + τ . At this minima we obtain the approximate MAP estimate
at time t (given images I1:t+τ ).

5.2.1 Image Likelihood:

The current version of our 3D tracker uses a remarkably simple observation model. That
is, the image observations were just the approximate 2D image locations of a small number
(J) of 3D body points (see Fig. 5.10) that were obtained with a 2D tracker, e.g. [67].

The likelihood function is derived with the help of two further simple assumptions. First,
we assume that the image measurements at each time step, conditioned on the respective
states, are independent; i.e.,
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Figure 5.10: 2D Tracking using the WSL tracker. Top row: Tracking the chest, knees,
head, ankles and visible arm. The tracked upper body joints are shown in red,
with the head and tracked lower joints points shown in yellow. Bottom row:
Regions used for tracking the ankles, knees, and head are shown.

p(It:t+τ |φt:t+τ ) =

t+τ∏

i=t

p(Ii |φi) . (5.16)

This assumption is made for computational convenience, since it is common for tracking
measurement errors to be correlated through time.

Our second main assumption is that measurement noise in the 2D image positions are
zero-mean Gaussian. In particular, let the perspective projection of the j th body point, pj ,
in pose φt, be denoted P (pj(φt)), and let the associated 2D image measurement from the
tracker be m̂

j
t . Then, the negative log likelihood of the observations at time t is

− ln p(It |φt) =
1

2σ2
e

J∑

j=1

∥∥∥m̂j
t − P (pj(φt))

∥∥∥
2
. (5.17)

Here we set σe = 3 pixels, based on empirical results. No robust estimator is used since
our input data does not contain outliers, but noise.

For example, Fig. 5.10 shows the 2D tracking locations for two test sequences. With the
walking sequence we tracked 9 points on the body. For the golfing sequences we used 6
points. The fact that we use such a small number of tracked points is notable. By com-
parison, most successful 3D people trackers exploit several sources of image information,
including edges, flow, silhouettes, skin detection, etc. The small number of constraints is
also remarkable when compared to the dimension of the training poses. While it is known
that 2D joint locations are useful for 3D pose estimation (e.g., [140]), it would not be pos-
sible for the optimization to find the pose parameters without a suitable prior.

5.2.2 Prediction Distribution

We further assume that predictions are constrained both by the temporal continuity of the
motion as well as our GPLVM prior over plausible poses. In doing so the log prediction
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density is given by the sum of two potential functions E1 and E2. In particular, the negative
log prediction density is given by

− ln p(φt:t+τ |φ
MAP
1:t−1 , M) ≈ E1(φt:t+τ |M,Y) + E2(φt+τ |φ

MAP
t−1 , φMAP

t−2 ) , (5.18)

Here, E1 is obtained from the SGPLVM pose prior, independently at each time instant:

E1(φt:t+τ ) =

t+τ∑

j=t

L(xj ,yj) (5.19)

where L(x,y) is the SGPLVM negative log likelihood above in (5.11).
The second potential function E2 encourages smoothness. In particular, we let the

smoothness energy be the negative log transition density for a simple second-order Gauss-
Markov model for the state evolution. Up to an additive constant this is given by

E2(φt:t+τ |φ
MAP
t−1 , φMAP

t−2 ) = −
t+τ∑

j=t

ln p(φj |φj−1:j−2) (5.20)

with the initial condition at time t provided by previous MAP estimates at times t − 1 and
t− 2, i.e., φt−1 ≡ φ

MAP
t−1 and φt−2 ≡ φ

MAP
t−2 .

We further assume that the joint angle dynamics are independent of the evolution of
global position zt and orientation ot of the body:

p(φj |φj−1:j−2) = p(yj |yj−1:j−2) p(zj |zj−1:j−2) p(oj |oj−1:j−2). (5.21)

Assuming a Gaussian process noise, we let the potential function be the log transition den-
sity given, up to an additive constant, by

E2(φt:t+τ |φ
MAP
t−1:t−2) =

t+τ∑

j=t

||yj−ŷj ||
2

2σ2
y

+
||zj−ẑj ||

2

2σ2
z

+
||oj−ôj ||

2

2σ2
o

(5.22)

where the deterministic predictions, ẑj , ôj and ŷj , assume zero acceleration and therefore
take the form:

ŷj = 2yj−1− yj−2 , ẑj = 2zj−1− zj−2 , ôj = 2oj−1− oj−2 .

In all the examples shown in this chapter, the dynamical model played a minor role in
tracking (the variances were set to a high value).

5.2.3 Initialization and Optimization

For each test sequence we manually initialized the 3D position and orientation of the root
node of the body in the first frame, (z0,o0), so that it projects approximately to the right
place. Similarly we manually gave the 2D locations of a few joints to be tracked by the
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2D tracker. This entire process only required a few mouse clicks and could easily be au-
tomated using posture detection techniques [1, 41]. The initial states for the joint angles
and latent positions, y0:τ ,x0:τ , were chosen to be those in the training database that best
projected onto the first τ + 1 frames. The global positions and orientations, (z1:τ ,o1:τ ),
were initialized to (z0,o0), the ones set manually for the first frame.

Finally, MAP estimates were obtained using deterministic optimization. In particular,
we minimize the negative log posterior obtained by substituting (5.15) into (5.14). After
initializing the tracker in the first frame, the optimization is performed on-line, one frame
at a time. The initial state for the optimization at each frame t, is given by the mean of the
transition density, ŷt, ẑt and ôt. Given that initial pose ŷt, we first obtain an initial latent
position x̂t = arg minx L(x, ŷt). Using this initial guess, we then use sequential quadratic
optimization techniques to minimize the log posterior in (5.14), thereby finding the desired
MAP estimate.

5.3 Results

The results shown in this chapter were obtained from uncalibrated images. The motions
were performed by subjects of unknown sizes wearing ordinary clothes that are not partic-
ularly textured. To perform our computation, we used rough guesses for the subject sizes
and for the intrinsic and extrinsic camera parameters to match the 2D projections.

5.3.1 Walking Motion

Figure 5.12 shows a well-known walking sequence. For 2D tracking we used the WSL
tracker [67]. WSL is a robust, motion-based 2D tracker that maintains an on-line adaptive
appearance model. The model adapts to slowly changing image appearance with a natural
measure of the temporal stability of the underlying image appearance. It also permits the
tracker to handle partial occlusions. As depicted in Fig. 5.10 (top row), 9 joints were tracked
using WSL, namely, the ankles, knees, chest, head, left shoulder, elbow and hand.

Figure 5.12 shows the estimated 3D model projected onto several frames of the sequence,
as well as some rendered 3D volumetric models. Note how well the skeleton reprojects onto
the limbs even though the motion was learned from a single cycle of a different person on a
treadmill. It is also interesting to see how well the arm is tracked (cf. [126]).

5.3.2 Golf Swing

As discussed in Section 5.1.6, the golf swing used to train the SGPLVM was a full swing
from the CMU motion database [29]. It was performed by neither of the two golfers used
for tracking (see Figs. 5.1 and 5.13). Here, we tracked five points using the WSL tracker,
namely the knees, ankles and head. The initialization of these points could be also auto-
mated using posture detection techniques since the pose at the beginning of the swing is
quite stereotyped.
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Figure 5.11: Detected club and hand trajectories: for the full swing of Fig. 5.13 and
the short swing of Fig. 5.1. Left and right hand positions (pixel units) are
represented in black and red respectively. Note that the full swing has a much
longer trajectory than the other.

Figure 5.12: Tracking a walking motion of 32 frames. First two rows: The skeleton
of the recovered 3D model is projected onto the images. Middle two rows:
Volumetric primitives of the recovered 3D model projected into a similar view.
Bottom two rows: Volumetric primitives of the 3D model as seen from the
front view.
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Figure 5.13: Tracking of a full golf swing in a 50 frames sequence. First two rows: The
skeleton of the recovered 3D model is projected into a representative subset of
images. Last two rows: Volumetric primitives of the 3D model as seen from
viewpoint similar to the camera used.

Because the hands tend to rotate during the motion, to track the wrists we have found
it effective to use a club tracking algorithm [82] that takes advantage of the information
provided by the whole shaft. Its output is depicted in Fig. 5.11. This tracker does not
require any manual initialization. It is also robust to mis-detections and false alarms and
has been validated on many sequences. From the recovered club motion, we can infer the
2D hand trajectories as shown in Fig. 5.11.

The first two rows of Fig. 5.13 depict the projections of the recovered 3D skeleton in a
representative subset of images of a full swing. The bottom two rows show projections of
the 3D model using a viewpoint similar to the one of the original camera.

Fig. 5.1 depicts a short swing that is performed by a different person. Note that this
motion is quite different both from the full swing motion of Fig. 5.13 and from the swing
used to train the SGPLVM. The club does not go as high and, as shown in Fig. 5.11, the
hands travel a much shorter distance. The tracking nevertheless remains very accurate. This
helps illustrate the usefulness of the SGPLVM generalization.

In Fig. 5.14, we compare our current results with those obtained with a prior motion
model learned with PCA from all ten swings in the CMU motion database. In that tracker
(chapter 4) we used the same 2D tracked points, along with a brightness constancy con-
straint and 2D silhouette information. It also required pose detection of keyframes for
initialization. By comparison, the method here is entirely on-line. Notice that with the SG-
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PCA

SGPLVM

Figure 5.14: PCA vs SGPLVM. Comparison between the PCA-based tracker (chapter 4)
in the first row and the SGPLVM-based tracker in the second row. Note the
gain in accuracy due to the generalization ability of the SGPLVMs.

PLVM the skeleton’s projection matches the limbs better than with the linear PCA-based
model.

5.3.3 Failure Modes

The results shown above were obtained using models learned from very small amounts of
training data. This is one of the strengths of the GPLVMs but comes at price: If the motion
we are tracking differs substantially from the one used for training, the recovered latent
positions can easily end up far from those corresponding to the training data. Fig. 5.15
illustrates this behavior in the case of the walking sequence of Fig. 5.12. These recovered
latent positions correspond to poses that are close to the mean pose, since the kernels fall
off exponentially.

When the observed pose is very different from the training ones, the first term of Eq. 5.11
dominates the optimization, and the latent positions are not anymore constraint to be close
to the training data. This is depicted in Fig. 5.16. Note that due to the non-uniqueness of
the Euler angle parameterization y may be very different from yi ∈ Y.

A potential solution would be to learn the GPLVMs from larger amounts of data, for
example in the form of several motions of a given type. However, increasing the amount of
training data brings it own problems, such as the discontinuities depicted by Fig. 5.17.

A better approach is to explicitly model the dynamics [159] to overcome these problems
and constrain latent positions that correspond to poses that are close (in time) to be close in
latent space. This will be explored in Chapter 6.

5.4 Summary and Conclusions

We have presented a SGPLVM-based method to learn prior models of 3D human pose,
and showed that it can be used effectively for monocular 3D tracking. In the case of both
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Figure 5.15: Estimated latent positions: when tracking the sequence of Fig. 5.12. Note
that the latent positions obtained are far away from the training ones.

walking and golfing, we have been able to recover the motion from video sequences given
a single exemplar of each motion to train the model. Furthermore, these priors sufficiently
constrain the problem so that this could be accomplished with straightforward determin-
istic optimization. This is in sharp contrast to competing techniques that either involve
large amounts of training data or computationally expensive multi-hypothesis tracking al-
gorithms.

In this work, tracking was accomplished with particularly simple second-order dynamics
and an observation model based on a very small number of tracked features. The quality
of our results with such simple dynamics and appearance models clearly demonstrates the
power of the SGPLVM prior models. More sophisticated appearance and dynamics models
should produce even better results.

To increase the robustness of the tracking, one can replace the single hypothesis deter-
ministic optimization by a probabilistic framework that will model the posterior instead of
approximating it by a Dirac delta at the MAP estimate. Reinitialization is another important
issue that is out of the scope of this work, by that will help preventing divergence.

In the presence of very noisy or missing data (e.g. occlusions), the simplistic second or-
der Markov model is not complex enough to produce nice results. Moreover, when learning
models that contain stylistic diversity (e.g., from different people or from the same person
performing an activity multiple times), the SGPLVM results in models whose latent trajec-
tories are not smooth, not being suitable for hill climbing tracking. Chapter 6 introduces a
new model that learns smooth pose dynamical models with stylistic diversity, while produc-
ing very realistic motions under very challenging conditions, such as complete occlusions
during a whole cycle, or tracking motions very different from the training ones. Further
work will focus on incorporating multiple motion classes and transitions between them.
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(a) (b)

(c) (d)

Figure 5.16: SGPLVM likelihood: (a) of Eq. 5.11 for a y that is far from the training
data, as a function of the latent position x. It is compose of three terms, (b)
‖W(y−f(x))‖2

2σ2(x)
,(c) D

2 lnσ2(x), and (d) 1
2‖x‖

2. Lighter colors represent smaller
values of L(x,y). The prior in (a) is clearly dominated by (b).
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Figure 5.17: Increasing the amount of training data. SGPLVMs learned from a database
containing 3 walking cycles, each one performed by a different subject. The
latent trajectories are non smooth for one of the individuals, resulting in a
model not suitable for tracking.
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While powerful models of 3D human pose are emerging, sophisticated motion models re-
main rare. Most state-of-the-art approaches rely on simplistic linear-Gaussian Markov mod-
els that do not capture the complexities of human dynamics. Learning more accurate models
is challenging because of the high-dimensional variability of human pose, the nonlinearity
of human dynamics, and the relative difficulty of acquiring large amounts of training data.

Chapter 4 introduced motion models that take advantage of the convexity of the motion
space to learn simple linear activity specific motion models. While useful, the linear combi-
nation of motions may result in unfeasible motions when learning different activities within
the same model. Moreover, they require relatively big amounts of training data, which have
to be segmented time warped motion sequences.

Chapter 5 explored a novel technique to learn pose models from as little as a single
exemplar of the motion. The learning of training motions with stylistic diversity may re-
sult in models that contain non-smooth latent trajectories that are not suitable for track-
ing purposes. Moreover, the proposed tracking relies on simplistic second order Gaussian
Markov models to encourage smoothness. These models do not cope with the complexities
of human motion, resulting in tracking failures or unrealistic motions in the presence of
extremely noisy and missing data, for example when dealing with occlusions.

This chapter shows that effective models for people tracking can be learned using the
Gaussian Process Dynamical Model (GPDM) [159], even when modest amounts of training
data are available. The GPDM is a latent variable model with a nonlinear probabilistic
mapping from latent positions x to human poses y, and a nonlinear dynamical mapping
on the latent space. It provides a continuous density function over poses and motions that
is generally non-Gaussian and multimodal. Given training sequences, one simultaneously
learns the latent embedding, the latent dynamics, and the pose reconstruction mapping.
Bayesian model averaging is used to lessen problems of over-fitting and under-fitting that
are otherwise problematic with small training sets [78, 91].

We propose a form of GPDM, called Balanced GPDM, that learns smooth motion models
given training motions with stylistic diversity. We show that these models are effective for
tracking a range of human walking styles. The tracker is formulated as a MAP estimator
on short pose sequences in a sliding temporal window, thereby producing motions that are
smooth compared to conventional recursive estimators operating on one frame at a time. Es-
timates are obtained with straightforward deterministic optimization, and look remarkably
good despite very noisy, missing or erroneous image data and significant occlusions.
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6.1 Gaussian Process Dynamical Model

The GPDM is a latent variable dynamical model, comprising a low-dimensional latent
space, a probabilistic mapping from the latent space to the pose space, and a dynamical
model in the latent space [159]. Given training motions, one simultaneously learns the la-
tent embedding, the latent dynamics, and the pose mapping. Even with small training sets
it can learn effective models for 3D people tracking.

Consider a latent variable mapping with first order Markov dynamics

xt = f(x,A) + nx,t (6.1)
yt = g(x,B) + ny,t (6.2)

where f and g are in general nonlinear parametric functions with parameters A and B

respectively. Fig. 6.1 depicts its graphical model.

Figure 6.1: Graphical model: for the GPDM and Balanced GPDM.

Following [159], the GPDM is derived from a generative model for zero-mean poses
yt ∈ R

D and latent positions xt ∈ R
d, at time t, of the form

xt =
∑

i

ai ϕi(xt−1) + nx,t (6.3)

yt =
∑

j

bj χj(xt) + ny,t (6.4)

for weights A = [a1,a2, ...] and B = [b1,b2, ...], basis functions ϕi and χj , and additive
zero-mean white Gaussian noise nx,t and ny,t. For linear basis functions, (6.3) and (6.4)
represent the common subspace AR model (e.g., [38]). With nonlinear basis functions, the
model is significantly richer.

In conventional regression one fixes the number of basis functions and then fits the model
parameters, A and B. From a Bayesian perspective, these are nuisance parameters and
should therefore be marginalized out through model averaging. With an isotropic Gaussian
prior on each bj , as for the SGPLVM (chapter 5), one can marginalize over B in closed
form [91, 103] to yield a multivariate Gaussian data likelihood of the form

p(Y |X, β̄) =
|W|N√

(2π)ND|KY |D
exp

(
−

1

2
tr
(
K−1

Y YW2YT
))

(6.5)
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where Y = [y1, ...,yN ]T is a matrix of training poses, X = [x1, ...,xN ]T contains the
associated latent positions, and KY is a kernel matrix. The elements of kernel matrix are
defined by a kernel function, (KY )i,j = kY (xi,xj), which we take to be a common radial
basis function (RBF) [91]:

kY (x,x′) = β1 exp

(
−
β2

2
||x− x′||2

)
+
δx,x′

β3
. (6.6)

As in SGPLVM [54] the scaling matrix W ≡ diag(w1, ..., wD) is used to account for dif-
fering variances in the different data dimensions. Finally, β̄ = {β1, β2, ...,W} comprises
the kernel hyperparameters that control the output variance, the RBF support width, and the
variance of the additive noise ny,t.

The latent dynamics are similar; i.e., one forms the joint density over latent positions and
the weights A, and then marginalizes out A [159]

p(X|ᾱ) =

∫

A

p(X,A|ᾱ)dA =

∫

A

p(X|A, ᾱ)p(A|ᾱ)dA, (6.7)

where ᾱ is a vector of kernel hyperparameters. Assuming a first order Markov model

p(X|ᾱ) = p(x1)

∫

A

N∏

t=2

p(xt|xt−1,A, ᾱ)p(A|ᾱ)dA. (6.8)

With an isotropic Gaussian prior on the ai, the density over latent trajectories reduces to
[158]

p(X | ᾱ) =
p(x1)√

(2π)(N−1)d|KX |d
exp

(
−

1

2
tr
(
K−1

X XoutX
T
out

))
(6.9)

where Xout = [x2, ...,xN ]T , KX is the (N−1)× (N−1) kernel matrix constructed from
Xin = [x1, ...,xN−1], and x1 is given an isotropic Gaussian prior. For dynamics the GPDM
uses a “linear + RBF” kernel, with parameters αi :

kX(x,x′) = α1 exp

(
−α2

2
||x− x′||2

)
+ α3x

Tx′ +
δx,x′

α4

The linear term is useful for motion subsequences that are approximately linear.
While the GPDM is defined above for a single input sequence, it is easily extended to

multiple sequences {Yj}. One simply concatenates all the input sequences, ignoring tem-
poral transitions from the end of one sequence to the beginning of the next. Each input
sequence is then associated with a separate sequence of latent positions, {Xj}, all within a
shared latent space. Accordingly, in what follows, let Y = [YT

1 , ..., Y
T
m]T be the m train-

ing motions. Let X denote the associated latent positions, and for the definition of (6.9) let
Xout comprise all but the first latent position for each sequence, and let KX be the kernel
matrix computed from all but the last latent position of each sequence.
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6.1.1 Learning

Learning the GPDM entails estimating the latent positions and the kernel hyperparameters.
Following [159] we adopt simple prior distributions over the hyperparameters1,

p(ᾱ) ∝
∏

i

α−1
i , and p(β̄) ∝

∏

i

β−1
i . (6.10)

The GPDM posterior becomes

p(X, ᾱ, β̄ |Y) ∝ p(Y |X, β̄) p(X | ᾱ) p(ᾱ) p(β̄) . (6.11)

The latent positions and hyperparameters are found by minimizing the negative log poste-
rior that, up to an additive constant, is equal to

L =
d

2
ln |KX | +

1

2
tr
(
K−1

X XoutX
T
out

)

−N ln |W| +
D

2
ln |KY | +

1

2
tr
(
K−1

Y YW2YT
)

+
∑

i

lnαi +
∑

i

lnβi , (6.12)

The first two terms come from the log dynamics (6.9), and the next three terms come from
the log reconstruction density (6.5).

Over-Fitting: While the GPDM has advantages over the GPLVM, usually producing
much smoother latent trajectories it can still produce large gaps between the latent positions
of consecutive poses; e.g., Fig. 6.2 shows a GPLVM and a GPDM learned from the same
golf swing data (large gaps are shown with red arrows). Such problems tend to occur when
the training set includes a relatively large number of individual motions (e.g., from different
people or from the same person performing an activity multiple times). The problem arises
because of the large number of unknown latent coordinates and the fact that uncertainty in
latent positions is not modeled. In practical terms, the GPDM learning estimates the latent
positions by simultaneously minimizing squared reconstruction errors in pose space and
squared temporal prediction errors in the latent space. In Fig. 6.2 the pose space is 80D and
the latent space is 3D, so it is not surprising that the errors in pose reconstruction dominate
the objective function, and thus the latent positions.

6.1.2 Balanced GPDM:

Ideally one should marginalize out the latent positions to learn hyperparameters, but this is
expensive computationally. Instead, we propose a simple but effective GPDM modification

1Such priors prefer small output scale (i.e., α1, α3, β1), large RBF support (i.e., small α2, β2), and large noise
variances (i.e., small α−1

4 , β−1

3 ). The fact that the priors are improper is insignificant for optimization. See
[158] for a discussion of different priors
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(a) (b)

(c) (d)

Figure 6.2: Golf Swing: (a) GPLVM, (b) GPDM and (c) balanced GPDM learned from 9
different golf swings performed by the same subject. (d) Volumetric visualiza-
tion of reconstruction variance; warmer colors (i.e., red) depict lower variance.

to balance the influence of the dynamics and the pose reconstruction in learning. That is,
we discount the differences in the pose and latent space dimensions in the two regressions
by raising the dynamics density function in (6.11) to the ratio of their dimensions, i.e.,
λ = D/d; for learning this rescales the first two terms in (6.12) to be

λ

(
d

2
ln |KX | +

1

2
tr
(
K−1

X XoutX
T
out

))
. (6.13)

The resulting models are easily learned and very effective.

6.1.3 Model Results

Figs. 6.2–6.4 show models learned from motion capture data. In each case, before mini-
mizing L, the mean pose, µ, was subtracted from the input pose data, and PCA or Isomap
were used to obtain an initial latent embedding of the desired dimension. We typically use
a 3D latent space as this is the smallest dimension for which we can robustly learn com-
plex motions with stylistic variability. The hyperparameters were initially set to one. The
negative log posterior L was minimized using Scaled Conjugate Gradient.
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Golf Swing: Fig. 6.2 shows models learned from 9 golf swings performed by one subject
(from the CMU database). The body pose was parameterized with 80 joint angles, and
the sequence lengths varied by 15 percent. The Balanced GPDM (Fig. 6.2(c)) produces
smoother latent trajectories, and hence a more reliable dynamic model, than the original
GPDM. Fig. 6.2(d) shows a volume visualization of the log variance of the reconstruction
mapping, 2 lnσy|x,X,Y,β̄ , as a function of latent position. Warmer colors correspond to
lower variances, and thus to latent positions to which the model assigns higher probability;
this shows the model’s preference for poses close to the training data.

Walking: The model in Fig. 6.3 (c–f) was learned with one cycle from each of 6 subjects
walking at the same speed on a treadmill. For each subject the first pose is replicated at
the end of the sequence to encourage cyclical paths in the latent space. The body was
parameterized with 30 joint angles. With the treadmill we do not have global position data,
and hence we cannot learn the coupling between the joint angle times series and global
translational velocity.

Fig. 6.3 (c,e) show the smooth, clustered latent trajectories learned from the training data.
Fig. 6.3(e) shows a volume visualization of the log variance of the reconstruction mapping
as a function of latent position. This shows the model’s preference for poses close to the
training data. Finally, Fig. 6.3(f) helps to illustrate the model dynamics by plotting 20 latent
trajectories drawn at random from the dynamical model; again, they remain smooth and in
the vicinity of the training data.

Speed Variation: Fig. 6.4 shows 2D GPDMs learned from four subjects, each of which
walked four gait cycles at each of 9 speeds between 3 and 7km/h (equispaced). The learned
latent trajectories are approximately circular, and organized by speed; the innermost and
outermost trajectories correspond to the slowest and fastest speeds respectively. Interest-
ingly, the subjects on the top row are healthy while the subjects on bottom row have a knee
and hip pathology respectively. As the treadmill speed increases, the side of the body with
the pathology performs the motion at slower speeds to avoid pain, and so the other side
of the gait cycle must speed up to maintain the speed. This explains the anisotropy of the
latent space.

6.1.4 Prior over New Motions

Finally, note that the GPDM also defines a smooth probability density over new motions
(Y′, X′): Just as we did with multiple sequences above, we write the joint density over the
concatenation of the sequences. The conditional density of the new sequence is proportional
to the joint density, but with training data and latent positions held fixed.

p(X′,Y′ |X,Y, ᾱ, β̄) ∝ p( [X,X′], [Y,Y′] | ᾱ, β̄) (6.14)

This density can also be factored to provide:

p(Y′ |X′, X, Y, β̄) p(X′ |X, ᾱ) . (6.15)
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Walking GPLVM and GPDM: Learned from 1 gait cycle from each of 6 sub-
jects. Circles and arrows denote latent positions and temporal sequence. (a,b)
Side/top views of the 3D latent space for the GPLVM. (c,d) Side/top views of
the 3D latent space for the GPDM. (e) Volumetric visualization of the recon-
struction variance. Warmer colors denote lower variance. (f) Green trajectories
are fair samples from the dynamics model.
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Figure 6.4: Speed Variation: 2D models learned for 4 different subjects. Each one walk-
ing at 9 speeds ranging from 3 to 7 km/h. Red points are latent positions of
training poses. Intensity is proportional to −2 lnσy|x,X,Y,β̄ , so brighter regions
have smaller pose reconstruction variance. Top row: healthy subjects. Bottom
row: subjects with a knee and a hip pathology respectively, that walks asym-
metrically.

For tracking we are typically given an initial state x′
0, so instead of (6.15), we obtain

p(Y′ |X′, X, Y, β̄) p(X′ |X, ᾱ,x′
0) . (6.16)

Let Y′ = [y′
1, ...,y

′
N′ ]T , and X′ = [x′

1, ...,x
′
N′ ]T . Note that the first term of the

density in Eq. (6.16) cannot be factored as a Markov chain. The poses are not independent
when conditioned on the latent sequence, and we cannot write the density over a latent
sequence as a product of low-order Markov transitions. Although this makes inference
more difficult, we heuristically approximate it as

N′∏

i=1

p(y′
i | x

′
i, X, Y, β̄) p(X′ |X, ᾱ,x′

0) . (6.17)
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6.2 Tracking

Our tracking formulation is based on a state-space model, with a GPDM prior over pose
and motion. The state at time t is defined as φt = [gt,yt,xt], where gt denotes the global
position and orientation of the body, yt denotes the articulated joint angles, and xt is a
latent position. The goal is to estimate a state sequence, φ1:T ≡ (φ1, ..., φT ), given an
image sequence, I1:T ≡ (I1, ..., IT ), and a learned GPDM, M = (X, Y, ᾱ, β̄). Toward
that end there are two common approaches: On-line methods infer φt given the observation
history I1:t−1. The inference is causal, and usually recursive, but suboptimal as it ignores
future data. Batch methods infer states φt given all past, present and future data, I1:T .
Inference is optimal, but requires all future images which is impossible in most tracking
applications.

Here we propose a compromise that allows some use of future data along with predictions
from previous times. In particular, at each time t we form the posterior distribution over a
(non-causal) sequence of τ+1 states

p(φt:t+τ | I1:t+τ , M) = c p(It:t+τ |φt:t+τ ) p(φt:t+τ | I1:t−1, M) . (6.18)

Inference at time t is improved, but at the cost of a small temporal delay.2 With a Markov
chain model one could use a forward-backward belief propagation algorithm [162] in which
separate beliefs about each state from past and future data are propagated forward and
backward in time. Here, instead we consider the posterior over the entire window, without
requiring the Markov factorization.

We also exploit the power of the GPDM prior, and assume that we can use hill-climbing
to find good state estimates. Thus, rather than approximating the entire posterior, we find
MAP estimates. In effect, this assumes

p(φt:t+τ | I1:t+τ , M) ≈ c p(It:t+τ |φt:t+τ ) p(φt:t+τ |φ
MAP
1:t−1 , M) (6.19)

where φMAP
1:t−1 denotes the MAP estimate history. This has the disadvantage that complete

beliefs are not propagated forward. But with the temporal window we still exploit data over
several frames, yielding smooth tracking.

Accordingly, at each time step we minimize the negative log posterior over states from
time t to time t + τ . At this minima we obtain the approximate MAP estimate at time t
(given images I1:t+τ ). The estimate is approximate in two senses. First, we do not represent
and propagate uncertainty forward from time t − 1 in (6.19). Second, because previous
MAP estimates are influenced by future data, there is a bias in the information propagated
forward.

Image Likelihood: The current version of our 3D tracker uses a remarkably simplistic
observation model. That is, the image observations were just the approximate 2D image

2However an on-line estimate of φt+τ would still be available at t+τ .
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(a) (b) (c) (d) (e)

Figure 6.5: WSL Tracks: The 2D tracked regions for the different tracked sequences (in
yellow) are noisy and sometimes missing.

locations of a small number (J) of 3D body points (see Fig. 6.5). They were obtained with
the WSL image-based tracker [67].

While measurement errors in tracking are often correlated over time, as is common we
assume that image measurements conditioned on states are independent; i.e.,

p(It:t+τ |φt:t+τ ) =
t+τ∏

i=t

p(Ii |φi) . (6.20)

Further, we assume zero-mean Gaussian measurement noise in the 2D image positions
provided by the tracker. Let the perspective projection of the j th body point, pj , in pose φt,
be denoted P (pj(φt)), and let the associated 2D image measurement from the tracker be
m̂

j
t . Then, the negative log likelihood of the observations at time t is

− ln p(It |φt) =
1

2σ2
e

J∑

j=1

∥∥∥m̂j
t − P (pj(φt))

∥∥∥
2
. (6.21)

Here we set σe = 10 pixels, based on empirical results.

Prediction Distribution We factor the prediction density p(φt:t+τ |φ
MAP
1:t−1 , M) into a

prediction over global motion, and one over poses y and latent positions x. The reason, as
discussed above, is that our training sequences did not contain the global motion. So, we
assume that

p(φt:t+τ |φ
MAP
1:t−1 , M) = p(X′

t, Y
′
t | x

MAP
t−1 , M) p(gt:t+τ |g

MAP
t−1:t−2) , (6.22)

where X′
t = xt:t+τ and Y′

t = yt:t+τ .
For the global rotation ot and translation zt, such that gt = (ot, zt), we assume a second-

order Gauss-Markov model. The negative log transition density is, up to an additive con-
stant,

− ln p(gj |gj−1:j−2) =
||zj−ẑj ||

2

2σ2
z

+
||oj−ôj ||

2

2σ2
o

(6.23)
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where the mean prediction is just

ẑj = 2zj−1− zj−2 , ôj = 2oj−1− oj−2 .

with the initial condition at time t provided by previous MAP estimates at times t − 1 and
t− 2, i.e., gt−1 ≡ gMAP

t−1 and gt−2 ≡ gMAP
t−2 .

For the prior over X′
t, Y′

t, we approximate the GPDM in two ways. First we assume
that the density over the pose sequence, p(Y′

t |X
′
t, M), can be factored into the densities

over individual poses. This is convenient computationally since the GPDM density over a
single pose, given a latent position, is Gaussian [54, 151]. Thus we obtain

− ln p(Y′
t|X

′
t,M) ≈ −

t+τ∑

j=t

ln p(yj |xj , β̄,X,Y)

=
t+τ∑

j=t

‖W(yj − µY (xj))‖
2

2σ2(xj)
+
D

2
lnσ2(xj) +

1

2
‖xj‖

2

where the mean and variance are given by

µY (x) = µ+ YTK−1
Y kY (x) , (6.24)

σ2(x) = kY (x,x)− kY (x)TK−1
Y kY (x) , (6.25)

and kY (x) is the vector with elements kY (x,xj) for all other latent positions xj in the
model.

Second, we anneal the dynamics p(X′
t|x

MAP
t−1 ,M), because the learned GPDM dynam-

ics often differ in important ways from the video motion. The most common problem occurs
when the walking speed in the video differs from the training data. To accommodate this
we effectively blur the dynamics; this is achieved by raising the dynamics density to a small
exponent, or simply just using a smaller value of λ in (6.13), for which the kernel matrix
must also be updated to include X′

t. For tracking, we fix λ = 0.5.

Optimization: Tracking is performed by minimizing the approximate negative log pos-
terior in (6.19). With the approximations above this becomes

Ft = −
t+τ∑

j=t

ln p(Ij |φj) −
t+τ∑

j=t

ln p(gj |gj−1:j−2)

− ln p(X′
t|ᾱ,X) −

t+τ∑

j=t

ln p(yj |xj , β̄,X,Y) (6.26)

To minimize Ft in (6.26) with respect to φt:t+τ , we find that the following procedure helps
to speed up convergence, and to reduce getting trapped in local minima. Each new state
is first set to be the mean prediction, and then optimized in a temporal window. For the
experiments we use τ = 2.
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6 Gaussian Process Dynamical models

Figure 6.6: Tracking 63 frames of a walking, with noisy and missing data. The skeleton
of the recovered 3D model is projected onto the images. The WSL tracks are
shown in red. Note the accuracy of the result.

Algorithm 1 Optimization Strategy (at each time step t)
{xt+τ} ← µX(xt+τ−1) = XT

out
K−1

X kX(xt+τ−1)
{yt+τ} ← µY (xt+τ ) = µ+ YTK−1

Y kY (xt+τ )
{gt+τ} ← 2gt+τ−1 − gt+τ−2

for n = 1 . . . iter do
{X′

t} ← min E with respect to X′
t

{φt:t+τ} ← min E with respect to φt:t+τ

end for
{X′

t} ← min E with respect to X′
t
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6.3 Tracking Results

Figure 6.7: Tracking 56 frames of a walking motion with an almost total occlusion (just
the head is visible) in a very clutter and moving background. Note that the
prediction when the occlusion happens is a realistic motion.

One can also significantly speed up the minimization when one knows that the motion
of the tracked object is very similar to the training motions. In that case, one can assume
that there is negligible uncertainty in the reconstruction mapping, and therefore a pose is
directly given by y = µY (x). This reduces the reconstruction likelihood for every pose
to D

2 lnσ2(x) + 1
2‖x‖

2, and the state at time t to φt = (gt,xt), which can be optimized
straightforwardly.

6.3 Tracking Results

Here we focus on tracking different styles and speeds for the same activity. We use the
Balanced GPDM model shown in Fig. 6.3 for tracking all walking sequences below. In
Fig. 6.6 we use a well-known sequence to demonstrate the robustness of our algorithm to
data loss. In the first frame, we supply nine 2D points—the head, left shoulder, left hand,
both knees and feet, and center of the spine (the root). They are then tracked automatically
using WSL [67]. As shown in Fig. 6.5(d) the tracked points are very noisy; the right knee
is lost early in the sequence and the left knee is extremely inaccurate. By the end of the
sequence the right foot and left hand are also lost. Given such poor input, our algorithm
can nevertheless recover the correct 3D motion, as shown by the projections of the skeleton
onto the original images.

While better image measurements can be obtained for this sequence, this is not always an
option when there are occlusions and image clutter. E.g., Fig. 6.7 depicts a cluttered scene
in which the subject becomes hidden by a shrub; only the head remains tracked by the end
of the sequence (see Fig. 6.5(e)). For these frames only the global translation is effectively
constrained by the image data, so the GPDM plays a critical role. In Fig. 6.7, note how the
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6 Gaussian Process Dynamical models

Figure 6.8: Tracked Latent Positions: Side and top views of the 3D latent space show
the latent trajectories for the tracking results of Figs. 6.6, 6.7, 6.9, and 6.10 are
shown in red, blue, black, and green. The learned model latent positions are
cyan.

projected skeleton still appears to walk naturally behind the shrub.
Figure 6.9 shows a sequence in which the subject is completely occluded for a full gait

cycle. When the occlusion begins, the tracking is governed mainly by the prior.3 The 3D
tracker is then switched back on and the global motion during the occlusion is refined by
linear interpolation between the 3D tracked poses before and after the occlusion. Before
an occlusion, it is very important to have a good estimation of x, as subsequent predictions
depend significantly on the latent position. To reduce the computational cost of estimating
the latent positions with great accuracy, we assume perfect reconstruction, i.e., y = µY (x),
and use the second algorithm described in Section 6.2.

The latent coordinates obtained by the tracker for all of the above sequences are shown in
Fig 6.8. The trajectories are smooth and reasonably close to the training data. Further, while
the training gait period was 32 frames, this three sequences involve gait periods ranging
from 22 to 40 frames (by comparison, natural walking gaits span about 1.5 octaves). Thus
the prior generalizes well to different speeds.

To demonstrate the ability of the model to generalize to different walking styles, we also
track the exaggerated walk shown in Fig. 6.10. Here, the subject’s motion is exaggerated
and stylistically unlike the training motions; this includes the stride length, the lack of
bending of the limbs, and the rotation of the shoulders and hips. Despite this the 3D tracker
does an excellent job. The last two rows of Fig. 6.10 show the inferred poses with a simple
character, shown from two viewpoints, one of which is quite different from that of the
camera. The latent coordinates obtained by the tracker are shown in Fig. 6.8; the distance
of the trajectory to the training data is a result of the unusual walking style.

3We manually specify the beginning and end of the occlusion. We use a template matching 2D detector to
automatically re-initialize WSL after the occlusion, as shown in Fig 6.5(c).
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6.4 Conclusions and Future Work

Figure 6.9: Tracking 72 frames of a walking motion with a total occlusion. During the
occlusion the tracker is switch off and the mean prediction is used. Note the
accuracy of the tracking before and after the occlusion and the plausible motion
during it.

6.4 Conclusions and Future Work

We have introduced the GPDM for learning smooth prior models of human pose and mo-
tion for 3D people tracking. We showed that GPDM priors, unlike SGPLVM (chapter 5)
ones, can be learned from modest amounts of training motions including stylistic diversity.
Further, they are shown to be effective for tracking a range of human walking styles, despite
weak and noisy image measurements and significant occlusions. The quality of the results,
in light of such a simple measurement model attest to the utility of the GPDM priors.

As will be shown in chapter 7, the pose dynamical priors introduced here result in better
tracking results than the motion and pose priors proposed in chapters 4 and 5 respectively,
when working under challenging conditions such as occlusions or big stylistic deviation
from the training data.

Future work will focus on building better appearance models, as this is a principal weak-
ness of the tracker. One problem with GPs concerns the computation that grows quickly
with the number of training samples. So, we plan to investigate sparsification methods so
that larger training sets can be used. Another open question concerns how one should learn
models with many different activities.
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6 Gaussian Process Dynamical models

Figure 6.10: Tracking 37 frames of an exaggerated gait. Note that the results are very ac-
curate even though the style is very different from any of the training motions.
The last two rows depict two different views of the 3D inferred poses of the
second row.
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7 Comparative Results

In this work we have made a number of choices when learning GP models. In this chapter
we examine their influence, more specifically we focus on different possible parameter-
izations that could have been used to parameterize a pose, the amount of training data
necessary to obtain a good generalization, and the influence of the dimensionality of the
input and latent spaces. The goal is to obtain non-sparse clustered spaces, where the poses
performed at the same phase of the motion are aligned. A sparse model is not good for
tracking since it does not generalize well; only poses close to the training data are possible.
On the contrary, it is useful for recognition. We want a clustered model, so that the training
data form a single manifold. This will result in functions easier to minimize when tracking.
When dealing with multiple manifolds it is difficult to perform a transition between them,
for example when the subject changes the style of the walking.

We then compare tracking results of the different motion and pose models for synthetic
and real data. The evaluation criterions were the estimated 3D joint locations, the 2D pro-
jections, and the obtained Euler angles. Finally, we study the robustness of the models to
the sparsity of the image data.

7.1 Learning GP

In this section we discuss the issues related to learning pose and motion models with Gaus-
sian Processes. First, we discuss the influence of the different positional and angular pa-
rameterizations, and the amount of training data necessary to have a good generalization.
We explore the consequences of varying the input space dimensionality, learning 80D and
20D models. We then study different dimensionalities of the latent space, showing 2D and
3D models.

7.1.1 Is parameterization an issue?

A pose can be parameterized in many different ways that can be classified as either posi-
tional or angular, which can result in very different models. This is due to the fact that each
parameterization implies a very different metric and a different input dimension. Note that
learning different parameterizations is equivalent to learning different Warped GP [134],
where the warping functions are the conversion between the different parameterizations.

Positional parameterizations: Joints are parametrized in terms of their 3D spatial
locations. They represent reality in the most natural way, since they do not have any of
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7 Comparative Results
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Figure 7.1: GPLVM and GPDM for different parametrizations seen from the same
viewpoint. They were learned from a database compose of 9 walking cycles
of 9 different persons (6 male and 3 female) walking at 4 km/h in a treadmill.
The latent positions are initialized using PCA (first column). Due to the high di-
mensionality of the data, the learned GPLVM (second column) and GPDM (last
column) models have non smooth latent trajectories. Because the input space is
very high dimensional (80D), the reconstruction term of GPDM is overfitting,
the dynamical one has almost no effect. This results in similar models to the
GPLVMs.
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Figure 7.2: Balanced GPDM for different parameterizations learned from the 9 people
database, seen from two viewpoints. The latent coordinates were initialized
with the ones depicted by the left column of Fig. 7.1. Note the clustering
corresponding to the positional parametrization of the top row. The exponential
map and the quaternion models are very similar. The Euler angle is the simplest
parametrization, but also the one with the largest artifacts. The cos-sin is the
sparsest one since it has double the degrees of freedom of the exponential map
or Euler-angle parameterizations.
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Figure 7.3: Error histograms for the Balanced GPDM, GPDM and GPLVM of Figs.
7.1 and 7.2. The errors, defined as ||y − µY (x))||, are depicted in blue for
the training data and in green for the test data. The test sequences are walkings
performed by the same 9 subjects as before, but at a different speed (5km/h) than
the training ones (4km/h). Note that the B-GPDM generalized better; The error
histograms for the test data are narrower than the ones of GPDM and GPLVM.
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7.1 Learning GP

train data quat exp-map euler cos_sin
B_gpdm 0.00121 0.00320 0.00355 0.00096

gpdm 0.00050 0.00089 0.00116 0.00059
gplvm 0.00044 0.00116 0.00117 0.00049

same person quat exp-map euler cos_sin
B_gpdm 0.01049 0.02672 0.02801 0.01925

gpdm 0.01664 0.04120 0.04192 0.02463
gplvm 0.01656 0.04170 0.04320 0.02480

Training Other speed

Figure 7.4: Mean Errors for the 9 people database. Each plot is divided in 4 groups, repre-
senting the errors for the quaternion, exponential map, Euler angle and cos-sin
parameterizations. For each parametrization, three error bars are depicted, one
for each model: B-GPDM (blue), GPDM (green) and GPLVM (red). Left:
Training data. Right: Test sequences are walkings performed by the same 9
subjects, but at a different speed (5km/h) than the training ones (4km/h). Note
that the GPDM and GPLVM are overfitting (bigger errors for testing), and the
training errors of the B-GPDM are much bigger since the dynamics is mini-
mized assuming a narrower prior than the GPDM. The mean errors for training
and testing are very small.
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7 Comparative Results

the artifacts that the angular parameterizations have, such as singularities, periodicity and
non-euclidean distance. The resulting Balanced GPDM models are the most clustered1, as
shown in Figs. 7.2, 7.6 and 7.10. However, in practice, this parametrization is not very
useful since a different model should be learned for each specific skeleton size. Moreover,
it does not constrain the length of the limbs to remain constant for a given subject when
doing regression, and in particular when fitting to image data. This happens even for the
training data due to noise. To use the resulting models as a prior for tracking, additional
hard constraints should be added to force the length of the limbs to remain constant.

Angular parameterizations: Quaternions, Euler angles, and exponential maps are ex-
amples of this type of parametrization. By definition, they guarantee that limb lengths
remain constant when doing regression. Although some retargetting would be needed to
express them in a common skeleton [154], they can be considered as independent of the
limb sizes, and one can learn a single model common to all possible sizes of a given skele-
ton. But these parameterizations suffer from a variety of problems. They are hierarchical,
since the position of a joint depends on the specific rotations of all its parents. As a con-
sequence two vectors yi, yj can be very different but represent very similar poses. Their
distance metric is not euclidean, for example the distance between two quaternions q1 and
q2 is defined as

dist(q1,q2) = 2 cos(|q1q2|) . (7.1)

They present singularities, especially the Euler angles that suffer from the Gimbal lock2

problem [161]. Moreover, they are not unique; Two sets of 3 different Euler angles may
produce the same rotation matrix. Euler angles are also periodic, with period 2π. This
introduces artifacts since this periodicity is not modeled with the RBF kernel used in our
GP models. Agarwal and Triggs [4] suggested to replace each angle θi, by (cos(θi), sin(θi))
to get rid of the periodicity problem. This increases by a factor of 2 the dimensionality of
the input data, which is already very high (≈ 80D). The rotation matrix parametrization was
not considered here since it increases by a factor of 3 the dimensionality of the input space,
making learning even more difficult. Exponential maps are not periodic but they suffer a
discontinuity at 2πn, with n > 0. Quaternions are also not periodic and they do not have
discontinuities, but their dimensionality is higher than Euler angles and exponential maps.

Fig. 7.1 depicts GPLVM and GPDM models learned from a database of 9 people (6 male
and 3 female) walking on a treadmill at 4 km/h for the different parameterizations. The
latent positions are initialized using PCA, and are depicted by Fig. 7.1 (left). Since the
poses are very high dimensional (more than 80D), the reconstruction term in the GPDM
(right) is clearly overfitting, resulting in a model very similar to the GPLVM (center). Note
that both contain non smooth latent trajectories. By contrast, the Balanced GPDMs of Fig.

1Clustered in this context means forming in a common manifold
2Gimbal lock occurs when the second angle is +90 or -90 degrees, causing the first and third axis of the linkage

to become aligned. The linkage then has two rotational degrees of freedom rather than three.
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7.1 Learning GP

7.2, that were learned from the same database, contain very smooth latent trajectories for
every parametrization.

The 3D positional parametrization depicted by the first row of Fig.7.2 yields the most
clustered model. As could be expected, the exponential map and the quaternion models
have very similar latent positions, but the quaternion one is sparser since the dimensionality
of the input space is higher. A sparse model is a model that do not generalize well, since
the pose and motions far from the training data have a very low probability.

The Euler angle is the simplest parametrization that one can use, but the corresponding
model exhibits the largest artifacts, resulting in poses performed at the same phase of the
motion by the different subjects being far apart. The cos-sin parametrization yields the
sparser model since the input space has double the number of degrees of freedom of the
exponentila map or Euler-angle ones.

One can conclude that the exponential map parametrization is the best parametrization
since, unlike the positional ones, it does not require additional constraints, it is not too
sparse, and the poses performed at the same phase of the motion are aligned for most of
the subjects. Three of the motions that compose the database were noisy and relatively
different from the other six. As depicted by Fig. 7.6, learning a database containing only
clean motions produces models with aligned latent trajectories that are more suitable for
tracking.

7.1.2 Generalization of the different GPs

To study the generalization of the different GPs, we compute the reconstruction errors for
the training and test sequences. For each pose y, first its corresponding latent position is
initialized to xi, where yi is the closest pose to y. Then, x̂ is obtained by minimizing Eq.
6.26 with respect to x. The error for each pose is computed as ||y − µY (x̂)||, with µY (x)
defined as in Eq. 6.24.

Fig. 7.3 depicts the normalized error histograms for the different models of Figs. 7.1 and
7.2. They are depicted in blue for the training data and in green for the test data. The test
sequences are walkings performed by the same 9 subjects, but at a different speed (5km/h)
than the training ones (4km/h). Fig. 7.4 depicts the mean error for each type of parametriza-
tion and model. The errors for the training are very small, and the Balanced GPDM has the
largest ones, while the GPDM and GPLVM performed similarly. The GPDMs and GPLVMs
are overfitting resulting in bigger errors than the Balanced GPDMs for the test sequence.
The parameterizations are not directly comparable with each other since they have different
scales 3. One can conclude that the Balanced GPDM generalizes the best, and this will
result in better tracking performance as will be seen in section 7.2.
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Figure 7.5: GPLVM and GPDM for different parametrizations seen from the same
viewpoint. PCA was used for initialization (left). As for the 9 people walk-
ing database of Fig. 7.1, due to the high dimensionality of the data, the learned
GPLVM (center) and GPDM (right) models have non smooth latent trajectories,
resulting in models less suitable for tracking than the B-GPDM of Fig. 7.6
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Figure 7.6: Balanced GPDM for different parameterizations, learned from the 6 people
database, view from two different viewpoints. The PCA coordinates depicted
by Fig. 7.5 (left) were used as initialization. As for the 9 people database, the
positional parametrization is the most clustered, the exponential map model is
similar to the quaternion one and the cos-sin yields the most sparse model. Note
that the artifacts of the Euler angle parametrization are less visible here, the
cycles are well represented as ellipses within a common cylindrical structure.
The content is represented as an ellipse an the style (subject identity) as the
length axis of the cylinder. These models are more suitable for tracking since
poses performed at the same phase of the motion are aligned. 151
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Figure 7.7: Error histograms for the Balanced GPDM, GPDM and GPLVM of Figs. 7.5
and 7.6. The errors are depicted in blue for the training data, in green for test
data performed by the same subject at different speeds ranging from 3 to 7 km/h,
and in red for test data performed by 3 different subjects (whose motions are not
part of the database) at different speed ranging from 3 to 7 km/h. Note that the
B-GPDM generalized better, the error histograms for the test data are narrower
than the ones of GPDM and GPLVM.
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7.1 Learning GP

train data quat exp-map euler cos_sin
B_gpdm 0.00137 0.00350 0.00221 0.00089

gpdm 0.00050 0.00132 0.00131 0.00076
gplvm 0.00050 0.00130 0.00134 0.00077

same person quat exp-map euler cos_sin
B_gpdm 0.01210 0.03065 0.03371 0.02278

gpdm 0.01775 0.04444 0.04581 0.02715
gplvm 0.01700 0.04350 0.04351 0.02617

other person quat exp-map euler cos_sin
B_gpdm 0.02301 0.05883 0.06228 0.03809

gpdm 0.02706 0.06716 0.06973 0.04109
gplvm 0.02633 0.06654 0.06613 0.03991

Training other speed other person

Figure 7.8: Mean Errors for the 6 people database. Each plot is divided in 4 groups, repre-
senting the errors for the quaternion, exponential map, Euler angle and cos-sin
parameterizations. For each of parametrization, three error bars are depicted,
one of each model: B-GPDM (blue), GPDM (green) and GPLVM (red). Left:
training data, Center: walking cycles performed by the same subjects but with
different speeds ranging from 3 to 7km/h. Right: walking cycles of 3 sub-
jects whose motions are not part of the database, walking with speeds ranging
3 to 7km/h. Note that as for the 9 people database of Fig. 7.8 the GPDM and
GPLVM are overfitting, and the B-GPDM has the worst training errors. The
mean errors for training and testing are very small.

153



7 Comparative Results

7.1.3 Generalization vs amount of training data

To study the influence of varying the amount of training data for generalization, we learned
different models from a subset of the 9 people database. Figs. 7.5 and 7.6 depict GPLVM,
GPDM and Balanced-GPDM models for the different parameterizations when learning 6
people (3 male and 3 female) walking on a treadmill at 4km/h. Note that the artifacts of
the Euler angle parametrization are less visible here, the cycles are well represented as
ellipses within a common cylindrical structure, where the latent coordinates for the poses
performed by all the subjects at the same phase of the motion are aligned. This is not
surprising since this was in part the behavior (Fig. 6.4) for databases composed of walking
cycles at incremental speeds for the same subject, where the speed was encoded by the
radius of the ellipses. One can expect that the other hidden variable, that is, the style of the
motion, is encoded by a third dimension. This makes our approach comparable to methods
that try to separate style an content [42]. Here, the content is represented as an ellipse
and the style as the longitudinal axis of the cylinder. The models are sparse, and present a
desirable property for classification, one dimension encodes the subject identity. This is not
the case anymore when learning a database composed of 9 subjects (Fig. 7.2). Part of the
problem is due to the fact that the motions of those 3 new subjects are noisy and are quite
different from the other 6. Moreover, as will be described below, this results in the models
with the better tracking performances.

Figs. 7.7 and 7.8 depicts error histograms and mean errors for the training data, walking
cycles performed by the same 6 subjects but at different speeds ranging from 3 to 7km/h,
and walking cycles performed by the other 3 persons that compose the 9 subject database
and whose motions are not included in the training set. Note that as expected the Bal-
anced GPDM has the biggest reconstruction errors for the training data, but the GPDM and
GPLVM are overfitting and their errors are bigger than the Balanced GPDM for the test
data, even in the case of the walking cycles performed by the same training subjects (but at
different speeds).

When learning a database containing only two different walking cycles performed by two
different subjects, the behavior is different, the three different GP models overfit, as shown
by the error histograms and the mean errors of Figs. 7.11 and 7.12. Note that the Euler
angle Balanced GPDM pull apart the different walkings (Fig. 7.10), resulting in a model
suitable for classification. The GPDM and GPLVM models of Fig. 7.9 are very similar.

7.1.4 Dimensionality of the input space

Figs. 7.2–7.9 depict results when learning 80D spaces that are very high dimensional. Note
that only the positional parameterization results in clustered and non-sparse models. The
models learned from the 6 subject database are the best ones, since they are clustered and
poses that are produced in similar phases of the different motions are aligned. But these
models are sparse.

3The norm of a rotational quaternion is always 1, the value of each Euler angle is between 0 and 2π, the norm
of an exponential map is between 0 and 1.
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Figure 7.9: GPLVM and GPDM for different parametrizations, learned from a database
composed of 2 subjects (1 male, 1 female) walking on a treadmill at 4km/h.
Because of the small amount of training data, the GPLVM (center) and (GPDM)
models have smooth latent trajectories.
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Figure 7.10: B-GPDM for different parameterizations for the 2 subjects database, view
from two different viewpoints. Note that the learned models vary a lot de-
pending on the type of parametrization used. The positional one yields once
more the most clustered model, and the exponential map model is quite similar
to the quaternion one. Because the PCA initialization (Fig. 7.9) has a small
loop, the B-GPDM pull apart the two walkings. This model could be useful
for recognition, since the poses from different subjects are clearly separated.
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Figure 7.11: Error histograms for the Balanced GPDM, GPDM and GPLVM of Figs. 7.9
and 7.10. The errors are depicted in blue for the training data, in green for
test data performed by the same subject at different speeds ranging from 3
to 7km/h, and in red for test data performed by 3 different subjects (whose
motions are not part of the database) at 4km/h. Due to the small amount of
training data, the errors of the B-GPDM, GPDM and GPLVM are similar.
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train data quat exp-map euler cos_sin
B_gpdm 0.00075 0.00215 0.00242 0.00097

gpdm 0.00069 0.00193 0.00185 0.00110
gplvm 0.00069 0.00197 0.00191 0.00109

same person quat exp-map euler cos_sin
B_gpdm 0.01405 0.03345 0.03607 0.02129

gpdm 0.01350 0.03375 0.03434 0.02095
gplvm 0.01335 0.03209 0.03405 0.02015

other person quat exp-map euler cos_sin
B_gpdm 0.02555 0.06687 0.06867 0.03911

gpdm 0.02443 0.06546 0.06289 0.03633
gplvm 0.02443 0.06035 0.06277 0.03634

Training other speed other person

Figure 7.12: Mean Errors for the 2 people database. Each plot is divided in 4 groups,
representing the errors for the quaternion, exponetial map, Euler angle and cos-
sin parameterizations. For each parametrization, three error bars are depicted,
one of each model: B-GPDM (blue), GPDM (green) and GPLVM (red). Left:
training data, Center: walking cycles performed by the same subjects but with
different speeds ranging from 3 to 7km/h. Right: walking cycles of 3 subjects
whose motions are not part of the database, walking at a speed of 4km/h. Note
that all the models are overfitting and have similar reconstruction errors for the
test sequence.
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B-GPDM
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Latent front view side view

Figure 7.13: GP Models for a 20D input space. The training data is composed of 6 sub-
jects walking at 4km/h on a treadmill. Note that the models clustered, and the
poses that correspond to the same phase of the motion for the 6 subjects are
aligned.

To learn more clustered aligned non-sparse models with angular parameterizations, one
can decrease the dimensionality of the input space mitigating some artifacts. 20D Balanced
GPDM, GPDM and GPLVM for the 6 subject database are shown in Fig. 7.13. Note that
the model is non sparse, clustered, and the poses from different subjects at similar motion
phases are aligned. These are desirable properties for tracking since with a small change
in the latent position one can change the style of a pose without changing the phase of the
motion. Only the GPLVM results in non smooth latent trajectories, since the model is 20D,
the fraction D/d is small, and the reconstruction overfitting of the GPDM is much smaller
than in the 80D case. Note that the 20D Balanced GPDM was used to produce the tracking
results shown in chapter 6.
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3D Pos
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Exp-map

Euler
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Init B-GPDM GPDM

Figure 7.14: 2D Balanced GPDM and GPDM for different parametrization. When the
initialization contains loops the B-GPDM and GPDM result in non smooth la-
tent trajectories. The jumps in the latent space are depicted in red. To avoid
these discontinuities, one should change the initial conditions, raise the dy-
namics likelihood prior to a much stronger power than D/d, include back-
constraints, model suitable priors for X, or increase the dimensionality of the
latent space. The 3D models are depicted in Figs. 7.9 and 7.10.
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Figure 7.15: 2D Balanced GPDM and GPDM for different parameterizations. When
the initialization contains loops the B-GPDM and GPDM result in non smooth
latent trajectories. The jumps in the latent space are depicted in red. None of
the models result in smooth latent trajectories. The dimensionality used is not
high enough and one should learn 3D models (Fig. 7.6).
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7.1.5 Dimensionality of the latent space

When the number of training data is small enough a 2D model can be learned. Depending
on the parameterization, the initialization contains loops, and the resulting models have non
smooth latent trajectories, even when learning a Balanced-GPDM. Fig. 7.14 shows Balance
GPDM and GPDM models learned from a database composed of 2 people (one male and
one female) walking on a treadmill at 4km/h. To make the latent trajectories smoother, as
seen in Chapter 5, one can change the initial conditions and use for example non-linear
techniques, such as Isomap [141], LLE [121] or Laplacian Eigenmaps [10]. As suggested
by Lawrence [77], one can incorporate back-constraints. One can also think of including
proper priors over the X, that will mitigate such problems.

Fig. 7.15 depicts 2D models for the database composed of 6 subjects. Note that for all
the parameterizations, the latent trajectories are non smooth. When the amount of training
data is high the easiest way to avoid these discontinuities is to increase the dimensionality,
as shown in Fig. 7.6, where 3D models are depicted.

7.2 Tracking

In this section we compare tracking results using the different pose, motion and pose dy-
namical models proposed. We use synthetic and real data to study the robustness of the
different models with respect to the decrement of the number of image cues.

7.2.1 Synthetic data

Two different sequences were used to test the performance of the methods proposed in chap-
ters 4, 5 and 6. The first sequence is a training sequence, and the walking was performed by
a female subject walking at 4km/h on a treadmill. The second one was performed by none
of the subjects of the 6 and 2 people databases. Although it was performed by one of the
subjects that compose the 9 people database, the test sequence was not used for learning,
and its speed (3km/h) was different from the one used for training (4km/h).

We used an image size of 640x480, and a fixed camera with a calibration matrix whose
values were set so that all the joints projected into the image, with the root, defined at
the level of the sacroiliac, projecting at the center of the image. The 2D locations of the
projected joints were used as input for the different tracking algorithms. The synthetic
sequences did not contain any global motion. The reason is that we wanted to analyze
the pose recovery of the different models, without any artifacts that a bad global motion
estimation will produce. The real sequence that is analyzed below contained global rotation
and position changes to be estimated. We used the same number of minimization steps for
all the results shown here.
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7.2.1.1 GP models

A temporal window of size 3 was used for all the experiments, and the models were initial-
ized to the correct initial poses, y1:3, but to bad initial latent positions x1:3. We choose this
configuration to test the performance of the different models against bad initialization.

Two set of experiments were performed. The first one minimized Eq. 6.26, and the
second one minimized the same equation but assuming perfect reconstruction. It used the
mean prediction (MP) as the pose estimate, so that one minimized Eq. 6.26 with respect to
x with y = µY (x). We tested two different variances of the image likelihood error σe, the
one used for tracking the sequences in chapter 6 (σe = 10), and a more realistic estimate
for the noiseless synthetic image data (σe = 1).

Training sequence: Fig. 7.16 shows the mean tracking errors for the different models,
when tracking the training sequence: The 2D projections errors (pixels), the error in the
3D location of the joints (mm), and the error in the estimated Euler angles (radians). We
measure three types of error since they are not always correlated. They are depicted by
Fig. 7.16. Note that in the first row the 2D projections errors for the 20D model (blue)
are very different from the Euler angle ones. The 2D projections and 3D locations errors
are small while the Euler angles are big. This may be caused by the artifacts of the Euler
angle parametrization, such as the fact that they are not unique. Sometimes the 2D pro-
jection error and the 3D location one are different. This is due to the depth ambiguities in
monocular tracking, i.e., two different 3D locations project to the same 2D point. Each plot
is composed of 3 groups, representing Balanced GPDM, GPDM and GPLVM results. For
each GP type, 8 bars are shown in 4 different colors. Each color corresponds to a different
model: 80D (9, 6, and 2 subjects) and 20D (6 subjects) respectively. For each model, two
bars are depicted in the same color, the first one represents the error when using all the 2D
joint projections as input, the second one uses only a subset, the same that was used for real
sequences.

For the two optimization strategies, the Balanced GPDM errors are bigger than the
GPDM and GPLVM ones. This is not surprising since the data is generated from a training
sequence. This behavior was already observed in section 7.1 when we study the generaliza-
tion properties of the different models. The reconstruction errors for the training sequences
were bigger when learning a Balanced GPDM. The tracking mean errors are small as de-
picted by Fig. 7.30 ranging 2 to 0.08 cm for the different models.

Latent trajectories: Figs. 7.17–7.20 depict the latent trajectories estimated when track-
ing the training sequence with the different models. The training data is depicted in cyan.
In the top row of each figure the training sequence to track is depicted in black for the
Balanced GPDM (left), GPDM (center) and GPLVM (right). In the bottom three rows,
the latent trajectories tracked with Balanced GPDM (second row), GPDM (third row) and
GPLVM (bottom row), with σe = 10 are depicted. Four trajectories are shown for each
plot. The result of minimizing Eq. 6.26 is depicted in red when using all the data and in
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Figure 7.16: Mean errors when tracking a training sequence with GPs. Each plot is
composed of 3 groups, representing Balanced GPDM, GPDM and GPLVM
results. For each GP type, 8 bars are shown in 4 different colors. Each color
corresponds to a different model: 80D (9, 6, and 2 subjects) and 20D (6 sub-
jects) respectively. For each model, two bars are depicted in the same color,
the first one represents the error when using all the 2D projection as input,
the second one uses only a subset, the same that was used for real sequences.
Three types of errors are depicted: The 2D projections errors (pixels), the er-
ror in the 3D location of the joints (mm), and the error in the estimated Euler
angles (radians). They are not always correlated, as shown in the first row for
the 20D model (blue).
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Training motion used as ground truth

Balanced GPDM

GPDM

GPLVM
Figure 7.17: Estimated latent trajectories for the 9 people database when tracking the

training sequence. The training data is depicted in cyan. Top Row: training
sequence to track (black) for the Balanced GPDM (left), GPDM (center) and
GPLVM (right). Bottom three rows: Latent trajectories tracked with Bal-
anced GPDM (second row), GPDM (third row) and GPLVM (bottom row),
with σe = 10. Four trajectories are depicted for each plot. Minimizing Eq.
6.26 whole set (red) and subset (green), when MP and complete set (black)
and MP and subset (blue). The latent trajectories are not well recovered for the
Balanced GPDM, and non smooth for the GPLVM.
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Training motion used as ground truth

Balanced GPDM

GPDM

GPLVM
Figure 7.18: Estimated latent trajectories for the 6 people database when tracking the

training sequence. The training data is depicted in cyan. Top Row: training
sequence to track (black) for the Balanced GPDM (left), GPDM (center) and
GPLVM (right). Bottom three rows: Latent trajectories tracked with Bal-
anced GPDM (second row), GPDM (third row) and GPLVM (bottom row),
with σe = 10. Note that the trajectories estimated when tracking with the Bal-
anced GPDM and non assuming perfect reconstruction are not well recovered,
resulting in big errors, as depicted by Fig. 7.16.
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Training motion used as ground truth

Balanced GPDM

GPDM

GPLVM
Figure 7.19: Estimated latent trajectories for the 6 people database when tracking the

training sequence. The training data is depicted in cyan. Top Row: training
sequence to track (black) for the Balanced GPDM (left), GPDM (center) and
GPLVM (right). Bottom three rows: Latent trajectories tracked with Bal-
anced GPDM (second row), GPDM (third row) and GPLVM (bottom row),
with σe = 10. Note that the trajectories are well recovered, resulting in small
errors, as depicted by Fig. 7.16.
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Training motion used as ground truth

Balanced GPDM

GPDM

GPLVM

Figure 7.20: Estimated latent trajectories for the 20D 6 people database when track-
ing the training sequence. The training data is depicted in cyan. Top Row:
training sequence to track (black) for the Balanced GPDM (left), GPDM (cen-
ter) and GPLVM (right). Bottom three rows: Latent trajectories tracked with
Balanced GPDM (second row), GPDM (third row) and GPLVM (bottom row),
with σe = 10. Note that the trajectories are well recovered, resulting in rela-
tively small errors, as depicted by Fig. 7.16.
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green when using only a subset of the 2D joints. The resulting trajectories when assuming
perfect reconstruction are depicted in black when using the whole set of 2D joint projec-
tions and in blue when using only a subset. The 9 subject database has the worst results,
especially in the case of GPLVM, since the poses are not aligned by the phase of the walk-
ings, and the minimizer has to jump too many local minima to get to the correct solution.
The latent trajectories when tracking with the GPLVM are not smooth, and this results in
large mean errors, as depicted by Fig. 7.16. In general the trajectories are better recovered
when assuming perfect reconstruction.

Initialization: is an important issue in tracking, especially when using a hill-climbing
strategy. For the 9 subject database models the initial conditions are very important, since
their motions are not aligned. Due to the bad initialization of the latent positions the track-
ing results are bad. This can be seen in Fig. 7.17, where the latent trajectories are depicted.
They are not well recovered, making the errors to be higher than those of the other models
that properly recovered them. Another example is when tracking with a Balanced GPDM
learned from the 6 subject database (second row of Fig. 7.18), the latent trajectories es-
timated when minimizing Eq. 6.26 are not well recovered. This is once more due to the
bad initialization. The dynamical prior penalizes too much the big jump necessary to get
to the correct latent positions. This is not the case when using GPDM and GPLVM since
the dynamical prior is not as important. Note that when tracking, one assumes an initial
position close to the solution. This is clearly not the case here. Using a multi-hypothesis
tracker, or a better initialization, would result in a better estimation.

Assuming perfect reconstruction: results in worst results, since without this as-
sumption the model is free to adapt to a wider range of styles. In such case the latent
positions are less accurately recovered. This is shown in Fig. 7.18 where we recovered the
correct latent positions only when assuming perfect reconstruction.

Lower dimensional input space: The 20D database was learned from an 80D input
space, where 60D were constants and independent of the pose. The learning results in
w = 1 for such dimensions, and a much small value (at least an order of magnitude) for the
other 20. This results in a much narrower prior for the 60D, with the mean reconstruction
for these dimensions being a constant (the same that was fixed for learning), independent
of the latent position. The reason why we did not use a 20D model for tracking is that it
does not have enough flexibility to fit the image data. The 20D model has more errors when
assuming perfect reconstruction, since the 60D have a constant value for all the poses in the
video sequence. In general the 20D database results in more errors than the 80D ones when
the data is noiseless. On the contrary this model performs better under noisy and missing
data. This is also the case when tracking motions very different from the training ones,
since the 80D databases are more difficult to control, and may diverge. Note that when
the solution has the 60D very far from the training one, because their prior is narrower, the
estimation may result in latent trajectories very far from the training ones, as depicted in
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Fig. 7.26. Note that although the latent trajectories are far, the error is small (see Fig. 7.22).
When decreasing σe, this results in divergence, as depicted in the third row of Fig. 7.22.

Decreasing the image error: When σe decreases (last two rows of Fig. 7.16), the
results are more accurate, the errors are much smaller and in the range of 0.04 to 1 cm in
mean. Decreasing the variance is not a good strategy in general when dealing with real data,
since, due for example to noise, the tracking may diverge and result in unfeasible positions.
One of the reasons is that the recovered latent positions are not smooth anymore, as depicted
by Fig. 7.21, and worst estimated when we do not assume perfect reconstruction.

(a) Training sequence

(a) Test sequence sequence

Figure 7.21: Estimated latent trajectories when reducing σe. Top row represents the
results when using B-GPDM and the 9 people database, with a value of σe =
1 for the training sequence of Fig. 7.18. Bottom row represents the latent
trajectories when using B-GPDM and the 6 people database, with a value of
σe = 1 for the test sequence. The corresponding σe = 10 tracked values are
shown in Fig. 7.23.

Test sequence: When tracking the testing sequence instead of the training one, the
errors augment, specially in the case of using the pose mean prediction (i.e. assuming
perfect reconstruction). The errors are smaller for the Balanced GPDM since it generalizes
better than GPDM and GPLVM. This was also the behavior observed when studying the
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Figure 7.22: Mean errors when tracking with GPs a test sequence performed by a sub-
jects whose motion is not part of the 6 and 9 people database, performed at
3km/h, while the training motions are performed at 4km/h. Each plot is com-
posed of 3 groups, representing Balanced GPDM, GPDM and GPLVM results.
For each GP type, 8 bars are shown in 4 different colors. Each color corre-
sponds to a different model: 80D (9, 6, and 2 subjects) and 20D (6 subjects)
respectively. For each model, two bars are depicted in the same color, the first
one represents the error when using all the 2D projection as input, the sec-
ond one uses only a subset, the same that was used for real sequences. Three
types of errors are depicted: The 2D projections errors (pixels), the error in
the 3D location of the joints (mm), and the error in the estimated Euler angles
(radians).
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Balanced GPDM

GPDM

GPLVM

Figure 7.23: Estimated latent trajectories for the 9 people database when tracking the
test sequence. The training data is depicted in cyan. The latent trajectories
tracked with Balanced GPDM (first row), GPDM (second row) and GPLVM
(bottom row), with σe = 10. Note that the latent trajectories for the Balanced
GPDM are the only ones that are smooth, resulting in large tracking errors for
the GPDM and GPLVM when assuming perfect reconstruction (Fig. 7.22),
since the pose is directly computed from the x estimated as the mean recon-
struction prediction.
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Balanced GPDM

GPDM

GPLVM

Figure 7.24: Estimated latent trajectories for the 6 people database when tracking the
test sequence. The training data is shown in cyan. The latent trajectories
tracked with Balanced GPDM (first row), GPDM (second row) and GPLVM
(bottom row), with σe = 10. Note that the GPLVM latent trajectories are non
smooth.
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Balanced GPDM

GPDM

GPLVM

Figure 7.25: Estimated latent trajectories for the 2 people database when tracking the
test sequence. The training data is depicted in cyan. The latent trajectories
tracked with Balanced GPDM (first row), GPDM (second row) and GPLVM
(bottom row), with σe = 10. Note that the latent trajectories for the GPLVM
are not smooth.
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Balanced GPDM

GPDM

GPLVM

Figure 7.26: Estimated latent trajectories for the 20D 6 people database when tracking
the test sequence. The training data is depicted in cyan. The latent trajectories
tracked with Balanced GPDM (first row), GPDM (second row) and GPLVM
(bottom row), with σe = 10. Note that the latent trajectories for the Balanced
GPDM have diverged, but that the tracking errors (Fig. 7.22) are not big (in
terms of 2D projection, and 3D position). The tracking is doing the correct
thing, but the system does not have the freedom to evolve, resulting in large
tracking errors.

175



7 Comparative Results

generalization properties of the different models in section 7.1. As in the training sequence,
when σe decreases, the tracking performed better, since the data is noiseless. Note the
accuracy of the results, the mean errors are less than 1 cm, as depicted in Fig. 7.30. When
using perfect reconstruction the 20D model performs the worst and the 9 subjects the best,
since it has more training data to which the new sequence can be similar. The difference
between the models are also smaller in that case.

Number of image cues: In general all the trackers performed better when using the
complete set of joints that when using the subset used in the real sequences. But for most
of the cases, the performance is similar, and such a subset provide enough information to
obtain accurate results.

7.2.1.2 Motion models
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Figure 7.27: Mean errors when tracking with the PCA motion models. Three types of
errors (2D projection, 3D location, Euler angles) are depicted. Each plot is
split in two groups, the left one represents the training sequence errors and the
right one the test sequence ones. For each group 4 error bars of 2 different
colors are depicted, each color represents a different window size (τ + 1 = 3
on red and τ + 1 = 5 on green). For each color two bars show the errors first
for the complete set of joints and then for the subset of joints, with similar
results. The errors for the sequence performed by a subject whose motion was
not recorded when building the database are much bigger than the ones for the
training sequence.

We test the linear motion models of chapter 4 using the two synthetic sequences. We
initialize the normalized time µt to a linear function, 0 at the beginning and 1 at the end of
the sequence. The style of the walking was initialized to the mean motion (i.e., xi = 0),
and estimated during the tracking.

Two sizes of the temporal window were used, 3 and 5 respectively, with very similar
results as shown in Fig. 7.27. The three types of errors (2D projection, 3D location, Euler
angles) are depicted. Each plot is split in two groups, the left one represents the training
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7.2 Tracking

Figure 7.28: PCA motion models tracking results when tracking the training sequence.
The tracking errors are depicted in the left side of each plot of Fig. 7.27. Top
row: Latent coordinates recovered when tracking a training sequence. Note
that the trajectories are less smooth than the ones obtained with the GP, and that
they are in the neighborhood of the training data of the same subject, so that the
tracker recognizes the subject. Bottom row: Estimated phase of the motion as
a function of the frame index. Note that the phase is smoothly monotonically
increasing.
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Figure 7.29: PCA motion models tracking results when tracking the test sequence that was
performed at 3km/h by a subject whose motions were not used for learning.
The tracking errors are depicted in the right side of each plot of Fig. 7.27. Top
row: Latent coordinates recovered when tracking a training sequence. Note
that the trajectories are less smooth than the ones obtained with the GP, and
that they do not cluster in any of the subjects. The tracker does not recognize
the subject. Bottom row: Estimated phase of the motion as a function of the
frame index. Note that the phase is less smooth that for the training sequence
depicted in Fig. 7.28.
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Training Test
mean min max mean min max

PCA 7.45 7.25 7.72 24.65 24.08 25.19
B-GPDM σe = 1 8.22 0.60 12.29 7.61 5.89 9.22
GPDM σe = 1 7.78 3.04 13.58 9.26 6.01 11.14

GPLVM σe = 1 11.09 6.29 13.57 9.74 6.45 11.56
B-GPDM MP σe = 1 0.77 0.57 1.23 16.31 12.62 18.72
GPDM MP σe = 1 0.43 0.35 0.54 16.03 15.10 17.34

GPLVM MP σe = 1 4.47 0.48 12.81 16.62 15.64 17.99
B-GPDM σe = 10 23.91 14.49 34.29 24.19 10.29 35.39
GPDM σe = 10 11.81 3.91 35.48 29.87 19.45 52.82

GPLVM σe = 10 13.65 7.48 29.28 39.13 16.69 50.21
B-GPDM MP σe = 10 7.92 0.83 21.93 19.19 15.08 25.08
GPDM MP σe = 10 0.80 0.63 1.12 17.76 15.96 19.99

GPLVM MP σe = 10 2.68 0.69 7.16 17.33 15.93 19.41

1 2
0

5

10

15

20

25

30

35

40
mean

1 2
0

5

10

15

20

25
min

1 2
0

10

20

30

40

50

60
max

Training Testing Training Testing Training Testing
Mean Min Max

Figure 7.30: Error comparison (mm). Table representing the mean, minimal and maximal
errors in the 3D joint estimation for the different 80D models tested in the
training and test sequences. The second row represent the mean, minimal and
maximal errors in the same order as the table. Each plot is divided in two,
the training and testing results. The errors are expressed in mm. For the GPs
models the errors are a mean, (minimal, maximal) of the 9, 6 and 2 people
database with all the joints and with a subset. For the PCA, the results are
obtained with τ = 3 and τ = 5, for all the joints and a subset. Note that the
B-GPDM is the one with the best results when σe = 1. It generalizes much
better to the test sequence.
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sequence errors and the right one the test sequence ones. For each group 4 error bars of
2 different colors are depicted, each color represents a different window size (τ + 1 = 3
on red and τ + 1 = 5 on green). For each color two bars show the errors first for the
complete set of joints and then for the subset of joints, with similar results. The errors for
the sequence performed by a subject whose motion was not recorded when building the
database are much bigger than the ones for the training sequence.

The errors obtained with the linear motion models are bigger than the ones obtained with
the GP when using σe = 1, as depicted by Fig. 7.30. In general the results are also less
smooth than the GP ones. The first rows of Figs. 7.28 and 7.29 depict the first three di-
mensions of the latent trajectories recovered for the training and test sequence respectively.
The trajectories recovered from the training sequence (7.28) are in the neighborhood of
the training data of the same subject. The tracker recognize the subject. The ones esti-
mated from the test sequence are not in the neighborhood of a single subject. The subject
is not recognized. The estimated phase of the motion for the training and test sequences
are depicted in the last row of Figs. 7.28 and 7.29 respectively. Note that they are both
monotonically increasing, but the test one is noisier, since it is sometimes difficult for the
tracking to estimate when there is a phase or style change. There is not always a unique
solution.

7.2.2 Caricatural walking

We choose a caricatural walking to test the generalization capabilities of the different meth-
ods, since it is very different from the training ones. We use the same initial poses y1:3

for all the methods. All the results were obtained using the same number of minimization
steps.

7.2.2.1 GP models

The first three rows of Fig. 7.31 depict the projected pose estimated when tracking us-
ing Balanced GPDM, GPDM and GPLVM respectively learned using the 20D, 6 people
database. Note that the Balanced GPDM tracks perfectly the motion, but the GPDM and
GPLVM diverge at the end of the sequence. The dynamical term is more important when
dealing with motions very far from the training ones in order to not diverge.

When using the 80D, 9 people database, the B-GPDM, GPDM and GPLVM diverge
(three middle rows of Fig. 7.31), since the latent trajectories are not aligned by the phase of
the motion, and 80D is too high dimensional to be estimated from a sequence that is so far
from the training ones. The 3D volumetric visualization is depicted in Fig. 7.32.

7.2.2.2 Motion models

The PCA tracker produces impossible poses, when using 3 or 5 frames as temporal window.
This is due to the fact that the latent positions are forced to be very far from the training
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7.2 Tracking

Balanced GPDM, GPDM and GPLVM learned from the 20D 6 subjects database.

Balanced GPDM, GPDM and GPLVM learned from the 80D 9 subjects database.

PCA with 3 and 5 frames window.

Figure 7.31: Tracking 40 frames of an exaggerated gait with the different GP and PCA
models. Note that the 20D B-GPDM is the one that performed the best. The
PCA results in impossible positions. The GPLVM and GPDM trackers are
lost suddenly at the end of the sequence because of divergence. The 9 subject
database too, since the latent trajectories are not aligned by phase of the mo-
tion, and 80D are too much to estimate for a sequence that is so far from the
training ones. The 3D representation is depicted in Fig. 7.32.
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7 Comparative Results

Balanced GPDM, GPDM and GPLVM learned from the 20D 6 subjects database.

Balanced GPDM, GPDM and GPLVM learned from the 80D 9 subjects database.

PCA with 3 and 5 frames window.

Figure 7.32: Tracking 40 frames of an exaggerated gait with the different GP and PCA
models. The 3D visualization is depicted by Fig. 7.32.
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7.3 Conclusion

ones (6 standard deviations). Moreover the tracking results are not smooth. The PCA
motion model does not generalize well to such motions.

7.3 Conclusion

We have discussed the influence of the different positional and angular parameterizations,
and the amount of training data require to produce a good generalization when learning
GPs. We have explored the consequences of varying the input space dimensionality from
80 and 20 dimensions, and of changing the dimensionality of the latent space.

We conclude that when learning high dimensional models, the positional parametrization
is the only one that results in clustered and non-sparse models. The models learned from the
6 subject database are the best high dimensional ones, since they are clustered and poses that
are produced in similar phases of the different motions are aligned. But these models are
sparse. These models have a desirable property for classification, one dimension encodes
the subject identity. We have showed that the 20D model result in the most clustered and
non sparse model. Moreover the latent positions of the poses that are produced in similar
phases of the different motions are aligned.

We have tested the accuracy of the different pose, motion and pose dynamical models
in tracking synthetic and real data, and their ability to generalize to motions very far from
the training ones. The Balanced GPDMs generalize better than GPDMs, SGPLVMs, and
the PCA-based motion models, because they are smoother and provide better dynamical
models that prevent divergence. This results in better estimations when tracking motions
that are different from the training ones. This is specially true, when the differences become
very large. The linear motion models result in impossible positions, and the SGPDM and
GPDM diverge due to the non smoothness of their learned latent trajectories.
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8 Conclusions and Future Work

In this work, we have proposed new ways to learn pose and motion prior models. We
have demonstrated that they can be used to increase the performance of 3D body tracking
algorithms, resulting in very realistic motions under very challenging conditions.

These models have proved very robust, allowing us to track with a single-hypothesis hill-
climbing approach. This results in much lower computational complexity than the current
multi-hypothesis techniques. We have demonstrated the effectiveness of our approaches for
monocular tracking of cyclic motions such as walking and acyclic motions as golf swinging.

In practice we have traded the complexity of tracking for the complexity of knowing
which model to apply. This might mean keeping several models active at any one time and
selecting the one that fits best. This brings us back to multiple hypotheses tracking, but the
multiple hypotheses are over models and not states. This might be much more effective than
what many particle filters do because it ensures that the multiple hypotheses are sufficiently
different to be worth exploring.

8.1 Contributions

We have shown that when representing whole motions, simple linear models can be used
both to achieve good tracking performance, and to perform activity and subject recognition.
We have introduced a new method for motion extrapolation, where these motion models
are used to infer new motions of a subject that is observed once performing a given activity,
while respecting his/her particular style. The major limitation of these linear motion models
is that they required many examples to create a complete database with good generalization
properties. Moreover, the training data need to be noiseless, segmented, and time warped.
When learning multi-activity databases the convexity assumption of such models is vio-
lated, and better probabilistic models are needed in order to allow the model to produce
only physically possible motions.

We have therefore investigated more complex non-linear statistical techniques. We have
showed that Gaussian Process can be used to learn pose models from much smaller amounts
of training data than competing techniques. Furthermore, they provide more realistic prob-
abilistic models than the simplistic underlying Gaussian model of our motion models.

We have developed a SGPLVM-based method to learn prior models of 3D human pose
and proved its effectiveness for monocular 3D tracking. In the case of both walking and
golfing, we have been able to recover the motion from video sequences given a single ex-
emplar of each motion to train the model. Furthermore, these priors sufficiently constrain
the problem so that this could be accomplished with straightforward deterministic optimiza-
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tion. This is in sharp contrast to competing techniques that either involve large amounts of
training data or computationally expensive multi-hypothesis tracking algorithms.

The tracking was accomplished with particularly simple second-order dynamics and an
observation model based on a very small number of tracked features. The quality of our
results with such simple dynamics and appearance models clearly demonstrates the power
of the SGPLVM prior models.

In the presence of very noisy or missing data, for example due to occlusions, the sim-
plistic second order Markov model is not realistic enough to sufficiently constrain the al-
gorithm. Moreover, when learning models that contain stylistic diversity, from different
people or from the same person performing an activity multiple times, the SGPLVM re-
sults in models whose latent trajectories are not smooth, and are therefore not suited for hill
climbing tracking.

We have therefore developed a more sophisticated approach based on the more powerful
GPDMs. We have introduced the Balanced GPDMs that learn smooth pose dynamical mod-
els with stylistic diversity. They can be used to reconstruct very realistic motions despite
weak and noisy image measurements and significant occlusions. The quality of the results,
given such a simple measurement model attest the utility of the GPDM priors.

The Balanced GPDMs have better generalization properties than GPDM, SGPLVM and
PCA-based motion models, resulting in better estimations when tracking motions that are
different than the training ones. This is especially true, when tracking motions very differ-
ent, for example a caricatured walking. In such cases the motion models result in impossible
positions, and the SGPDM and GPDM diverge due to the non-smoothness of their learned
latent trajectories.

8.2 Future Work

Future work will focus on building better appearance models, as this is a principal weakness
of our trackers. Furthermore, in all the models presented here, the global motion was as-
sumed to be independent of the other joints and treated separately. Of course, this is not the
case in reality. The coupling between the global translational velocity and the joint angle
time series should be investigated.

Another area that requires further investigation is the combination of our tracker with
inverse kinematics techniques to clean up the artifacts, such as foot sliding, which can be
observed in some of our results. The simplest approach would be to use Inverse Kinematics
as a post-processing step. A more ambitious approach would be to detect foot support
phases in real-time and enforce them with an IK solver.

In this work we have restricted ourselves to model a small set of activities. Further work
should involve incorporating multiple motion classes and transitions between them. Three
different solutions exist, one can learn multiple models and use the one that works best, use
a mixture of experts (Gaussian Process) where all the models are working together for a
common goal, or learn different motion types within a common manifold, for example by
using Gaussian Processes.
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8.2 Future Work

Although in this work we used Gaussian Process to modeling poses for tracking, they
could be used to model motion as well, and solve some of the problems of the PCA-based
motion models. They will provide a better probabilistic model forcing the motion to pro-
duce physically possible motions, even when learning different activities within the same
model. The simplicity in learning motion models should let us to use linear kernels, result-
ing in much faster learning, and fewer local minima.

Finally, the main problem with GPs concerns the computation, which grows quickly with
the number of training samples. We plan to investigate sparsification methods so that larger
training sets can be used. Further investigation will focus in the use of annealing to reduce
the overfitting of the GPs, when learning them from small number of examples.
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