CSC2523: Shape Perception in Human and Computer Vision

 

Instructor: Sven Dickinson

 

Each week, there will typically be 2 required readings, all available electronically on the secure course website (for copyright reasons Ð youÕll need the access password from the instructor); on one occasion, there will be three readings, including one very short one.  Supplemental readings are provided for those that are interested in learning more about a given topic; they are not required reading.

 

1. Introduction to Shape Perception

 

No required readings Ð instructor will provide overview of course and cover all administrative details.

 

Supplemental:

 

S. Dickinson and Z. Pizlo (Eds.), ÒShape Perception in Human and Computer Vision: An Interdisciplinary PerspectiveÓ, Advances in Computer Vision and Pattern Recognition Series, Springer Verlag, 2013.

 

2. Perceptual Grouping: the Foundation of Shape Perception

 

A. Witkin and J. Tenenbaum, ÒOn the role of structure in visionÓ, in Human and Machine Vision (J. Beck, B. Hope, and A. Rosenfeld, Eds.), pp 481Ð543, Academic Press, 1983.

http://www.cs.toronto.edu/~sven/2523/Papers/WitkinTenenbaum1983.pdf

 

Y. Qi, Y.-Z. Song, T. Xiang, H. Zhang, T. Hospedales, Y. Li, and J. Guo, ÒMaking Better Use of Edges via Perceptual GroupingÓ, Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, 2015.

http://www.cs.toronto.edu/~sven/2523/Papers/Qi2015.pdf

 

Supplemental:

 

F. Attneave, ÒSome Informational Aspects of Visual PerceptionÓ, Psychological Review, Volume 61, Number 3, 1954, pp 183-193.

http://www.cs.toronto.edu/~sven/2523/Papers/Attneave1954.pdf

 

J. Feldman, ÒBayesian Contour IntegrationÓ, Perception and Psychophysics, Volume 63, Number 7, 2001, pp 1171-1182.

http://www.cs.toronto.edu/~sven/2523/Papers/feldman_bayes.pdf

 

J. Wagemans, J. Elder, M. Kubovy, S. Palmer, M. Peterson, M. Singh, and R. von der Heydt, ÒA century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organizationÓ, Psychological Bulletin, Volume 138, Number 6, 2012, pp 1172-1217.

http://www.cs.toronto.edu/~sven/2523/Papers/WagemansGestalt1.pdf

 

J. Wagemans, J. Feldman, S. Gepshtein, R. Kimchi, J. Pomerantz, P. van der Helm, and C.

van Leeuwen, ÒA Century of Gestalt Psychology in Visual Perception: II. Conceptual and Theoretical FoundationsÓ, Psychological Bulletin, Volume 138, Number 6, 2012, 1218-1252.

http://www.cs.toronto.edu/~sven/2523/Papers/WagemansGestalt2.pdf

 

K. Greff, A. Rasmus, M. Berglund, T. H. Hao, J. Schmidhuber, and H. Valpola, ÒTagger: Deep unsupervised perceptual groupingÓ, Proceedings, Conference on Neural Information Processing Systems (NIPS), 2016.

http://www.cs.toronto.edu/~sven/2523/Papers/Greff2016.pdf

 

3. Separating the Shape from its Background: Contour Closure

 

J. Elder and S. Zucker, ÒThe effect of contour closure on the rapid discrimination of two-dimensional shapesÓ, Vision Research, Volume 33, Number 7, 1993, pp 981-991.

http://www.cs.toronto.edu/~sven/2523/Papers/ElderZucker1993.pdf

 

A. Levinshtein, C. Sminchisescu, and S. Dickinson, ÒOptimal Image and Video Closure by Superpixel GroupingÓ, International Journal of Computer Vision, Volume 100, Number 1, 2012, pp 99-119.

http://www.cs.toronto.edu/~sven/Papers/IJCV-closure.pdf

 

Supplemental:

 

I. Kovacs and B. Julesz, ÒA closed curve is much more than an incomplete one: Effect of closure in figure-ground segmentationÓ, Proc. Natl. Acad. Sci. USA, Volume 90, 1993, pp 7495-7497.

http://www.cs.toronto.edu/~sven/2523/Papers/KovacsJulesz1993.pdf

 

P. Garrigan, ÒThe effect of contour closure on shape recognitionÓ, Perception, Volume 41, Number 2, 2012, pp 221-235.

http://www.cs.toronto.edu/~sven/2523/Papers/Garrigan2012.pdf

 

4. Object-Centered vs Viewer-Centered Shape Perception

 

R. Shephard and J. Metzler, ÒMental Rotation of Three-Dimensional ObjectsÓ, Science, Volume 171, Number 3972, 1971, pp 701-703.

http://www.cs.toronto.edu/~sven/2523/Papers/ShepardMetzler71.pdf

 

S. Edelman and H. Bulthoff, ÒOrientation Dependence in the Recognition of Familiar and Novel Views of Three-Dimensional ObjectsÓ, Vision Research, Volume 32, Number 12, pp 2385-2400.

http://www.cs.toronto.edu/~sven/2523/Papers/EdelmanBulthoff92.pdf

 

Supplemental:

 

E. L. J. Leeuwenberg, ÒA Perceptual Coding Language for Visual and Auditory PatternsÓ, The American Journal of Psychology, Volume 84, Number 3, 1971, pp 307-349.

http://www.cs.toronto.edu/~sven/2523/Papers/Leeuwenberg1971.pdf

 

J. Koenderink and A. van Doorn, ÒThe Singularities of the Visual MappingÓ, Biological Cybernetics, Volume 24, 1976, pp 51-59.

http://www.cs.toronto.edu/~sven/2523/Papers/Koenderink1976.pdf

 

I. Rock and J. DiVita, ÒA Case of Viewer-Centered Object PerceptionÓ, Cognitive Psychology, Volume 19, 1987, pp 280-293.

http://www.cs.toronto.edu/~sven/2523/Papers/Rock_Divita_1987.pdf

 

M. Tarr and S. Pinker, ÒMental rotation and orientation-dependence in shape recognitionÓ, Cognitive Psychology, Volume 21, 1989, pp 233-282.

http://www.cs.toronto.edu/~sven/2523/Papers/TarrPinker1989.pdf

 

S. Ullman and R. Basri, ÒRecognition by linear combinations of modelsÓ, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 13, 1991, pp 992-1006.

http://www.cs.toronto.edu/~sven/2523/Papers/Basri91.pdf

 

S. Dickinson, A. Pentland, and A. Rosenfeld, Ò3-D Shape Recovery Using Distributed Aspect MatchingÓ, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 14, Number 2, 1992, pp 174 - 198.

http://www.cs.toronto.edu/~sven/Papers/pami-aspect.pdf


S. Dickinson, A. Pentland, and A. Rosenfeld, ÒFrom volumes to views: an approach to 3D object recognitionÓ, CVGIP: Image Understanding, Volume 55, Number 2, 1992, pp 130-154.

http://www.cs.toronto.edu/~sven/Papers/cviu92.pdf

 

N. Logothetis, J. Pauls, and T. Poggio, ÒShape representation in the inferior temporal cortex of monkeysÓ, Current Biology, Volume 5, Number 5, 1995, pp 552-563.

http://www.cs.toronto.edu/~sven/2523/Papers/Logothetis1995.pdf

 

P. Sinha and T. Poggio, ÒRole of Learning in three-dimensional form perceptionÓ, Nature, Volume 384, 1996, pp 460-463.

http://www.cs.toronto.edu/~sven/2523/Papers/sinha_poggio_1996.pdf

 

Z. Pizlo and A. Stevenson, ÒShape Constancy from Novel ViewsÓ, Perception & Psychophysics, 1999, 61 (7), pp 1299-1307.

http://www.cs.toronto.edu/~sven/2523/Papers/pizlo-stevenson-99.pdf

 

Y. Yamane, E. Carlson, K. Bowman, Z. Wang, and C. Connor, ÒA Neural Code for Three-Dimensional Object Shape in Macaque Inferotemporal CortexÓ, Nature Neuroscience, Volume 11, Number 11, 2008, pp 1352-1360.

http://www.cs.toronto.edu/~sven/2523/Papers/Yamane2008.pdf

 

Z. Pizlo, T. Sawada, Y. Li, W. Kropatsch, and R. Steinman, ÒNew approach to the perception of 3D shape based on veridicality, complexity, symmetry and volumeÓ, Vision Research, Volume 50, 2010, pp 1-11.

http://www.cs.toronto.edu/~sven/2523/Papers/Pizlo2010.pdf

 

5. Polyhedral Shape Perception

 

M. Chan, A. Stevenson, Y. Li, and Z. Pizlo, ÒBinocular shape constancy from novel views: the role of a priori constraintsÓ, Perception & Psychophysics, Volume 68, 2006, pp 1124-1139. 

http://www.cs.toronto.edu/~sven/2523/Papers/Pizlo2006.pdf

 

D. Lowe, ÒThree-Dimensional Object Recognition from Single Two-Dimensional Images, Artificial Intelligence, Volume 31, Number 3, 1987, pp 355-395.
http://www.cs.toronto.edu/~sven/2523/Papers/lowe.pdf

 

Supplemental:

 

L.G. Roberts, ÒMachine Perception of 3-D SolidsÓ Optical and Electro-Optical Information Processing, (J. T. Tippet et al., Eds.), 1965, pp 159-197.

www.packet.cc/files/mach-per-3D-solids.html#*

http://www.cs.toronto.edu/~sven/2523/Papers/RobertsThesis1965.pdf (thesis)


D. Lowe, ÒThe viewpoint consistency constraintÓ, International Journal of Computer Vision, Volume 1, Number 1, 1987, pp 57-72.

http://www.cs.toronto.edu/~sven/2523/Papers/lowe.pdf

 

D. Huttenlocher and S. Ullman, ÒRecognizing Solid Objects by Alignment with an ImageÓ, International Journal of Computer Vision, Volume 5, Number 2, 1990, pp 195-212. http://www.cs.toronto.edu/~sven/2523/Papers/huttenlocher.pdf

 

6. Symmetry as a Basis for 2-D Shape Perception

 

(Note: the first paper is very short; therefore, one student will cover the first two, while the second student covers the third)

 

I. Kovacs and B. Julesz, ÒPerceptual Sensitivity Maps within Globally Defined Visual ShapesÓ, Nature, Volume 370, 1994, pp 644Ð646.

http://www.cs.toronto.edu/~sven/2523/Papers/KovacsJulesz94.pdf

 

J. Feldman and M. Singh, ÒBayesian estimation of the shape skeletonÓ, Proceedings of the National Academy of Sciences, Volume 103, number 47, 2006, pp 18014-18019.

http://www.cs.toronto.edu/~sven/2523/Papers/feldman_singh_skeletons.pdf

 

A. Levinshtein, C. Sminchisescu, and S. Dickinson, ÒMultiscale Symmetric Part Detection and GroupingÓ, International Journal of Computer Vision, Volume 104, Number 2, 2013, pp 117-134.

http://www.cs.toronto.edu/~sven/2523/Papers/Levinshtein2013.pdf

 

Supplemental:

 

H. Blum, ÒDiscussion Paper: A Geometry for BiologyÓ, Annals of the New York Academy of Sciences, Volume 231, Number 1, 1974, pp 19-30.

http://www.cs.toronto.edu/~sven/2523/Papers/Blum1974.pdf

 

I. Kovacs, A. Feher, and B. Julesz, ÒMedial-point description of shape: A representation for action coding and its psychophysical correlatesÓ, Vision Research, Volume 38, 1998, pp 2323-2333.

http://www.cs.toronto.edu/~sven/2523/Papers/KovacsFeherJulesz98.pdf

 

B. Kimia, ÒOn the Role of Medial Geometry in Human VisionÓ, Journal of Physiology Paris, Volume 97, 2003, pp 155-190.

http://www.cs.toronto.edu/~sven/2523/Papers/KimiaPhysiology.pdf

 

H. Ling and D. Jacobs, ÒShape Classification Using the Inner-DistanceÓ, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 29, Number 2, 2007, pp 286-299.

http://www.cs.toronto.edu/~sven/2523/Papers/LingJacobs2007.pdf

 

C.-C. Hung, E. Carlson, and C. E. Connor, ÒMedial Axis Shape Coding in Macaque Inferotemporal CortexÓ, Neuron, Volume 74, 2012, pp 1099-1113.

http://www.cs.toronto.edu/~sven/2523/Papers/HungCarlsonConnor2012.pdf

 

M. Lescroart and I. Biederman, ÒCortical Representation of Medial Axis StructureÓ, Cerebral Cortex, Volume 23, 2013, pp 629-637.

http://www.cs.toronto.edu/~sven/2523/Papers/Lescroart2013.pdf

 

C. Firestone and B. Scholl, Ò`Please Tap the Shape, Anywhere You LikeÕ: Shape Skeletons in Human Vision Revealed by an Exceedingly Simple MeasureÓ, Psychological Science, Volume 25, Number 2, 2014, pp 377Ð386.

http://www.cs.toronto.edu/~sven/2523/Papers/FirestoneScholl.pdf

 

7. Symmetry as a Basis for 3-D Shape Perception

 

D. Marr and H.K. Nishihara, ÒRepresentation and Recognition of the Spatial Organization of Three Dimensional ShapesÓ, Proceedings of Royal Society of London B, Volume 200, 1978, pp 269-294.
http://www.cs.toronto.edu/~sven/2523/Papers/MarrNishihara1978.pdf

 

R. Brooks, ÒSymbolic Reasoning Among 3-D Models and 2-D Images", Artificial Intelligence Journal, Volume 17, Numbers 1-3, 1981, pp 285-348.

http://www.cs.toronto.edu/~sven/2523/Papers/BrooksAIJ81.pdf

 

Supplemental:

 

T. Binford, ÒVisual Perception by ComputerÓ, Proceedings, IEEE Conference on Systems and Control, Miami, FL, 1971.
http://www.cs.toronto.edu/~sven/2523/Papers/binford.pdf

 

G. Agin and T. Binford, ÒComputer Description of Curved ObjectsÓ, IEEE Transactions on Computers, Volume 25, Number 4, 1976, pp 439-449.
http://www.cs.toronto.edu/~sven/2523/Papers/AginBinford76.pdf

 

R. Nevatia and T. Binford, ÒDescription and Recognition of Curved ObjectsÓ, Artificial Intelligence, Volume 8, 1977, pp 77-98.
http://www.cs.toronto.edu/~sven/2523/Papers/nevatia.pdf

 

M. Ovsjanikov, J. Sun, and L. Guibas, ÒGlobal Intrinsic Symmetries of ShapesÓ, Eurographics Symposium on Geometry Processing 2008, Volume 27, Number 5, 2008.

http://www.cs.toronto.edu/~sven/2523/Papers/ovs-symm.pdf

 

8. Qualitative Shape Perception in 2-D

 

W. Richards and D. Hoffman, ÒCodon constraints on closed 2D shapesÓ, Computer Vision, Graphics and Image Processing, Volume 31, Number 3, 1985, pp 265-281.

http://www.cs.toronto.edu/~sven/2523/Papers/RichardsHoffman1985.pdf

 

K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker, ÒShock Graphs and Shape MatchingÓ, International Journal of Computer Vision, Volume 30, 1999, pp 1-24.

http://www.cs.toronto.edu/~sven/2523/Papers/ShockGraph.pdf

 

Supplemental:

 

S. Belongie, J. Malik and J. Puzicha, ``Shape Matching and Object Recognition Using Shape Contexts, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 24, Number 4, pp 509-522, 2002.
http://www.cs.toronto.edu/~sven/2523/Papers/belongie.pdf

 

9. Qualitative Shape Perception in 3-D

 

I. Biederman, ÒRecognition-by-Components: A Theory of Human Image UnderstandingÓ, Psychological Review, Volume 94, 1987, pp 115-147.
http://www.cs.toronto.edu/~sven/2523/Papers/biederman.pdf

 

S. Tulsiani, H. Su, L. Guibas, A. Efros, and J. Malik, ÒLearning Shape Abstractions by Assembling Volumetric PrimitivesÓ, Proceedings, IEEE Conference in Computer Vision and Pattern Recognition, 2017.

http://www.cs.toronto.edu/~sven/2523/Papers/Tulsiani2017.pdf

 

Supplemental:


A. Pentland, ÒPerceptual Organization and the Representation of Natural FormÓ, Artificial Intelligence, Volume 28, Number 2, 1986, pp 293-331.
http://www.cs.toronto.edu/~sven/2523/Papers/pentland.pdf

 

A. Gupta, A. Efros, and M. Hebert, ÒBlocks World Revisited: Image Understanding using Qualitative Geometry and MechanicsÓ, European Conference on Computer Vision (ECCV), September, 2010.

http://www.cs.toronto.edu/~sven/2523/Papers/Gupta2010.pdf

 

10. Deformable Models of Shape in 2-D

 

K. Denisova, J. Feldman, X. Su, and M. Singh, ÒInvestigating shape representation using sensitivity to part- and axis-based transformationsÓ, Vision Research, Volume 126, 2016, pp 347-361.

http://www.cs.toronto.edu/~sven/2523/Papers/Denisova2016.pdf

 

P. Felzenszwalb, ÒRepresentation and Detection of Deformable ShapesÓ, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume: 27, Number 2, 2005, pp 208-220.

http://www.cs.toronto.edu/~sven/2523/Papers/Felzenszwalb2005.pdf

 

Supplemental:

 

S. Sclaroff and A. Pentland, ÒModal Matching for Correspondence and RecognitionÓ, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 17, Number 6, 1995, pp 545-561.
http://www.cs.toronto.edu/~sven/2523/Papers/sclaroff.pdf

 

R. Basri, L. Costa, D. Geiger, and D. Jacobs, ÒDetermining the Similarity of Deformable ShapesÓ, Vision Research, Volume 38, 1998, pp 2365-2385.
http://www.cs.toronto.edu/~sven/2523/Papers/basri.pdf

 

11. Deformable Models of Shape in 3-D

 

P. Sprote and R. Fleming, ÒBent out of shape: The visual inference of non-rigid shape transformations applied to objectsÓ, Vision Research, Volume 126, 2016, pp 330-346.

http://www.cs.toronto.edu/~sven/2523/Papers/SproteFleming2016.pdf

 

S. Dickinson and D. Metaxas, ÒIntegrating Qualitative and Quantitative Shape RecoveryÓ, International Journal of Computer Vision, Volume 13, Number 3, 1994, pp 1-20. http://www.cs.toronto.edu/~sven/2523/Papers/DickinsonMetaxas1994.pdf

 

Supplemental:

 

Y. Chen, T.-K. Kim, and R. Cipolla, ÒInferring 3D Shapes and Deformations from Single ViewsÓ, Proceedings, European Conferene om Computer Vision, 2010.

http://www.cs.toronto.edu/~sven/2523/Papers/Chen2010.pdf

 

A. Kanazawa, S. Kovalsky, R. Basri, and D. Jacobs, ÒLearning 3D Deformation of Animals from 2D ImagesÓ, EUROGRAPHICS 2016, Volume 35, Number 2, 2016.

http://www.cs.toronto.edu/~sven/2523/Papers/Kanazawa2016.pdf

 

Q. Tan, L. Gao, Y.-K. Lai, J. Yang, and S. Xia, ÒMesh-based Autoencoders for Localized Deformation Component AnalysisÓ.

https://arxiv.org/abs/1709.04304

 

12. Architectures for Shape Perception

 

M. Riesenhuber and T. Poggio, ÒHierarchical models of object recognition in cortexÓ, Nature Neuroscience, Volume 2, Number 11, 1999, pp 1019-1025.

http://www.cs.toronto.edu/~sven/2523/Papers/RiesenhuberPoggio1999.pdf

 

W. Shen, K. Zhao, Y. Jiang, Y. Wang, X. Bai and A. Yuille, ÒDeepSkeleton: Learning Multi-task Scale-associated Deep Side Outputs for Object Skeleton Extraction in Natural ImagesÓ, Proceedings, IEEE Conference on Computer Vision and Pattern Recognition, 2016.

http://www.cs.toronto.edu/~sven/2523/Papers/DeepSkeleton.pdf

 

Supplemental:

 

H. Huang, E. Kalogerakis, B. Marlin, ÒAnalysis and synthesis of 3D shape families via deep-learned generative models of surfacesÓ, Eurographics Symposium on Geometry Processing 2015, Volume 34, Number 5, 2015.

http://www.cs.toronto.edu/~sven/2523/Papers/Huang-AnalysisAndSynthesisOf3DShapeFamilies.pdf

 

J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum, ÒLearning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial ModelingÓ, Proceedings, NIPS, 2016.

http://www.cs.toronto.edu/~sven/2523/Papers/Wu2016.pdf

 

C. Nash and C. K. I. Williams, ÒThe shape variational autoencoder: A deep generative model of part-segmented 3D objectsÓ, Eurographics Symposium on Geometry Processing 2017, Volume 36, Number 5, 2017.

http://www.cs.toronto.edu/~sven/2523/Papers/Nash-TheShapeVariationalAutoencoder.pdf