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Abstract

Traditional MCMC methods are only appli-
cable to distributions defined on Rn. How-
ever, there exist many application domains
where the distributions cannot easily be de-
fined on a Euclidean space. To address this
limitation, we propose a general constrained
version of Hamiltonian Monte Carlo, and give
conditions under which the Markov chain is
convergent. Based on this general framework
we define a family of MCMC methods which
can be applied to sample from distributions
on non-linear manifolds. We demonstrate
the effectiveness of our approach on a vari-
ety of problems including sampling from the
Bingham-von Mises-Fisher distribution, col-
laborative filtering and pose estimation.

1 Introduction

Markov Chain Monte Carlo (MCMC) is a popular ap-
proach to sampling complex distributions because it
requires relatively little knowledge about the distribu-
tion of interest. Typically, one only needs to be able
to evaluate the unnormalized probability density in or-
der to sample from the target distribution. As a con-
sequence, MCMC has been employed in a wide range
of applications such as computer vision [14], machine
learning [2], and computational biology [26].

Traditional MCMC methods have generally targeted
distributions defined on Rn. However distributions
over non-Euclidean spaces arise in a number of prob-
lem domains, e.g., protein conformation modelling
with the Fisher-Bingham distribution [9], texture anal-
ysis using distributions over rotations [15], fixed-rank
matrix factorization for collaborative filtering [27, 22].

Some rejection and Gibbs sampling approaches have
been developed for distributions on specific manifolds,
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such as Gaussian-like distributions over unit length
vectors and orthogonal matrices [3, 30, 31, 13, 11],
but these methods are highly specific and not ap-
plicable to different target distributions or manifolds.
In computational physics a number of methods have
been developed for sampling from submanifolds [17]
but these techniques have not been explored outside
of that community. The line of research most closely
related to ours is in molecular dynamics [4], where
schemes to sample from constrained systems were pro-
posed [10, 18].

In this paper, we construct a family of MCMC meth-
ods for distributions defined on manifolds and explore
their performance. In particular, we derive the Con-
strained Hamiltonian Monte Carlo (CHMC) algorithm
which generalizes several HMC methods [10, 18, 6].
Based on this we also define a novel Metropolis Monte
Carlo sampler for sampling on constrained spaces
without gradients of the target posterior. The meth-
ods provide a range of options for sampling from dis-
tributions on manifolds. We demonstrate the effective-
ness of our algorithms on a variety of problems includ-
ing sampling a Gaussian distribution under linear con-
straints, sampling unit vectors from the Bingham-von
Mises-Fisher distribution, sampling orthonormal ma-
trices for collaborative filtering, and sampling human
poses under length constraints for 3D reconstruction
from 2D data.

In the remainder of this paper, we first review the con-
cepts of Hamiltonian dynamics that will be used in
our derivations. We then describe CHMC, prove that
it converges to the desired distribution, and describe
some of its variants. We then present our experimental
evaluation, and conclude with a discussion of previous
and future work.

2 Hamiltonian Dynamics

Hamiltonian dynamics are a crucial component of tra-
ditional HMC methods [23]. Our approach also ex-
ploits these dynamics, but, in contrast to traditional
HMC, the system of interest is subject to constraints.
In the following, we briefly review concepts from the
Lagrangian and Hamiltonian dynamics of constrained
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systems. We refer the reader to [20] for more details.

Let M = {q ∈ Rn|c(q) = 0} be a connected, differ-
entiable submanifold of Rn, where C(q) = ∂c

∂q is the
Jacobian of the constraints, which is assumed to have
full rank everywhere. The tangent bundle ofM is de-
fined as TM = {(q, q̇)|c(q) = 0 and C(q)q̇ = 0}. The
tangent space of M at a point q ∈ M is defined as
TqM = {q̇|C(q)q̇ = 0}, with the constraint C(q)q̇ = 0
found by differentiating the constraint c(q).

The Lagrangian L : TM → R of a constrained me-
chanical system is defined as the difference between
kinetic and potential energies, i.e., L = T−U−λT c(q),
where λ is a vector of Lagrange multipliers. For the
purpose of this paper we assume that the potential en-
ergy, U(q), does not depend on the velocity, and that
the kinetic energy has the form T (q, q̇) = 1

2 q̇
TM(q)q̇,

where M(q) is a symmetric, positive definite matrix
called the mass matrix. The equations of the dynam-
ics of the system in terms of its Lagrangian are ob-
tained as the solution to the Euler-Lagrange equation
∂L
∂q = d

dt
∂L
∂q̇ coupled with the constraint c(q) = 0.

The Hamiltonian H : T ∗M → R can be constructed
by first defining the momentum of the system p = ∂L

∂q̇ ,
and taking the Legendre transformation of L, such that
H = pT q̇ − L, which, in this context, becomes

H(p, q) = T (p, q) + U(q) + λT c(q) , (1)

where the kinetic energy T (p, q) = 1
2p
TM(q)−1p is now

defined in terms of the momentum. The space defined
by the momentum and the state is called the cotangent
bundle, T ∗M = {(p, q)|c(q) = 0 and C(q)∂H∂p (p, q) =

0}, and the space of momentum at q is the cotangent
space T ∗qM = {p|C(q)∂H∂p (p, q) = 0}. The dynamics
of the system in terms of its Hamiltonian are given by

ṗ = −∂H
∂q

,

q̇ =
∂H
∂p

,

c(q) = 0 .

The dynamics of Hamiltonian systems have several
important properties. First, symmetry, i.e., forward
simulation can be inverted by reversing the direction
of time. Second, ρ-reversibility with respect to the
map ρ(p, q) = (−p, q), meaning that inverting the
momentum is equivalent to reversing the direction of
time. Third, the value of the Hamiltonian is conserved
over time, i.e., dH/dt = 0. Finally, Hamiltonian dy-
namics are symplectic. A mapping f : R2n → R2n

is symplectic if F (x)TJF (x) = J where F = ∂f
∂x

is the Jacobian of f , and J =

[
0 In×n

−In×n 0

]
.

Symplectic dynamics imply volume preservation of
the cotangent bundle, i.e., the volume of the (p, q)
space is preserved under forward simulation. This
can be easily seen, since F (x)TJF (x) = J im-
plies that det(F (x)) det(J) det(F (x)) = det(J), thus
det(F (x))2 = 1. We refer the reader to [8, 21, 20] for
proofs of these properties and a more formal discussion
on Hamiltonian dynamics and symplectic mappings.
These properties of Hamiltonian dynamics are crucial
for the proofs of detailed balance and ergodicity.

3 Constrained HMC

In this section, we introduce our Constrained Hamil-
tonian Monte Carlo algorithm, and prove that it con-
verges to the desired distribution. Finally, we show
how CHMC can be used to derive other constrained
Monte Carlo algorithms.

Let π : Rn → R be a continuous probability measure
on M such that

´
M π(q)dq = 1 and π(q) ≥ 0 for all

q ∈ M. Adopting the terminology of [5], we define
two different Hamiltonians: the acceptance Hamilto-
nian H and the guidance Hamiltonian Ĥ. The accep-
tance Hamiltonian is used to compute the acceptance
probability of the step, and is based on the target dis-
tribution π(q). In contrast, the guidance Hamiltonian
is used for simulation.

Following Eq. (1), both Hamiltonians are expressed as
the sum of kinetic and potential energies plus a term
due to the constraints. For the acceptance Hamilto-
nian, the kinetic energy is T (p, q) = 1

2p
TM(q)−1p for

some mass matrix M(q), and the potential energy is
U(q) = 1

2 log |M(q)| − log π(q). This choice of kinetic
and potential energies means that exp(−H(p, q)) =
π(q)N (p|0,M(q)), where N (·|µ,Σ) is a multivariate
Gaussian probability density with mean µ and covari-
ance Σ. The guidance Hamiltonian, Ĥ uses the same
kinetic energy but can vary in the choice of potential
energy function, Û(q).

A step of CHMC proceeds as follows. First,
a new momentum is drawn from the distribu-
tion N (p0|0,M(q0)) subject to the constraint that
C(q)∂H∂p (p0, q0) = 0. This can be done by first sam-
pling from the unconstrained Gaussian distribution,
and then projecting the momentum onto T ∗q0M. This
step is, in essence, a Gibbs sampler of the momen-
tum for the augmented distribution exp(−H(p, q)) on
T ∗M. Then, starting at (p0, q0), the guidance Hamil-
tonian is simulated for L steps with a step size of h
ending at (pL, qL). The resulting state of the simula-
tion, qL, is then accepted or rejected using a Metropo-
lis test, i.e., qL becomes the next state with probabil-
ity min (1, exp {H(p0, q0)−H(pL, qL)}), otherwise the
next state is q0. This is summarized in Algorithm 1.
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Algorithm 1 Constrained Hamiltonian Monte Carlo

Input: q0, M(q), h, L, H(p, q), Ĥ(p, q)
p0 ∼ N (0,M(q0)|C(q0)M(q0)−1p0 = 0)
for i = 1, . . . , L do

(pi, qi)← ΦĤh (pi−1, qi−1)
end for
u ∼ U(0, 1)
if u ≤ min (1, exp {H(p0, q0)−H(pL, qL)}) then
return qL {accept the proposal}

else
return q0 {reject the proposal}

end if

3.1 Numerical Simulation

At the heart of CHMC is the simulation of Hamil-
tonian dynamics. In practice, simulation of general
Hamiltonians requires the use of numerical approxima-
tions. Perhaps unexpectedly, many properties which
hold for exact Hamiltonian dynamics can also hold for
numerical approximations, so long as the numerical
integration method satisfies certain properties. In the
following, we describe the necessary properties to en-
sure convergence of the chain, and introduce the inte-
grator used in our experiments.

We denote by ΦHh : T ∗M→ T ∗M the numerical inte-
grator which approximates the dynamics of the Hamil-
tonian H at a time h into the future. Note that this
implicitly requires that ΦHh satisfies both the state
constraints c(q) = 0 and the momentum constraints
C(q)∂H∂p (p0, q0) = 0. We further require the integrator
to be both symmetric and symplectic. An integrator is
symmetric if (p, q) = ΦH−h(ΦHh (p, q)), and is symplec-
tic if ΦHh is a symplectic mapping when applied to a
smooth Hamiltonian H.

While a symplectic integrator implies volume preserva-
tion of the cotangent bundle, it also implies that there
exists a discrete Lagrangian, L′h, which the numerical
method is integrating (Theorem 2.1.1, [21]; Theorem
5.6, Section IX.5.2, [8]). That is, starting at (p0, q0),
under the integrator, q1 is the solution to the equation
p0 + ∂

∂q0
L′h(q0, q1) = λT0 C(q0).

The final requirement is that the integrator is consis-
tent. A symplectic integrator of a continuous Hamil-
tonian H with corresponding continuous Lagrangian L
is of order r if, for some sufficiently small h, we have

L′h(q0, q1) =

ˆ h

0

L(q(t), q̇(t))dt+ hreh(q0, q1) , (2)

where L′h : M×M → R is the discrete Lagrangian
of the integrator, q(t) is the solution to the Euler-
Lagrange equation applied to L with boundary con-
ditions q(0) = q0, q(h) = q1, and eh is a bounded

error function. An integrator is said to be consistent
if r ≥ 1. Note that one property not satisfied by the
numerical integration scheme is exact conservation of
the Hamiltonian. Any consistent method will, how-
ever, approximately conserve the Hamiltonian for suf-
ficiently small h. In CHMC, the error in this approxi-
mation is corrected through the use of the Metropolis
acceptance test.

One choice of numerical integration method which sat-
isfies the aforementioned conditions is known as RAT-
TLE [1, 25]. It is a generalization of the Leapfrog
integrator (typically used with unconstrained HMC)
to handle the manifold constraints and the more gen-
eral form of Hamiltonian. A step of the generalized
RATTLE algorithm consists of solving the system of
non-linear equations

p1/2 = p0 −
h

2

(
∂Ĥ(p1/2, q0)

∂q
+ C(q0)Tλ

)
,

q1 = q0 +
h

2

(
∂Ĥ(p1/2, q0)

∂p
+
∂Ĥ(p1/2, q1)

∂p

)
,

0 = c(q1) ,

p1 = p1/2 −
h

2

(
∂Ĥ(p1/2, q1)

∂q
+ C(q1)Tµ

)
,

0 = C(q1)
∂Ĥ(p1, q1)

∂p
,

for the unknowns p1/2, q1, p1, λ, µ where Ĥ is the sim-
ulation Hamiltonian, and λ and µ are the Lagrange
multipliers associated with the state and momentum
constraints at the end of the step, i.e., c(q1) = 0

and C(q1)∂Ĥ(p1,q1)
∂p = 0. A solution to this system

of non-linear equations can be obtained using New-
ton’s method.1 Note that this method is symplectic,
symmetric, of order 2 (and therefore consistent), and
respects the manifold constraints, ensuring that the so-
lution lies in the cotangent space T ∗M. Furthermore,
as the integrator works with any continuous Hamilto-
nian, the method can naturally handle a state depen-
dent mass matrix [6]. Note that, although we use this
integrator for our experiments, other integrators which
preserve the aforementioned properties can be used,
e.g., a partitioned Runge-Kutta method using the Lo-
batto IIIA-IIIB pair can be used to create higher order
methods on a manifold [8, 12].

1Solving this system can be done more efficiently by
noting that the first three equations are independent of
p1, µ and and the last two equations and that the last two
equations are linear in p1, µ for quadratic kinetic energies.
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3.2 Convergence of CHMC

We now prove that CHMC converges to the target pos-
terior π(q) from any starting point q ∈ M. We begin
by stating the conditions under which CHMC satisfies
detailed balance.
Theorem 1 (Detailed Balance). Let Ĥ be C2-
continuous, M = {q ∈ Rn|c(q) = 0} be a connected,
smooth and differentiable manifold with ∂c

∂q full-rank
everywhere, M(q) be positive definite onM, and π(q)

be smooth. If ΦĤh is symmetric and symplectic, then
ˆ
Q′

ˆ
Q

π(q)T (q → q′)dqdq′ =

ˆ
Q

ˆ
Q′
π(q′)T (q′ → q)dq′dq ,

(3)
where Q,Q′ ⊂M and T is the transition kernel.

Proof: In appendix.

The proof proceeds by first showing that CHMC satis-
fies detailed balance with respect to the augmented
distribution exp(−H(p, q)) on T ∗M. Because the
integration is volume preserving and symmetric, it
is straightforward to compute the transition proba-
bility between two regions, regardless of the guid-
ance Hamiltonian. After some algebraic manipula-
tion of the acceptance probability, detailed balance fol-
lows. Then, since π(q) is the marginal distribution of
exp(−H(p, q)), it follows that the chain satisfies de-
tailed balance with respect to π(q) by simply ignoring
the momentum.
Theorem 2 (Accessibility). Let Ĥ be C2-continuous,
M = {q ∈ Rn|c(q) = 0} be a connected, smooth and
differentiable manifold with ∂c

∂q full-rank everywhere,

and M(q) be positive definite onM. If ΦĤh is symmet-
ric, symplectic and consistent, then for any q0, q1 ∈M
and h sufficiently small, there exist finite p0 ∈ T ∗q0M,
p1 ∈ T ∗q1M and Lagrange multipliers λ0, λ1 such that
(p1, q1) = ΦĤh (p0, q0).

Proof: In appendix.

The proof follows from the connection between sym-
plectic maps and Lagrangian dynamics noted above.
The existence of a discrete Lagrangian, L′h, directly
provides a formula for the momentum and Lagrange
multipliers given q0 and q1. The final piece consists
in proving that the derivatives of L′h exist, which can
be done using the fact that the integrator is consistent
and the Hamiltonians are smooth.

While the above theorem shows that there exist mo-
mentum and Lagrange multipliers to move between
any two points, it is possible that, for a given ini-
tial state (p0, q0), there may be multiple choices of
Lagrange multipliers. For instance, for a single step
of the RATTLE integrator (discussed in Section 3.1)

on a sphere, there will generally be two choices of λ
corresponding to points on opposite hemispheres.

To prove irreducibility we must then make additional
assumptions about how the integrator selects between
these two Lagrange multipliers given a particular set
of initial conditions. Informally, we assume that for
small regions around every point on the manifold, the
integrator can uniquely choose the Lagrange multiplier
which moves between points within the region.

Theorem 3 (Irreducibility). Let Ĥ be C2-continuous,
M = {q ∈ Rn|c(q) = 0} be a connected, smooth and
differentiable manifold with ∂c

∂q full-rank everywhere,

M(q) be positive definite on M, ΦĤh be symmetric,
symplectic and consistent, and π(q) be strictly pos-
itive on M. Let B`(q) = {q′ ∈ M|d(q′, q) ≤ `}
be a ball defining all points on M with geodesic dis-
tance at most ` from q. If there is a constant ` > 0
such that for every q ∈ M, q′ ∈ B`(q) there is a
unique choice of Lagrange multiplier and momentum
p ∈ T ∗qM, p′ ∈ T ∗q′M for which (p′, q′) = ΦĤh (p, q),
and, if, given (p, q), this is the Lagrange multiplier se-
lected by the integrator, then, for h sufficiently small
and any q0, q1 ∈ M, π(q1) > 0, there exists an n ∈ N
such that

Tn(q0 → q1) > 0 . (4)

Proof: In appendix.

The proof proceeds by noting that a composition of
L integration steps can, itself, be considered a single
integration step. Symmetry, sympleticness and consis-
tency are all preserved by the composition and, hence,
Theorem 2 applies to the composite step. Then, be-
cause the manifold is connected, there is a path of
some length between q0 and q1 which can be divided
into chunks of length less than `. Using the additional
assumption of uniqueness of the choice of Lagrange
multipliers made by the integrator within neighbor-
hoods of size `, and the fact that π(q1) > 0, it follows
that the acceptance probability is non-zero. In order
to prove convergence, it is necessary to prove aperiod-
icity. This is proven in appendix as an almost direct
consequence of irreducibility.

Theorem 4 (Convergence). Let Ĥ be C2-continuous,
M = {q ∈ Rn|c(q) = 0} be a connected, smooth and
differentiable manifold with ∂c

∂q full-rank everywhere,

M(q) be positive definite on M, ΦĤh be symmetric,
symplectic and consistent, and π(q) be smooth and
strictly positive onM. Let B`(q) = {q′ ∈M|d(q′, q) ≤
`} be a ball defining all points onM with geodesic dis-
tance at most ` from q. If there is a constant ` > 0
such that for every q ∈ M, q′ ∈ B`(q) there is a
unique choice of Lagrange multiplier and momentum
p ∈ T ∗qM, p′ ∈ T ∗q′M for which (p′, q′) = ΦĤh (p, q),
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and, if, given (p, q), this is the Lagrange multiplier se-
lected by the integrator, then for all q0 ∈M

lim
n→∞

‖Tn(q0 → ·)− π(·)‖ = 0 .

Proof: In appendix.

3.3 Variations of CHMC

The above proofs give us flexibility in the choice of in-
tegrator Φ, mass matrix M(q), number of steps L and
guidance Hamiltonian Ĥ. Note that unconstrained
HMC [5], and Riemann Manifold HMC [6] are both
instances of CHMC whenM = Rn. We now describe
some other variations of CHMC.

Constrained Langevin MC: The Constrained
Langevin Monte Carlo method is a special case of
CHMC with Ĥ = H and for a single simulation step,
i.e., L = 1. It is sometimes preferred to CHMC be-
cause it requires fewer gradient evaluations and pre-
vents wasting computation on long trajectories which
may ultimately be rejected. However, it can also per-
form poorly in some cases, as the small number of
steps might cause the random initial momentum to
dominate, exhibiting a random walk-like behavior.

Constrained Metropolis Monte Carlo: The pri-
mary practical limitation of HMC is that it requires
the gradient of the target posterior to be computed.
This can be limiting as in some applications analytic
gradients are not readily available, or are cumber-
some and expensive to compute. In those cases, using
Metropolis Monte Carlo can be advantageous. The
unconstrained Metropolis algorithm with proposal co-
variance Σ can be considered a special case of HMC
with simulation Hamiltonian Ĥ(p, q) = 1

2p
TM−1p and

parameters h = 1, L = 1 and M = Σ−1. Based on
this observation, a Constrained Metropolis algorithm
can be derived in the same fashion. This results in an
MCMC method on a constrained space which does not
require the gradient of the target posterior.

Constrained Riemann Manifold HMC: As in
unconstrained HMC, proper tuning of the mass ma-
trix is crucial for good performance. Furthermore, for
some problems, there may not be a single mass matrix
which is suitable everywhere. The recently proposed
Riemann Manifold HMC method [6] addresses this is-
sue by exploiting geometric information of the proba-
bility distribution to set and adapt the mass matrix.
As a consequence, the mass matrix becomes depen-
dent on the state q. A similar variable mass matrix is
naturally handled in our formulation.
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Figure 1: Sampling from a Gaussian distribu-
tion with linear constraints. (Top) Mean of the
first coordinate of q as a function of computation time.
(Bottom) Autocorrelation of − log π(q) for the differ-
ent methods after convergence, with the chains initial-
ized at the mean µ.

4 Experimental Evaluation

We demonstrate the effectiveness of our approach
at sampling various target distributions on different
manifolds, including sampling a multivariate Gaus-
sian distribution under linear constraints, sampling
unit length vectors from a Bingham-von Mises-Fisher
distribution, sampling orthonormal, low-rank matrices
for collaborative filtering, and sampling human poses
under length constraints for 3D estimation from 2D
observations.

4.1 Linearly Constrained Gaussian

Our first example consists of sampling from a multi-
variate Gaussian distribution subject to linear equality
constraints. Because the constraint manifold is linear,
sampling in this case is equivalent to sampling from
a Gaussian in a subspace of the original space, allow-
ing a clear assessment of the accuracy and effective-
ness of our methods. Specifically, we define π(q) ∝
N (q|µ,Σ) subject to the constraints c(q) = Aq − b,
where A ∈ RD×n and b ∈ RD. For this experiment,
we used µ = (0, 0, 0, 0)T and Σ = diag(1, 1, 0.01, 0.01).
Two constraints were applied, A1 = (1, 1, 1, 1), A2 =
(1, 1,−1, 1) and b = (0, 0)T .

In a first experiment, we compare the ability of the
different algorithms presented in the previous sec-
tion to find the mode of the Gaussian. To this
end, we initialized all the chains to the same state,
q = (9,−9, 11,−11)T . The top row of Fig. 1 depicts
the estimated mean of the first coordinate for each
method. It can be seen that CHMC and CLangevin
algorithms performed best, quickly converging to the
correct value 0. In comparison, the CMetropolis algo-
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Method E[− log π(q)] ESS % ESS/second

CHMC (L = 4) -999.021 27.3 183.756
CHMC (L = 3) -998.759 25.4 217.427
CHMC (L = 2) -999.121 37.9 440.898

CLangevin -998.757 33.0 619.339
CMetropolis -998.82 3.8 90.1513
Gibbs [11] -998.742 50.8 160.722

Table 1: Efficiency for sampling the Bingham-
von Mises-Fisher Distribution. We used
parameters d = (100, 0, 0, 0, 0, 0) and A =
diag(−1000,−600,−200, 200, 600, 1000), M = 2000.
Results are average over 10 runs; for CHMC and
CLangevin h = 1 and for CMetropolis h = 0.4.

rithm took much longer, both in number of steps and
in computation time, to eventually find the mode.

We then tested the performance of the methods once
the mode is found. We initialize each sampler at the
mode of the distribution q = (0, 0, 0, 0)T and computed
the autocorrelation of − log π(q) averaged over ten in-
dependent runs. The bottom row of Fig. 1 depicts
the autocorrelation of these chains as a function of
computation time, again showing that CHMC is more
efficient than CMetropolis and CLangevin.

4.2 Bingham-von Mises-Fisher Distribution

Distributions over directions (i.e., vectors of unit
length) play a significant role in applications such as
structural biology [9], geology [15], computer vision
[24] and robotics [7]. A natural distribution over di-
rections is the Bingham-von Mises-Fisher distribution,
which can be derived as a Gaussian distribution in Rn
restricted to the unit sphere Sn−1. More formally, its
density function is given by π(q) ∝ exp

(
dT q + qTAq

)
restricted to the manifold Sn−1 =

{
q ∈ Rn|qT q = 1

}
.

Note that if d is the zero-vector, it reduces to the
Bingham distribution, and if A is the zero-matrix it
is the von Mises-Fisher distribution. If the vector d
is non-zero, the distribution is antipodally asymmet-
ric (i.e., π(q) 6= π(−q)), and it has a bias towards
values that point in the same direction as d (i.e.,
dT q > 0). The matrix A describes the spread and
concentration of the distribution [15]. Note that A is
not uniquely defined as the matrices A and A + αI
describe the same distribution for any choice of scalar
α. This is due to the structure of the manifold as
exp(qT (A+ αI)q) = exp(qTAq + αqT q) ∝ exp(qTAq).

Table 1 and Fig. 2 depict the effective sample size
(ESS) and ESS/time, as well as the autocorrelation
for our algorithms and for the state-of-the-art Gibbs
sampler [11]. From the table we can see that, while
each step of the Gibbs sampler is the more indepen-
dent (i.e., has the highest ESS), the cost of each one
of its steps is higher, causing it to lose out to CHMC
and CLangevin when the ESS is normalized by the
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Figure 2: Autocorrelation of − log π(q) on the
Bingham-von Mises-Fisher Distribution. Distri-
bution parameters were set to d = (100, 0, 0, 0, 0, 0)
and A = diag(−1000,−600,−200, 200, 600, 1000). Re-
sults were averaged over 10 independent runs.

computation time. This is particularly noticeable in
Fig. 2 where the difference between the Gibbs sampler
and the best performing of our methods (CLangevin)
is very significant.

The computational performance of the Gibbs sampler
is determined largely by the efficiency of a rejection
sampler which was intractably slow for the choice of
A and d explored here. Indeed, for some choices of A
and d, the rejection sampler is completely unable to
move, e.g., with acceptance probabilities of 10−100. In
contrast, our methods were still able to perform well in
such cases. To work around this problem, the rejection
sampling step of the Gibbs sampler was replaced with
20 steps of an Independence Metropolis sampler with
the same proposal distribution as used in the rejection
sampler [11].

Note that the CLangevin sampler outperformed
CHMC. This result is in contrast with the general be-
lief in unconstrained MCMC that multiple steps per-
form better. One explanation for this behavior is that
the ability to reach more distant points with multiple
steps is less valuable with closed, compact spaces such
as Sn−1. Indeed, the decrease in ESS (i.e., increase in
autocorrelation) with L > 2 suggests that the simula-
tion begins to oscillate with longer simulations.

4.3 Collaborative Filtering

A typical example of collaborative filtering arises in
the context of user ratings of movies. One popular
formulation of this problem is to find a low-rank de-
composition of a partially observed matrix. Given a
matrix Y ∈ RN×M of observed ratings, we seek to
find a low-rank decomposition of Y = f(UTSV) with
U ∈ Rr×N , V ∈ Rr×M , and S a diagonal matrix. The
element-wise function f() is often taken as the identity
function. However, other choices, such as the logistic
function, are possible. In practice, only a few entries in
Y are known (e.g., each user only rated a few movies),
and the goal is to use the decomposition to estimate
missing values.
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5 10 15
HMC 1.577 ± 0.39 2.001 ± 0.66 2.306 ± 0.25
HMC-l 0.909 ± 0.008 0.949 ± 0.01 0.99 ± 0.01
CHMC 0.893 ± 0.01 0.888 ± 0.01 0.889 ± 0.01
CHMC-l 0.888 ± 0.01 0.881 ± 0.01 0.881 ± 0.01

5 10 15
HMC 0.435 ± 0.008 0.465 ± 0.016 0.503 ± 0.002
HMC-l 0.413 ± 0.002 0.429 ± 0.004 0.445 ± 0.007
CHMC 0.419 ± 0.003 0.418 ± 0.003 0.419 ± 0.004
CHMC-l 0.418 ± 0.004 0.415 ± 0.003 0.416 ± 0.002

Figure 3: 1M MovieLens: Comparison of our approach (CHMC) with its unconstrained version (HMC) in the
weak settings and for rank 5, 10 and 15. A -l after the method’s name indicates the use of the logistic function
in the predictor. (Left) RMSE. (Right) NMAE. Note that CHMC outperforms HMC in most cases.

In our experiments, we sample U, V, and the diago-
nal of S for a fixed rank r under orthonormality con-
straints of the form UUT = Ir×r , and VVT = Ir×r.
The vector q contains the concatenated vectorized
forms of U, V, and diag(S). Given a set E of pairs of
indices corresponding to known entries in Y, a density
can be expressed as

π(q) ∝
∏

(i,j)∈E

exp
(
−
(
f
(
UT
i SV

j
)
−Yi,j

)2
/σ2

p

)
,

whereUi is the ith column ofU,Vj is the jth row ofV,
and σp is the expected prediction error. The quality
of the decomposition is evaluated by computing the
prediction error on the test entries of Y.

We tested our approach on two popular data sets: 1M
MovieLens and EachMovie. In both cases, we used
the partitions of [19], and performed our experiments
under the weak generalization setting, i.e., a single rat-
ing per user is withheld for the test set. At test time,
the prediction error was computed both as the RMSE
and as the NMAE. In the latter case, following [16],
we used 1.6 and 1.944 as normalization constant for
MovieLens and EachMovie, respectively. Our results
were obtained by computing the mean predictions over
2000 samples and comparing it with the test data.

As shown in Figs. 3 and 4 CHMC outperforms un-
constrained HMC in most cases. The two exceptions
occur only when error is evaluated in terms of NMAE.
As both approaches optimize RMSE, we consider this
measure the most indicative of performance, particu-
larly since NMAE involves rounding, thus convoluting
the results. Further note that, without constraints,
sampling tends to overfit with larger ranks, thus per-
forming poorly. This was confirmed by checking the
prediction error on the training set, which was indeed
much lower in the unconstrained case than in the con-
strained one. Note that, even though our approach
was not specifically designed to address the collabo-
rative filtering problem, our results are comparable to
the state-of-the-art methods, whose NMAE typically
range from 0.4342 [19] to 0.3916 [32] for MovieLens,
and from 0.4520 [19] to 0.4109 [32] for EachMovie.

4.4 Human Pose Estimation

In the next experiment, we tackle the task of 3D hu-
man pose estimation from monocular 2D observations.

The goal is to estimate the pose of a person, param-
eterized by the 3D locations of the joints of a stick
figure. In this case, the manifold of interest is defined
by constraints encoding the fixed length of the skele-
ton segments. More specifically, let q be the vector of
3D coordinates of N joints. The constraints can be
formulated as∥∥qi − qj∥∥2

2
= l2i,j , ∀(i, j) ∈ J , (5)

where qi encodes the 3D position of joint i, li,j is the
known length of the limb, and J is the set of limbs.

To perform reconstruction from monocular images, we
assume that we are given the noisy image locations
xi ∈ R2 of the skeleton joints, as well as the matrix A
of internal camera parameters. Furthermore, to reg-
ularize our reconstructions, we rely on a linear pose
model obtained by performing PCA on a set of train-
ing 3D poses. This lets us write the density as

π(q) ∝
∏N
i=1 exp

(
−‖x̂i(qi)− xi‖2/σ2

m

)
·∏3N

j=1 exp
(
−
(
PTj (q − q0)

)2
/σ2

j

)
, (6)

wherePj is the column vector containing the jth eigen-
pose obtained by PCA, σ2

j is the corresponding eigen-
value, q0 is the mean pose of the training data,

x̂i(qi) =

(
(A1qi)/(A3qi)
(A2qi)/(A3qi)

)
(7)

is the projection of joint i, with Ak the kth row of
A, and σ2

m is the expected variance of the image mea-
surements. The first part of the density encodes the
reprojection error of the joints given their correspond-
ing image measurements, and the second part defines
the PCA-based regularizer. Note that, for simplicity,
we assume that the pose is expressed in the camera
referential, which is equivalent to assuming that the
camera is fully calibrated.

We performed our experiments on the walking se-
quence of subject 1 in the HumanEva data set [28].
This data set depicts a person walking in circles in
a room. We set aside one circle to learn the linear
pose model, and tested our approach on the remain-
ing circle. To create image measurements, we used a
known camera to project the ground-truth 3D poses,
and added noise to the projections with standard devi-
ation ranging from 0 to 10 pixels. For each frame, we
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5 10 15

HMC 1.153 ± 0.002 1.161 ± 0.002 1.204 ± 0.018
HMC-l 1.155 ± 0.007 1.164 ± 0.001 1.184 ± 0.004
CHMC 1.144 ± 0.002 1.121 ± 0.001 1.116 ± 0.001
CHMC-l 1.137 ± 0.003 1.115 ± 0.002 1.11 ± 0.002

5 10 15
HMC 0.44 ± 0.003 0.44 ± 0.003 0.448 ± 0.005
HMC-l 0.437 ± 0.003 0.436 ± 0.002 0.443 ± 0.0015
CHMC 0.444 ± 0.003 0.434 ± 0.003 0.432 ± 0.002
CHMC-l 0.44 ± 0.002 0.43 ± 0.002 0.428 ± 0.003

Figure 4: EachMovie: Comparison of our approach (CHMC) with its unconstrained version (HMC) in the
weak settings and for rank 5, 10 and 15. A -l after the method’s name indicates the use of the logistic function
in the predictor. (Left) RMSE. (Right) NMAE. As for MovieLens, CHMC outperforms HMC in most cases.
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Figure 5: Human pose estimation: (a) Mean joint-to-joint error, averaged over 100 frames, as a function of
the image measurement noise. (b) Similar error as a function of the frame number for a noise std 10. Note that
constrained optimization yields bad local optima in most cases, whereas our approach almost always gives an
accurate solution. (c)-(f) Examples of our mean reconstructions for a noise std 10.

initialized q with a training pose chosen uniformly at
random, and let our HMC simulation run for L = 200
steps. Furthermore, we used the Hessian of the nega-
tive log of the observations as a mass matrix. In this
experiment, we allowed this matrix to vary with q, thus
computing its gradient at each step. Fig. 5(left) de-
picts reconstruction error as a function of the measure-
ment noise. This error is computed as the mean joint-
to-joint distance between reconstruction and ground-
truth, averaged over 100 frames of the sequence. We
compare our MAP solution and the mean of our sam-
ples to reconstructions obtained with a constrained
optimization method following a projected gradient
descent approach. Note that we clearly outperform
this baseline, which tends to get stuck in local op-
tima due to the poor initialization. As illustrated in
Fig. 5(right) where we plot the error for each frame
for a noise std 10, our approach manages to get out of
such local minima for most frames.

5 Discussion

In this paper we have presented a general framework
for constructing Markov chains on manifolds defined
by implicit constraints. Using this framework we con-
structed a family of different sampling methods, i.e.,
Constrained Hamiltonian Monte Carlo, Constrained
Metropolis and Constrained Langevin. Furthermore,
we have also explicitly stated the conditions necessary
for the Markov Chain to converge to the desired dis-
tribution, and have demonstrated the benefits of our
algorithms on a variety of problem domains involving
different distributions and manifolds.

Traditional HMC [5, 23] can be seen as a special case of
our framework, where the manifold of interest is Rn.
Further, the generality of our framework also allows
the use of state dependent mass matrices, thus ex-
tending the Riemann Manifold HMC (RMHMC) of [6]
to handle constrained configuration spaces. Note that
the manifold geometry exploited by RMHMC is in-
dependent of the constraint manifolds discussed here.
The methods most strongly related to ours are that
of [10, 18], where sampling schemes were proposed for
constrained systems in molecular dynamics. Our work
goes well beyond these methods by allowing the use
of state dependent mass matrices and, more impor-
tantly, our method and proofs are applicable to any ap-
propriate integration method applied to any guidance
Hamiltonian. The greater generality of our framework
also allowed the introduction of the novel Constrained
Metropolis algorithm which can be used to construct
Markov chains on manifolds without the need for gra-
dients of the target distribution.

In the future, we intend to study the effect of
other choices of guidance Hamiltonians and integra-
tion methods, such as the partitioned Runge-Kutta
method of [12]. We believe that the significant body
of research in structure-preserving numerical integra-
tion methods [8] could be exploited in conjunction with
our framework to the benefit of HMC-type algorithms.
Finally, Matlab code implementing CHMC is available
at http: // www. cs. toronto. edu/ ~mbrubake/ .
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A Appendix

Here, we detail the proofs of the theorems in the main
paper.

Theorem 1 (Detailed Balance). Let Ĥ be C2-
continuous, M = {q ∈ Rn|c(q) = 0} be a connected,
smooth and differentiable manifold with ∂c

∂q full-rank
everywhere, M(q) be positive definite onM, and π(q)

be smooth. If ΦĤh is symmetric and symplectic, then
ˆ
Q′

ˆ
Q

π(q)T (q → q′)dqdq′ =

ˆ
Q

ˆ
Q′
π(q′)T (q′ → q)dq′dq ,

(8)
where Q,Q′ ⊂M and T is the transition kernel.

Proof. We begin by showing that CHMC satisfies de-
tailed balance with respect to π̄(p, q) = exp(−H(p, q))
when viewed as a transition on the augmented state
space T ∗M. Let R,R′ ⊂ T ∗M be sufficiently small
regions such that the augmented distribution π̄ is con-
stant over them, with values π̄(R) and π̄(R′) respec-
tively and R′ is the image of R under T . Let T (r → r′)
be the transition kernel utilized by CHMC to transi-
tion from r ∈ R to r′ ∈ R′. Since ΦĤh is symmetric,
if R′ is the image of R under T then the image of
R′ under T is R with the sign of the momentum re-
versed. Furthermore, since the integration method is
symplectic, the phase-space volume is preserved, i.e.,´
dR =

´
dR′ = δV . Thus,
ˆ
R′

ˆ
R

1

Zπ̄
π̄(r)T (r → r′)drdr′

=
1

Zπ̄
π̄(R)δV min

(
1,
π̄(R′)

π̄(R)

)
=

1

Zπ̄
π̄(R′)δV min

(
1,
π̄(R)

π̄(R′)

)
=

ˆ
R

ˆ
R′

1

Zπ̄
π̄(r′)T (r′ → r)dr′dr ,

where Zπ̄ =
´
T ∗M π̄(r)dr is the normalization con-

stant for the augmented distribution. Note that the

second equality above can be derived trivially by mul-
tiplying the previous equation by π̄(R′)/π̄(R′).

π(q) can be easily shown to be the marginal distribu-
tion of π̄(p, q) as follows

ˆ
π̄(p, q)dp

=

ˆ
T ∗q M

π(q)
1

ZNT ∗qM
N (p|0,M(q))dp

= π(q)

ˆ
T ∗q M

1

ZNT ∗qM
N (p|0,M(q))dp

= π(q) ,

where ZNT ∗qM =
´
T ∗q M

N (p|0,M(q))dp is the normal-
izing constant of the Gaussian distribution restricted
to the tangent space. Combining this with the detailed
balance result on the augmented space gives

ˆ
Q′

ˆ
Q

π(q)T (q → q′)dqdq′

=

ˆ
Q′

ˆ ˆ
Q

ˆ
π(q)π(p|q)T (p, q → p′, q′)dpdqdp′dq′

=

ˆ
R′

ˆ
R

π̄(r)T (r → r′)drdr′

=

ˆ
R

ˆ
R′
π̄(r′)T (r′ → r)dr′dr

=

ˆ
Q

ˆ ˆ
Q′

ˆ
π(q′)π(p′|q′)T (p′, q′ → p, q)dp′dq′dpdq

=

ˆ
Q

ˆ
Q′
π(q′)T (q′ → q)dq′dq .

Theorem 2 (Accessibility). Let Ĥ be C2-continuous,
M = {q ∈ Rn|c(q) = 0} be a connected, smooth and
differentiable manifold with ∂c

∂q full-rank everywhere,

and M(q) be positive definite onM. If ΦĤh is symmet-
ric, symplectic and consistent, then for any q0, q1 ∈M
and h sufficiently small, there exist finite p0 ∈ T ∗q0M,
p1 ∈ T ∗q1M and Lagrange multipliers λ0, λ1 such that
(p1, q1) = ΦĤh (p0, q0).

Proof. If the integrator is symplectic then there ex-
ists a corresponding discrete Lagrangian L′h(q0, q1) for
which the result of the integrator satisfies the discrete
Euler-Lagrange equations p0 + ∂hL′(q0,q1)

∂q0
= λT0 C(q0).

See Theorem 2.1.1 of [21]; Theorem 5.6, Section IX.5.2
of [8] for a formal proof. For any given q0 and q1, p0

can be computed as p0 = −∂L
′
h(q0,q1)
∂q0

+ λT0 C(q0) with
λ0 chosen so that p0 ∈ T ∗q0M. By symmetry of the

integrator, we also have p1 = −∂L
′
−h(q1,q0)

∂q1
+ λT1 C(q1)

with λ1 chosen so that p1 ∈ T ∗q1M. Such choices of
λ0 and λ1 exist so long as C(q0), M(q0), C(q1) and
M(q1) all have full rank.
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Since ΦĤh is consistent we have

L′h(q0, q1) =

ˆ h

0

L(q(t), q̇(t))dt+ hreh(q0, q1) , (9)

where r ≥ 1, eh is a smooth and bounded error func-
tion and q(t) : [0, h]→M is the solution to the contin-
uous Euler-Lagrange equations on M with q(0) = q0
and q(h) = q1. This solution exists, and thus the above
holds, so long as M is connected and L is twice dif-
ferentiable. This holds since L = pT q − Ĥ, and Ĥ is
twice differentiable by assumption. Then,

∂L′h
∂q0

(q0, q1)

=

ˆ h

0

∂

∂q0
L(q(t), q̇(t))dt+ hr

∂eh
∂q0

(q0, q1)

=

ˆ h

0

(
∂L
∂q

∂q

∂q0
+
∂L
∂q̇

∂q̇

∂q0

)
dt+ hr

∂eh
∂q0

(q0, q1)

=
∂L
∂q̇

∂q

∂q0

∣∣∣∣h
0

+

ˆ h

0

(
∂L
∂q
− d

dt

∂L
∂q̇

)
∂q

∂q0
dt+ hr

∂eh
∂q0

(q0, q1)

= −∂L
∂q̇

(q0, q̇0) + hr
∂eh
∂q0

(q0, q1) .

The third equality can be derived by doing partial inte-
gration, while the last step comes from the properties
of the Euler-Lagrange equations. Similarly, one can
derive that ∂L′h

∂q1
(q0, q1) = ∂L

∂q̇ (q1, q̇1) + hr ∂eh∂q1
(q0, q1).

Thus, since L is differentiable and eh is smooth and
bounded, the gradients ∂L′, and therefore the mo-
menta p0, p1, exist and are finite.

Theorem 3. Let Ĥ be C2-continuous, M = {q ∈
Rn|c(q) = 0} be a connected, smooth and differentiable
manifold with ∂c

∂q full-rank everywhere, M(q) be posi-

tive definite on M, ΦĤh be symmetric, symplectic and
consistent, and π(q) be strictly positive on M. Let
B`(q) = {q′ ∈ M|d(q′, q) ≤ `} be a ball defining all
points on M with geodesic distance at most ` from q.
If there is a constant ` > 0 such that for every q ∈M,
q′ ∈ B`(q) there is a unique choice of Lagrange multi-
plier and momentum p ∈ T ∗qM, p′ ∈ T ∗q′M for which
(p′, q′) = ΦĤh (p, q), and, if, given (p, q), this is the La-
grange multiplier selected by the integrator, then, for h
sufficiently small and any q0, q1 ∈M, π(q1) > 0, there
exists an n ∈ N such that

Tn(q0 → q1) > 0 . (10)

Proof. IfM is connected, then there exists a geodesic
curve between any two points q and q′ on the manifold.
Let d(q, q′) be the geodesic distance between q and
q′. Let q0, . . . , qn be an ordered sequence of points
on the geodesic between q and q′ with q0 = q, qn =

q′, and n = dd(q,q′)
` e, such that d(qi−1, qi) ≤ `. By

assumption, for each 1 ≤ i ≤ n, there exists pi−1 such
that (p′i, qi) = ΦHh (pi−1, qi−1). The probability density

of making this sequence of transitions is Tn(q → q′) =∏n
i=1 T (qi−1 → qi) which is non-zero so long as all

the individual transitions have non-zero probability.
This holds by Theorem 2 and because π(q) is strictly
positive.

Lemma 1. Let Ĥ be C2-continuous, M = {q ∈
Rn|c(q) = 0} be a connected, smooth and differentiable
manifold with ∂c

∂q full-rank everywhere, M(q) be posi-

tive definite everywhere, ΦĤh be symmetric, symplec-
tic and consistent, and π(q) be strictly positive onM.
Let B`(q) = {q′ ∈ M|d(q′, q) ≤ `} be a ball defin-
ing all points on M with geodesic distance at most `
from q. If there is a constant ` > 0 such that for every
q ∈M, q′ ∈ B`(q) there is a unique choice of Lagrange
multiplier and momentum p ∈ T ∗qM, p′ ∈ T ∗q′M for
which (p′, q′) = ΦĤh (p, q), and, if, given (p, q), this
is the Lagrange multiplier selected by the integrator,
then CHMC is aperiodic. That is, there is no period
p and disjoint subsets Q0, . . . , Qp−1 ⊂ M such that
for i = 0, . . . , p − 1 and T (q → Q(i+1)%p) = 1 for all
q ∈ Qi.

Proof. Suppose by contradiction, that CHMC is peri-
odic, and that there exists a period p and a sequence
of nonempty, disjoint subsets Q0, . . . , Qp−1 ⊂M such
that for i = 0, . . . , n − 1 T (q → Q(i+1)%p) = 1 for
all q ∈ Qi. This implies that T 1+αp(q → Q′) = 1
for all α ∈ N and Q′ ⊂ M \ Q(i+1)%n. Let Q′ ⊂ M
be any nonempty subset of M which is at least par-
tially distinct from each Qi, i.e., π(Q′ \ Qi) > 0 for
all i. Then, by Theorem 3, for all i and q ∈ Qi
T 1+αp(q → Q′ \ Q(i+1)%p) > 0 where α is such that
1 + αp ≥ n with n from Theorem 3. This contradicts
the original assumption and, hence, CHMC must be
aperiodic.

Theorem 4. Let Ĥ be C2-continuous, M = {q ∈
Rn|c(q) = 0} be a connected, smooth and differentiable
manifold with ∂c

∂q full-rank everywhere, M(q) be posi-

tive definite on M, ΦĤh be symmetric, symplectic and
consistent, and π(q) be smooth and strictly positive on
M. Let B`(q) = {q′ ∈ M|d(q′, q) ≤ `} be a ball defin-
ing all points on M with geodesic distance at most `
from q. If there is a constant ` > 0 such that for every
q ∈M, q′ ∈ B`(q) there is a unique choice of Lagrange
multiplier and momentum p ∈ T ∗qM, p′ ∈ T ∗q′M for
which (p′, q′) = ΦĤh (p, q), and, if, given (p, q), this is
the Lagrange multiplier selected by the integrator, then
for all q0 ∈M

lim
n→∞

‖Tn(q0 → ·)− π(·)‖ = 0 .

Proof. Since CHMC satisfies detailed balance with re-
spect to π (Theorem 1), is π-irreducible (Theorem 3)
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and is aperiodic (Lemma 1), then the desired result
follows by Theorem 1 of [29].


