
Deep Parametric Continuous Convolutional Neural Networks

Shenlong Wang1,3,∗ Simon Suo2,3,∗ Wei-Chiu Ma3 Andrei Pokrovsky3 Raquel Urtasun1,3

1University of Toronto, 2University of Waterloo, 3Uber Advanced Technologies Group

{slwang, suo, weichiu, andrei, urtasun}@uber.com

Abstract

Standard convolutional neural networks assume a grid

structured input is available and exploit discrete convolu-

tions as their fundamental building blocks. This limits their

applicability to many real-world applications. In this pa-

per we propose Parametric Continuous Convolution, a new

learnable operator that operates over non-grid structured

data. The key idea is to exploit parameterized kernel func-

tions that span the full continuous vector space. This gen-

eralization allows us to learn over arbitrary data structures

as long as their support relationship is computable. Our

experiments show significant improvement over the state-of-

the-art in point cloud segmentation of indoor and outdoor

scenes, and lidar motion estimation of driving scenes.

1. Introduction

Discrete convolutions are the most fundamental building

block of modern deep learning architectures. Its efficiency

and effectiveness relies on the fact that the data appears nat-

urally in a dense grid structure (e.g., 2D grid for images,

3D grid for videos). However, many real world applications

such as visual perception from 3D point clouds, mesh regis-

tration and non-rigid shape correspondences rely on making

statistical predictions from non-grid structured data. Un-

fortunately, standard convolutional operators cannot be di-

rectly applied in these cases.

Multiple approaches have been proposed to handle non-

grid structured data. The simplest approach is to voxelize

the space to form a grid where standard discrete convolu-

tions can be performed [29, 24]. However, most of the

volume is typically empty, and thus this results in both

memory inefficiency and wasted computation. Geometric

deep learning [3, 15] and graph neural network approaches

[25, 16] exploit the graph structure of the data and model the

relationship between nodes. Information is then propagated

through the graph edges. However, they either have difficul-

ties generalizing well or require strong feature representa-

tions as input to perform competitively. End-to-end learning

is typically performed via back-propagation through time,

but it is difficult to learn very deep networks due to the

memory limitations of modern GPUs.

In contrast to the aforementioned approaches, in this pa-

per we propose a new learnable operator, which we call

parametric continuous convolution. The key idea is a pa-

rameterized kernel function that spans the full continuous

vector space. In this way, it can handle arbitrary data struc-

tures as long as its support relationship is computable. This

is a natural extension since objects in the real-world such as

point clouds captured from 3D sensors are distributed un-

evenly in continuous domain. Based upon this we build a

new family of deep neural networks that can be applied on

generic non-grid structured data. The proposed networks

are both expressive and memory efficient.

We demonstrate the effectiveness of our approach in both

semantic labeling and motion estimation of point clouds.

Most importantly, we show that very deep networks can be

learned over raw point clouds in an end-to-end manner. Our

experiments show that the proposed approach outperforms

the state-of-the-art by a large margin in both outdoor and

indoor 3D point cloud segmentation tasks, as well as lidar

motion estimation in driving scenes. Importantly, our out-

door semantic labeling and lidar flow experiments are con-

ducted on a very large scale dataset, containing 223 billion

points captured by a 3D sensor mounted on the roof of a

self-driving car. To our knowledge, this is 2 orders of mag-

nitude larger than any existing benchmark.

2. Related Work

Deep Learning for 3D Geometry: Deep learning ap-

proaches that exploit 3D geometric data have recently be-

come populer in the computer vision community. Early ap-

proaches convert the 3D data into a two-dimensional RGB

+ depth image [17, 10] and exploit conventional convolu-

tional neural networks (CNNs). Unfortunately, this repre-

sentation does not capture the true geometric relationships

between 3D points (i.e. neighboring pixels could be poten-

tially far away geometrically). Another popular approach

is to conduct 3D convolutions over volumetric represen-

tations [29, 21, 24, 9, 18]. Voxelization is employed to

convert point clouds into a 3D grid that encodes the geo-

12589

metric information. These approaches have been popular

in medical imaging and indoor scene understanding, where

the volume is relatively small. However, typical voxeliza-

tion approaches sacrifice precision and the 3D volumetric

representation is not memory efficient. Sparse convolutions

[9] and advanced data structures such as oct-trees [24] have

been used to overcome these difficulties. Learning directly

over point clouds has only been studied very recently. The

pioneer work of PointNet [20], learns an MLP over individ-

ual points and aggregates global information using pooling.

PointNet++ [22], the follow-up, improves the ability to cap-

ture local structures through a multi-scale grouping strategy.

Graph Neural Networks: Graph neural networks

(GNNs) [25] are generalizations of neural networks to

graph structured data. Early approaches apply neural net-

works either over the hidden representation of each node or

the messages passed between adjacent nodes in the graph,

and use back-propagation through time to conduct learning.

Gated graph neural networks (GGNNs) [16] exploit gated

recurrent units along with modern optimization techniques,

resulting in improved performance. In [23], GGNNs are

applied to point cloud segmentation, achieving significant

improvements over the state-of-the-art. One of the major

difficulties of graph neural networks is that propagation

is conducted in a synchronous manner and thus it is hard

to scale up to graphs with millions of nodes. Inference in

graphical models as well as recurrent neural networks can

be seen as special cases of graph neural networks.

Graph Convolution Networks: An alternative formula-

tion is to learn convolution operations over graphs. These

methods can be categorized into spectral and spatial ap-

proaches depending on which domain the convolutions are

applied to. For spectral methods, convolutions are con-

verted to multiplication by computing the graph Laplacian

in Fourier domain [4, 2, 30]. Parameterized spectral fil-

ters can be incorporated to reduce overfitting [4]. These

methods are not feasible for large scale data due to the ex-

pensive computation, since there is no FFT-like trick over

generic graph. Spatial approaches directly propagate infor-

mation along the node neighborhoods in the graph. This

can be implemented either through low-order approxima-

tion of spectral filtering[6, 15, 7], or diffusion in a support

domain [19, 2, 27, 30, 26]. Our approach generalizes spatial

approaches in two ways: first, we use more expressive con-

volutional kernel functions; second, the output of the convo-

lution could be any point in the whole continuous domain.

Other Approaches: Edge-conditioned filter networks

[27] use a weighting network to communicate between ad-

jacent nodes on the graph [13] conditioned on edge labels,

which is primarily formulated as relative point locations. In

g(yk-x0)

g

(yk - x0)

g(y2 - x0)

 g(y1 - x0) g(y3 - x0)

Input

Output

fN(i)

*

g

Grid
Convolution

Continuous
Convolution

y2

y1

y3

yk
x1

x0

xm
...

...

...

x1

x0

xm

Figure 1: Unlike grid convolution, parametric continuous

convolution uses kernel functions that are defined for arbi-

trary points in the continuous support domain. As a result, it

is possible to output features at points not seen in the input.

contrast, our approach is not constrained to a fixed graph

structure, and has the flexibility to output features at arbi-

trary points over the continuous domain. In a concurrent

work, [26] uses similar parametric function form f(xi−xj)
to aggregate information between points. However, they

only use shallow isotropic gaussian kernels to represent the

weights, while we use expressive deep networks to parame-

terize the continuous filters.

3. Deep Parametric Continuous CNNs

3.1. Parametric Continuous Convolutions

Standard CNNs use discrete convolutions (i.e., convolu-

tions defined over discrete domain) as basic operations.

h[n] = (f ∗ g)[n] =

M∑
m=−M

f [n−m]g[m]

where f : G → R and g : S → R are functions defined

over the support domain of finite integer set: G = ZD and

S = {−M,−M + 1, ...,M − 1,M}D respectively.

In contrast, continuous convolutions can be defined as

h(x) = (f ∗ g)(x) =

∫ ∞

−∞

f(y)g(x− y)dy (1)

where both the kernel g : S → R and the feature f : G → R

are defined as continuous functions over the support domain

G = R
D and S = R

D respectively.

Continuous convolutions require the integration in Eq.

(1) to be analytically tractable. Unfortunately, this is not

2590

Supporting
Points Indices

Sparse
Indexing

Support Point
Coordinates

Output Points
Coordinates

KD-Tree

Support Point
Feature

F
C

-1
6

F
C

-3
2

Input Points Coordinates: Nx3

Input Points Features: NxI

NxK NxKx3

NxKxI

Support Point
Weights

NxKxIxO

Output Points Features: NxO

WeightedSum

Figure 2: Detailed Computation Block for the Parametric Continuous Convolution Layer.

possible for real-world applications, where the input fea-

tures are complicated and non-parametric, and the observa-

tions are sparse points sampled over the continuous domain.

Motivated by monte-carlo integration [5] we derive our

continuous convolution operator. In particular, given con-

tinuous functions f and g with a finite number of input

points yi sampled from the domain, the convolution at an

arbitrary point x can be approximated as:

h(x) =

∫ ∞

−∞

f(y)g(x− y)dy ≈

N∑
i

1

N
f(yi)g(x− yi)

The next challenge we need to solve is constructing the

continuous convolutional kernel function g. Conventional

2D and 3D discrete convolution kernels are parameterized

in a way that each point in the support domain is assigned

a value (i.e. the kernel weight). Such a parameterization

is infeasible for continuous convolutions, since the kernel

function g is defined over an infinite number of points (i.e.,

has infinite support). Instead, in this paper we propose to

use parametric continuous functions to model g. We name

our approach Parametric Continuous Convolutions. In par-

ticular, we use a multi-layer perceptron (MLP) as the ap-

proximator. With reference to the universal approximation

theorem of [12], MLPs are expressive and capable of ap-

proximating continuous functions over Rn. Thus we define:

g(z; θ) = MLP (z; θ)

The kernel function g(z; θ) : RD → R spans the full con-

tinuous support domain while remaining parametrizable by

a finite number of parameters. Note that other choices such

as polynomials are possible, however low-order polynomi-

als are not expressive, whereas learning high-order polyno-

mials can be numerically unstable for back-propagation.

3.2. From Convolutions to Deep Networks

In this section, we first design a new convolution layer

based on the parametric continuous convolutions derived in

the previous subsection. We then propose a deep learning

architecture using this new convolution layer.

Parametric Continuous Convolution Layer: Note that,

unlike standard discrete convolutions which are conducted

over the same point set, the input and output points of our

parametric continuous convolution layer can be different.

This is important for many practical applications, where we

want to make dense predictions based on partial observa-

tions. Furthermore, this allow us to abstract information

from redundant input points (i.e., pooling). As a conse-

quence, the input of each convolution layer contains three

parts: the input feature vector F = {fin,j ∈ R
F }, the as-

sociated locations in the support domain S = {yj}, as well

as the output domain locations O = {xi}. For each layer,

we first evaluate the kernel function gd,k(yi − xj ; θ) for all

xj ∈ S and all yi ∈ O, given the parameters θ. Each ele-

ment of the output feature vector is then computed as:

hk,i =
F∑
d

N∑
j

gd,k(yi − xj)fd,j

Let N be the number of input points, M be the number

of output points, and D the dimensionality of the support

domain. Let F and O be predefined input and output fea-

ture dimensions respectively. Note that these are hyperpa-

rameters of the continuous convolution layer analogous to

input and output feature dimensions in standard grid con-

volution layers. Fig. 1 depicts our parametric continuous

convolutions in comparison with conventional grid convo-

lution. Two major differences are highlighted: 1) the kernel

function is continuous given the relative location in support

domain; 2) the input/ouput points could be any points in the

continuous domain as well and can be different.

Deep Parametric Continuous CNNs: Using the para-

metric continuous convolution layers as building blocks, we

2591

C
on

tin
uo

us
C

on
v-

32
-5

0

KD-Tree

Supporting
Points Indices

C
on

tin
uo

us
C

on
v-

32
-5

0

C
on

tin
uo

us
C

on
v-

32
-5

0

+

...

C
on

tin
uo

us
C

on
v-

12
8-

50

+ +

M
ax

-P
oo

lin
g

F
C

-2
56

F
C

-1
28

S
of

tm
ax

8 Continuous Conv Layer

C
on

ca
t

C
ro

ss
-E

nt
ro

py

NxF

NxK

1xD

NxD NxC

Figure 3: Architecture of the Deep Parametric Continuous CNNs for Semantic Labeling Task.

Input Ground Truth Ours PCCN Input Ground Truth Ours PCCN

Figure 4: Semenatic Segmentation Results on Stanford Indoor3D Dataset

can construct a new family of deep networks which oper-

ates on unstructured data defined in a topological group un-

der addition. In the following discussions, we will focus

on multi-diumensional euclidean space, and note that this

is a special case. The network takes the input features and

their associated positions in the support domain as input.

Then the hidden representations are generated from succes-

sive parametric continuous convolution layers. Following

standard CNN architectures, we can add batch normaliza-

tion, non-linearities and residual connections between lay-

2592

ers. Pooling can also be employed over the support domain

to aggregate information. In practice, we find adding resid-

ual connection between parametric continuous convolution

layers is critical to help convergence. Please refer to Fig. 2

for an example of the computation graph of a single layer,

and to Fig. 3 for an example of the network architecture

employed for our indoor semantic segmentation task.

Learning: All of our building blocks are differentiable,

thus our networks can be learned through back-prop:

∂h

∂θ
=

∂h

∂g
·
∂g

∂θ
=

F∑
d

N∑
j

fd,j ·
∂g

∂θ

3.3. Discussions

Locality Enforcing Continuous Convolution: Standard

grid convolution are computed over a limited kernel size

M to keep locality. Similarly, locality can be enforced in

our parametric continuous convolutions by constraining the

influence of the function g to points close to x, i.e.,

g(z) = MLP (z)w(z)

where w(·) is a modulating window function. This can be

achieved in differently. First, we can constrain the car-

dinality of its local support domain and only keep non-

zero kernel values for its K-nearest neighbors: w(z) =
1
z∈KNN(S,x). Alternatively we can keep non-zero kernel

values for points within a fixed radius r: w(z) = 1||z||2<r.

Efficient Continuous Convolution: For each continuous

convolution layer, the kernel function is evaluated N×|S|×
F ×O times, where |S| is the cardinality of the support do-

main, and the intermediate weight tensor is stored for back-

propagation. This is expensive in practice, especially when

both the number of points and the feature dimension are

large. With the locality enforcing formulation, we can con-

strain the cardinality of S . Furthermore, motivated by the

idea of separable filters, we use the fact that this compu-

tation can be factorized if the kernel function value across

different output dimensionality is shared. That is to say, we

can decompose the weight tensor W ∈ R
N×|S|×F×O into

two tensors W1 = R
F×O and W2 = R

N×|S|×O , where

W1 is a linear weight matrix and W2 is evaluated through

the MLP. With this optimization, only N × |S| × O kernel

evaluations need to be computed and stored. Lastly, in in-

ference stage, through merging the operations of batchnorm

and fc layer in MLP, 3x speed boosting can be achieved.

Special Cases: Many previous convolutional layers are

special cases of our approach. For instance, if the points are

sampled over the finite 2D grid we recover conventional 2D

convolutions. If the support domain is defined as concatena-

tion of the spatial vector and feature vector with a gaussian

kernel g(·), we recover the bilateral filter. If the support

domain is defined as the neighboring vertices of a node we

recover the first-order spatial graph convolution [15].

4. Experimental Evaluation

We demonstrate the effectiveness of our approach in the

tasks of semantic labeling and motion estimation of 3D

point clouds, and show state-of-the-art performance. We

conduct point-wise semantic labeling experiments over two

datasets: a very large-scale outdoor lidar semantic segmen-

tation dataset that we collected and labeled in house and a

large indoor semantic labeling dataset. To our knowledge,

these are the largest real-world outdoor and indoor datasets

that are available for this task. The datasets are fully labeled

and contain 137 billion and 629 million points respectively.

The lidar flow experiment is also conducted on this dataset

with ground-truth 3D motion label for each point.

4.1. Semantic Segmentation of Indoor Scenes

Dataset: We use the Stanford large-scale 3D indoor scene

dataset [1] and follow the training and testing procedure

used in [28]. We report the same metrics, i.e., mean-IOU,

mean class accuracy (TP / (TP + FN)) and class-wise IOU.

The input is six dimensional and is composed of the xyz

coordinates and RGB color intensity. Each point is labeled

with one of 13 classes shown in Tab. 1.

Competing Algorithms: We compare our approach to

PointNet [20] and SegCloud [28]. We evaluate the pro-

posed end-to-end continuous convnet with eight continuous

convolution layers (Ours PCCN). The kernels are defined

over the continuous support domain of 3D Euclidean space.

Each intermediate layer except the last has 32 dimensional

hidden features followed by batchnorm and ReLU nonlin-

earity. The dimension of the last layer is 128. We observe

that the distribution of semantic labels within a room is

highly correlated with the room type (e.g. office, hallway,

conference room, etc.). Motivated by this, we apply max

pooling over all the points in the last layer to obtain a global

feature, which is then concatenated to the output feature of

each points in the last layer, resulting in a 256 dimensional

feature. A fully connected layer with softmax activation is

used to produce the final logits. Our network is trained end-

to-end with cross entropy loss, using Adam optimizer.

Results: As shown in Tab. 1 our approach outperforms

the state-of-the-art by 9.3% mIOU and 9.6% mACC. Fig. 4

shows qualitative results. Despite the diversity of geometric

structures, our approach works very well. Confusion mainly

occurs between columns vs walls and window vs bookcase.

2593

Ground Truth 3D-FCN Ours PCCN Ours 3D-FCN+PCCN

Figure 5: Semenatic Segmentation Results on Driving Scene Dataset; Colored: correct prediciton; white: wrong prediciton.

Figure 6: Semantic Labeling on KITTI Dataset without Retraining

It is also worth noting that our approach captures visual in-

formation encoded in RGB channels. The last row shows

two failure cases. In the first one, the door in the washroom

is labeled as clutter whearas our algorithm thinks is door.

In the second one, the board on the right has a window-like

texture, which makes the algorithm predict the wrong label.

4.2. Semantic Segmentation of Driving Scenes

Dataset: We first conduct experiments on the task of point

cloud segmentation in the context of autonomous driving.

Each point cloud is produced by a full sweep of a roof-

mounted Velodyne-64 lidar sensor driving in several cities

in North America. The dataset is composed of snippets each

having 300 consecutive frames. The training and validation

set contains 11,337 snippets in total while the test set con-

tains 1,644 snippets. We report metrics on a subset of the

test set which is generated by sampling 10 frames from each

snippet to avoid bias brought due to scenes where the ego-

car is static (e.g., when waiting at a traffic light). Each point

is labeled with one of seven classes defined in Tab. 2. We

2594

Method mIOU mAcc ceiling floor wall beam column window door chair table bookcase sofa board clutter

PointNet [20] 41.09 48.98 88.80 97.33 69.80 0.05 3.92 46.26 10.76 52.61 58.93 40.28 5.85 26.38 33.22

3D-FCN-TI [28] 47.46 54.91 90.17 96.48 70.16 0.00 11.40 33.36 21.12 76.12 70.07 57.89 37.46 11.16 41.61

SEGCloud [28] 48.92 57.35 90.06 96.05 69.86 0.00 18.37 38.35 23.12 75.89 70.40 58.42 40.88 12.96 41.60

Ours PCCN 58.27 67.01 92.26 96.20 75.89 0.27 5.98 69.49 63.45 66.87 65.63 47.28 68.91 59.10 46.22

Table 1: Semantic Segmentation Results on Stanford Large-Scale 3D Indoor Scene Dataset

Flow Field Overlay of Target and Warped Source

Figure 7: Right: purple shows target frame, yellow shows

source frame warped to target frame using ground truth flow

adopt mean intersection-over-union (meanIOU) and point-

wise accuracy (pointAcc) as our evaluation metrics.

Baselines: We compare our approach to the point cloud

segmentation network (PointNet) [20] and a 3D fully con-

volutional network (3D-FCN) conducted over a 3D occu-

pancy grid. We use a resolution of 0.2m for each voxel over

a 160mx80mx6.4m range. This results in an occupancy

grid encoded as a tensor of size 800x400x32. We define

a voxel to be occupied if it contains at least one point. We

use ResNet-50 as the backbone and replace the last average

pooling and fully connected layer with two fully convolu-

tional layers and a trilinear upsampling layer to obtain dense

voxel predictions. The model is trained from scratch with

the Adam optimizer[14] to minimize the class-reweighted

cross-entropy loss. Finally, the voxel-wise predictions are

mapped back to the original points and metrics are com-

puted over points. We adapted the open-sourced PointNet

model onto our dataset and trained from scratch. The archi-

tecture and loss function remain the same with the original

paper, except that we removed the point rotation layer since

it negatively impacts validation performance on this dataset.

Our Approaches: We evaluate two versions of our ap-

proach. Our first instance conducts continuous convolu-

tions directly over the raw xyz-intensity lidar points (Ours

PCCN). Our second version (Ours 3D-FCN+PCCN) per-

forms continuous convolutions over the features extracted

from 3D-FCN. Ours PCCN has 16 continuous conv lay-

ers with residual connections, batchnorm and ReLU non-

linearities. We use the spatial support in R
3 to define

our kernel. We train the network with point-wise cross-

entropy loss and Adam [14] optimizer. In contrast, Ours

3D-FCN+PCCN model has 7 residual continuous convolu-

tional layers on top of the trained 3D-FCN model and per-

forms end-to-end fine-tuning using Adam optimizer.

Results: As shown in Tab. 2, by exploiting sophisticated

feature via 3D convolutions, 3D-FCN+PCCN results in the

best performance. Fig. 5 shows qualitative comparison be-

tween models. As shown in the figure, all models produce

good results. Performance differences often result from am-

biguous regions. In particular, we can see that the 3D-FCN

model oversegements the scene: it mislabels a background

pole as vehicle (red above egocar), nearby spurirous points

as bicyclist (green above egocar), and a wall as pedestrian

(purple near left edge). This is reflected in the confidence

map (as bright regions). We observe a significant improve-

ment in our 3D-CNN + PCCN model, with all of the above

corrected with high confidence. For more results and videos

please refer to the supplementary material.

Model Sizes: We also compare the model sizes of the

competing algorithms in Tab. 2. In comparison to the 3D-

FCN approach, the end-to-end continuous convolution net-

work’s model size is eight times smaller , while achiev-

ing comparable results. And the 3D-FCN+PCCN is just

0.01MB larger than 3D-FCN, but the performance is im-

proved by a large margin in terms of mean IOU.

Complexity and Runtime We benchmark the proposed

model’s runtime over a GTX 1080 Ti GPU and Xeon E5-

2687W CPU with 32 GB Memory. The forward pass of

a 8-layer PCCN model (32 feature dim in each layer with

50 neighbours) takes 33ms. The KD-Tree neighbour search

takes 28 ms. The end-to-end computation takes 61ms. The

number of operations of each layer is 1.32GFLOPs.

Generalization: To demonstrate the generalization abil-

ity of our approach, we evaluate our model, trained with

only North American scenes, on the KITTI dataset [8],

which was captured in Europe. As shown in Fig. 6, the

model achieves good results, with well segmented dynamic

objects, such as vehicles and pedestrians.

4.3. Lidar Flow

Dataset: We also validate our proposed method over the

task of lidar based motion estimation, refered to as lidar

2595

Method pACC mIOU vehicle bicyclist pedestrian motorcycle animal background road params size

PointNet [20] 91.96 38.05 76.73 2.85 6.62 8.02 0.0 89.83 91.96 20.34MB

3D-FCN [11] 94.31 49.28 86.74 22.30 38.26 17.22 0.98 86.91 92.56 74.66MB

Ours PCCN 94.56 46.35 86.62 8.31 41.84 7.24 0.00 87.27 93.20 9.34MB

Ours 3D-FCN+PCCN 95.45 58.06 91.83 40.23 47.74 42.91 1.25 89.27 93.18 74.67MB

Table 2: Semenatic Segmentation Results on Driving Scenes Dataset

Ground Truth Ours 3D-FCN+PCCN Ground Truth Ours 3D-FCN+PCCN

Figure 8: Lidar Flow Results on Driving Scene Dataset

flow. In this task, the input is two consecutive frames of

lidar sweep. The goal is to estimation the 3D motion field

for each point in the first frame, to undo both ego-motion

and the motion of dynamic objects. The ground-truth ego-

motion is computed through a comprehensive filters that

take GPS, IMU as well as ICP based lidar alignment against

pre-scaned 3D geometry of the scene as input. And the

ground-truth 6DOF dynamics object motion is estimated

from the temporal coherent 3D object tracklet, labeled by

in-house annotators. Combining both we are able to get the

ground-truth motion field. Fig. 7 shows the colormapped

flow field and the overlay between two frames after undo-

ing per-point motion. This task is crucial for many applica-

tions, such as multi-rigid transform alignment, object track-

ing, global pose estimation, etc. The training and validation

set contains 11,337 snippets while the test set contains 1,644

snippets. We use 110k frame pairs for training and valida-

tion, and 16440 frame pairs for testing. End-point error, and

outlier percentage at 10 cm and 20 cm are used as metric.

Competing Algorithms: We compare against the 3D-

FCN baseline using the same architecture and volumetric

representation as used in Sec. 4.2. We also adopt a sim-

ilar 3D-FCN + PCCN architecture with 7 residual contin-

uous convolution layers added as a polishing network. In

this task, we remove the ReLU nonlinearity and supervise

the PCCN layers with MSE loss at every layer. The train-

ing objective function is mean square error loss between the

ground-truth flow vector and the prediction.

Method EPE (cm) Outlier%10 Outlier%20

3D-FCN 8.161 25.92% 7.12 %

Ours 3D-FCN+PCCN 7.810 19.84% 5.97%

Table 3: Lidar Flow Results on Driving Scenes Dataset

Results: Tab. 3 reports the quantitative results. As shown

in the table, our 3D-FCN+PCCN model outperforms the

3D-FCN by 0.351cm in end-point error and our method re-

duces approximately 20% of the outliers. Fig. 8 shows sam-

ple flow predictions compared with ground truth labels. As

shown in the figure, our algorithm is able to capture both

global motion of the ego-car including self rotation, and the

motion of each dynamic objects in the scene. For more re-

sults please refer to our supplementary material.

5. Conclusions

We have presented a new learnable convolution layer that

operates over non-grid structured data. Our convolution

kernel function is parameterized by multi-layer perceptrons

and spans the full continuous domain. This allows us to de-

sign a new deep learning architecture that can be applied to

arbitrary structured data, as long as the support relationships

between elements are computable. We validate the perfor-

mance on point cloud segmentation and motion estimation

tasks, over very large-scale datasets with up to 200 bilion

points. The proposed network achieves state-of-the-art per-

formance on all the tasks and datasets.

2596

References

[1] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis,

M. Fischer, and S. Savarese. 3d semantic parsing of large-

scale indoor spaces. In CVPR, 2016. 5

[2] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learn-

ing shape correspondence with anisotropic convolutional

neural networks. In NIPS, 2016. 2

[3] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: going beyond eu-

clidean data. IEEE Signal Processing Magazine, 2017. 1

[4] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral

networks and locally connected networks on graphs. ICLR,

2014. 2

[5] R. E. Caflisch. Monte carlo and quasi-monte carlo methods.

Acta numerica, 1998. 3

[6] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-

tional neural networks on graphs with fast localized spectral

filtering. In NIPS, 2016. 2

[7] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bom-

barell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Con-

volutional networks on graphs for learning molecular finger-

prints. In NIPS, 2015. 2

[8] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the kitti vision benchmark suite. In

CVPR, 2012. 7

[9] B. Graham and L. van der Maaten. Submanifold sparse con-

volutional networks. arXiv, 2017. 1, 2

[10] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning

rich features from rgb-d images for object detection and seg-

mentation. In ECCV, 2014. 1

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 8

[12] K. Hornik. Approximation capabilities of multilayer feed-

forward networks. Neural networks, 1991. 3

[13] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool. Dy-

namic filter networks. In NIPS. 2016. 2

[14] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. ICLR, 2015. 7

[15] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. arXiv, 2016. 1, 2, 5

[16] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated

graph sequence neural networks. arXiv, 2015. 1, 2

[17] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 1

[18] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In IROS,

2015. 1

[19] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and

M. M. Bronstein. Geometric deep learning on graphs and

manifolds using mixture model cnns. CVPR, 2017. 2

[20] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

2016. 2, 5, 7, 8

[21] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J.

Guibas. Volumetric and multi-view cnns for object classi-

fication on 3d data. In CVPR, 2016. 1

[22] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space.

2017. 2

[23] X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun. 3d graph

neural networks for rgbd semantic segmentation. In CVPR,

2017. 2

[24] G. Riegler, A. O. Ulusoys, and A. Geiger. Octnet: Learning

deep 3d representations at high resolutions. 2017. 1, 2

[25] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and

G. Monfardini. The graph neural network model. TNN, 2009.

1, 2

[26] K. T. Schütt, P. Kindermans, H. Sauceda, S. Chmiela,

A. Tkatchenko, and K. Müller. Schnet: A continuous-filter

convolutional neural network for modeling quantum interac-

tions. arXiv, 2017. 2

[27] M. Simonovsky and N. Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. CVPR, 2017. 2

[28] L. P. Tchapmi, C. B. Choy, I. Armeni, J. Gwak, and

S. Savarese. Segcloud: Semantic segmentation of 3d point

clouds. arXiv preprint arXiv:1710.07563, 2017. 5, 7

[29] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In CVPR, 2015. 1

[30] L. Yi, H. Su, X. Guo, and L. Guibas. Syncspeccnn: Synchro-

nized spectral cnn for 3d shape segmentation. CVPR, 2017.

2

2597

