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3-D Shape Recovery Using
Distributed Aspect Matching

Sven J. Dickinson, Alex P. Pentland, and Azriel Rosenfeld, Fellow, IEEE

Abstract— We present an approach to the recovery of 3-D
volumetric primitives from a single 2-D image. The approach first
takes a set of 3-D volumetric modeling primitives and generates a
hierarchical aspect representation based on the projected surfaces
of the primitives; conditional probabilities capture the ambiguity
of mappings between levels of the hierarchy [15]. From a region
segmentation of the input image, we present a novel formulation
of the recovery problem based on the grouping of the regions
into aspects. No domain-dependent heuristics are used; we exploit
only the probabilities inherent in the aspect hierarchy. Once the
aspects are recovered, we use the aspect hierarchy to infer a set
of volumetric primitives and their connectivity.

As a front end to an object recognition system, the approach
provides the indexing power of complex 3-D object-centered
primitives while exploiting the convenience of 2-D viewer-centered
aspect matching. However, unlike traditional aspect matching
paradigms that represent the entire object with a set of aspects,
we use aspects to represent a finite vocabulary of 3-D parts from
which objects can be constructed. Thus, the size of our aspect set
is fixed and, more important, independent of the size of the object
database. The method not only fully accommeodates occlusion
but uses the aspect hierarchy to overcome image segmentation
errors. We describe the approach in detail and demonstrate its
application to both synthetic line drawings and real images.

Index Terms— Aspect modeling, geons, recognition by parts,
3-D object recognition, 3-D shape recovery, volumetric object
modeling primitives.

I. INTRODUCTION

IGNIFICANT progress has been made in the feature-

based recognition of 3-D objects from 2-D images; some
important examples include Lowe [33], Huttenlocher and
Ullman [27], Thompson and Mundy [59], and Lamdan et al.
[31]. However, these approaches restrict the features to simple
2-D primitives such as line segments, corners, inflections,
and 2-D perceptual structures. These primitives are appealing
because of their viewpoint invariance. However, due to their
simplicity, a typical 3-D model contains a large number of
primitives. Consequently, the process of searching a large data-
base to recognize a model becomes inefficient. Furthermore,
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the simplicity of the primitives makes recognition unreliable,
and detailed verification of the model’s pose is required. Such
verification is not only expensive but restricts the recognition
system to models whose exact geometry is known beforehand.

Our approach is to use more complex primitives so that
indexing for recognition is efficient, and only qualitative
(topological) verification is required. We have chosen to model
objects as configurations of object-centered 3-D volumetric
primitives such as polyhedra, generalized cylinders, and su-
perquadrics. This approach shifts the burden of recognition
from the top-down verification of simple 2-D features to the
bottom-up extraction and grouping of features into volumetric
primitives. The recovery of these 3-D primitives would nor-
mally entail a high search cost due to the their complexity.
However, we have been able to avoid this problem by taking
advantage of probabilistic information about whatever set of
modeling primitives the user has chosen.

To obtain the probabilistic information, we choose a set
of primitives and map them into a set of viewer-centered
aspects whose size is fixed and independent of the size of
the object database [15]. The aspects are represented by a
hierarchy of 2-D features whose levels include the qualitative
shapes of the primitives’ projected surfaces (faces), subsets
of the contours that bound the faces (boundary groups), and
groups of faces (aspects). The relations between these features
are then assessed from all viewpoints, thus generating a table
of estimated conditional probabilities for each feature and
primitive as a function of less complex features. For instance,
one entry in this table might be the conditional probability that
we are viewing a cylinder primitive given that we have found
a rectangular face in the image.

Given an image of a scene, this table of conditional proba-
bilities is then used to guide a combinatorial search that yields
a full and consistent interpretation of the viewed scene. The
key idea is that the statistical properties of the set of user-
defined primitives are used to avoid a combinatorial explosion
in the search process. Knowledge about how each primitive
looks from all angles makes for a more informed search and
allows the use of much more complex indexing features than
are typically employed. The use of such complex features
and primitives establishes the foundation for a more robust
recognition system: one that can potentially accommodate
unexpected objects [48].

The organization of the paper is as follows. In Section II, we
present our hybrid representation for object modeling which
integrates object-centered and viewer-centered models. Sec-
tion III presents our volumetric primitive recovery algorithm,
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whereas Section IV explores the sensitivity of the algorithm
to segmentation errors. We have written a computer program
to demonstrate the approach, and in Section V, we apply the
program to both synthetic line drawings and real images. In
Section VI, we contrast our approach to related work and
conclude with a discussion in Section VII.

II. BUILDING THE SEARCH TABLES

A. Choosing the 3-D Primitives

Given a database of object models representing the domain
of a recognition task, we seek a set of 3-D volumetric
primitives that, when assembled together, can be used to
construct the object models. Many 3-D object recognition
systems have successfully employed 3-D volumetric primitives
to construct objects. Commonly used classes of volumetric
primitives include polyhedra [47], generalized cylinders {9],
and superquadrics [39]. Whichever set of volumetric modeling
primitives is chosen, they will be mapped to a set of viewer-
centered aspects.

Consider, for example, a rectangular block primitive that
might be a component of many objects in a database. Let
us assume that for each object of which it is a component,
its dimensions are different. If our aspect definitions were
quantitative, specifying the exact geometry of image features,
each instance of the block would map to a different set of
aspects. However, if the aspect definitions were qualitative,
providing stability under minor changes in the shape of the
primitives (e.g., scale, dimension, and curvature), a single
set of aspects might represent all possible instances of a
rectangular block. Our approach, therefore, has been to select
a set of qualitatively defined volumetric primitives so that their
description will be invariant under such changes in shape.

1) The Primitives: To demonstrate our approach to primi-
tive recovery, we have selected an object representation similar
to that used in Biederman’s recognition by components (RBC)
theory [8]. RBC suggests that from nonaccidental relations
in the image, a set of contrastive dichotomous (e.g., straight
versus curved axis) and trichotomous (e.g., constant versus
tapering versus expanding/contracting cross-sectional sweep)
3-D primitive properties can be determined. The Cartesian
product of the values of these properties give rise to a set
of volumetric primitives called geons. Biederman’s geons
constitute only one possible selection of qualitatively defined
volumetric primitives; the general approach of applying the
Cartesian product to a set of contrastive primitive properties
can be used to generate many different volumetric primitive
representations. For our investigation, we have chosen three
properties including cross-section shape, axis shape, and cross-
section sweep. The values of these properties give rise to the
following set of ten qualitative volumetric primitives':

1) Rectangular cross-section, straight axis, and constant

cross-section size

' The Cartesian product of the values of these properties results in a set of
20 primitives; however, to simplify the investigation in terms of generating the
conditional probability tables described in the next section, we have chosen a
subset of 10 primitives.
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Fig. 1. Ten primitives.

2) rectangular cross-section, straight axis, and linearly in-

creasing cross-section size not starting from a point

3) rectangular cross-section, straight axis, and linearly in-

creasing cross-section size starting from a point

4) rectangular cross-section, curved axis, and constant

cross-section size

5) elliptical cross-section, straight axis, and constant cross-

section size

6) elliptical cross-section, straight axis, and linearly in-

creasing cross-section size not starting from a point

7) elliptical cross-section, straight axis, and linearly in-

creasing cross-section size starting from a point

8) elliptical cross-section, straight axis, and ellipsoidally

increasing then decreasing cross-section size neither
starting from nor ending at a point

9) elliptical cross-section, straight axis, and ellipsoidally

increasing then decreasing cross-section size starting
from and ending at a point

10) elliptical cross-section, curved axis, and constant cross-

section size.

In our system, these ten primitives were modeled using Pent-
land’s SuperSketch 3-D modeling tool [39], as illustrated in
Fig. 1.2 We believe that this taxonomy of volumetric primitives
is sufficient to model a large number of objects; however,
nothing in our approach is specialized for this particular set of
primitives. If necessary, our approach can easily accommodate
other sets of volumetric primitives.

2) Primitive Attachment: Having defined a set of modeling
primitives, we must decide how to connect them to construct
objects. We have adopted a qualitative convention based
on a labeling of each primitive’s attachment surfaces. For

2SuperSketch models each primitive with a superquadric surface that is
subjected to bending, tapering, and pinching deformations.
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4)

Fig. 2. Primitive attachment surface assignments.

example, the truncated cone primitive (primitive 6) has three
attachment surfaces: the small end, the large end, and the
side. Similarly, the curved block primitive (primitive 4) has
six attachment surfaces: the concave side, the convex side,
the two planar sides, and the two planar ends. The attachment
surface labels for the ten primitives can be found Fig. 2. In
the current implementation, we have restricted any junction of
two primitives to involve exactly one attachment surface from
each primitive.

3) Extension to Include Quantitative Information: Although
our current system uses only qualitative geometric information,
it is straightforward to include quantized metric information.
For example, properties such as cross-section extent and axis
curvature can provide important cues for recognition even
though they are not viewpoint invariant and thus not always
available. Such metric information can be included in our sym-
bolic matching process by partitioning image measurements
into coarse bins (e.g., an axis might be “slightly curved” or
“strongly curved™). Similarly, we can also coarsely specify the
position of a join between two surfaces (e.g., is the attachment
near the middle or the corners of a face?) and the angles at
which they join (e.g., acute or approximately perpendicular).

B. Defining the 2-D Aspects

Traditional aspect graph representations of 3-D objects
model an entire object with a set of aspects, each defining a
topologically distinct view of an object in terms of its visible
surfaces [30]. Our approach differs in that we use aspects
to represent a (typically small) set of volumetric primitives
from which each object in our database is constructed, rather
than representing an entire object directly. Consequently, our
goal is to use aspects to recover the 3-D primitives that
make up the object in order to carry out a recognition-

Primitives

Links indicate possible
parent primitives of
aspects

Links indicate possible

parent aspects of
faces

Aspect
Hierarchy Faces
Links indicate possible
parent faces of
boundary groups
Boundary
Groups
Fig. 3. Aspect hierarchy.

by-parts procedure, rather than attempting to use aspects to
recognize entire objects. The advantage of this approach is
that since the number of qualitatively different primitives is
generally small, the number of possible aspects is limited
and, more important, independent of the number of objects
in the database. The disadvantage is that if a primitive is
occluded from a given 3-D viewpoint, its projected aspect in
the image will also be occluded. Thus, we must accommodate
the matching of occluded aspects, which we accomplish by use
of a hierarchical representation we call the aspect hierarchy.

The aspect hierarchy consists of three levels based on the

faces appearing in the aspect set:

* Aspects constitute the top level of the aspect hierarchy
and represent the set of topologically distinct views of the
primitives; each aspect consists of a set of 2-D faces, each
corresponding to a primitive surface. Identification of the
aspects can allow identification of the visible primitives.
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Fig. 4. Boundary groups.

However, due to occlusion, some of the faces in an aspect
may be partially or completely missing. When this occurs,
we may need to analyze the arrangement of the remaining
faces, and therefore, we introduce the second level of the
aspect hierarchy.

* Faces that make up the various aspects form the second
level of the aspect hierarchy. Reasoning about the type
and arrangement of visible faces can allow identification
of an aspect even when it is partially occluded. However,
again due to occlusion, some of the contours that make
up a face may be partially or completely missing. When
this occurs, we may need to analyze the arrangement of
the remaining contours, and therefore, we introduce the
lowest level of the aspect hierarchy.

* Boundary groups are subsets of the faces’ bounding
contours and make up the third and lowest level of
the aspect hierarchy. The boundary groups provide a
mechanism for identifying the face type even when the
face is partially occluded.

Fig. 3 illustrates a portion of the aspect hierarchy, while the

following describe the levels of the aspect hierarchy in more
detail.

Boundary Groups: Boundary groups represent all subsets
of lines and curves comprising the faces; the complete set of
31 boundary groups can be found in Fig. 4. A boundary group
is represented by a graph in which nodes represent bounding
contours and arcs represent certain nonaccidental contour
relations, including parallelism, symmetry, and intersection,
that occur within a particular face. The use of these nonac-
cidental relationships for extracting larger-scale structure has
been suggested by many authors, including Witkin and Tenen-
baum [61], Lowe [33], and Biederman [8]. These boundary
groups represent qualitative relationships among qualitatively
described contours; exact lengths, distances, angles, curvature,
etc., are not represented.

Faces: Faces represent the set of component faces ap-
pearing in the aspects; the complete set of 16 faces can be
found in Fig. 5. A face is represented by a graph in which
nodes represent contours bounding the face and arcs represent
relations between the contours. Each face differs in the number
of constituent contours, the types of contours (e.g., straight,
concave, or convex), or the nonaccidental relations between
the contours.

Aspects: Aspects are connected sets of faces; Fig. 6 con-
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Fig. 5. Faces.

tains the complete set of 37 aspects. An aspect is represented
by a graph in which nodes represent faces and arcs represent
face adjacencies; arc labels indicate those contours shared by
adjacent faces.

C. Relating the 2-D Aspects to the 3-D Primitives

A given boundary group may be common to a number
of faces. Similarly, a given face may be a component of a
number of aspects, while a given aspect may be the projection
of a number of primitives. To capture these ambiguities, we
have created a matrix representation that describes conditional
probabilities associated with the mappings from boundary
groups to faces, faces to aspects, and aspects to primitives.
For example, consider the mapping between faces and aspects.
To describe this mapping, we create a matrix whose rows
represent faces and whose columns represent aspects. If a
particular face can be a component of ten different aspects,
then those ten column entries corresponding to the ten aspects
contain a value from 0 to 1.0, indicating the probability that
the face is part of that particular aspect. Thus, the entries along
each row sum to 1.0. Fig. 7 presents a portion of the aspect
hierarchy and related primitives along with the corresponding
portions of the matrices.

To generate these conditional probabilities for the boundary
group to face, face to aspect, and aspect to primitive mappings,
we use the following procedure. We first model our 3-D
volumetric primitives using the SuperSketch modeling tool
[39]; the modeled primitives are shown Fig. 1. The next
step in generating the probability tables involves rotating each
primitive about its internal x, y, and z axes in 10° intervals.
The resulting quantization of the viewing sphere gives rise
to 648 views per primitive; however, by exploiting primitive
symmetries, we can reduce the number of views for the entire
set of primitives to 688. For each view, we orthographically
project the primitive onto the image plane and note the

}0

7

16)

(]

appearance of each feature (boundary group, face, and aspect)
and its parent. The resulting frequency distribution gives rise to
the three conditional probability matrices (which can be found
in [16]). This procedure implicitly assumes that all primitives
are equally likely to appear in the image and that all spatial
orientations are equally likely. However, if a set of a priori
probabilities of occurrence or orientation are known, they can
be incorporated into the analysis by simply including them
when forming the frequency distribution tables. In our current
system, the process of identifying and counting the features in
each projection is not yet fully automated; however a number
of algorithms exist for automatically computing aspect graphs
under certain restrictions [24], [25], [19], [52], [54], [55].

D. Discussion

An alternative approach to our hierarchical aspect represen-
tation would be to map the features at the lowest level (in
our case, the boundary groups) directly to the 3-D models (in
our case, the 3-D primitives). This approach is advocated, for
example, by Lowe [33], Huttenlocher and Ullman [27], and
Lamdan ez al. [31]. In such a scenario, a given boundary group
index would return a set of candidate primitives containing
that boundary group. The drawback of this approach is that
simple contour-level descriptions seem to provide only weak
constraints for identifying primitive type and orientation.

Considerable insight can be gained by a careful examination
of the three conditional probability matrices described above.
By multiplying together matrices representing adjacent levels
of the aspect hierarchy, we can generate new matrices that
describe the mappings between boundary groups and aspects,
boundary groups and primitives, and faces and primitives.
These three new mappings, along with the three original
mappings, can best be displayed as a set of histograms.
To generate these histograms, we first determine the largest
conditional probability between each low-level feature and a
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a.d = face labels
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Fig. 6. Aspects.

higher-level feature, thus obtaining a measure of the ambiguity
in that mapping. For example, a node having two emanating
arcs with values 0.50 and 0.50 is inferentially inferior to a node
having three emanating arcs with values 0.90, 0.05, and 0.05.
Having found the highest probability mapping associated with
each low-level feature, these probabilities are histogrammed
into ten equal bins. The resulting histograms, presented in Fig.
8, show the percentage of features whose highest probability
mapping falls within a given probability range.

In this manner, the mappings from aspects, faces, and
boundary groups to the primitives can be examined; these three
histograms are shown in Figs. 8(c), (¢), and (f), respectively. In

.
E

28)

29)

addition to providing maximum contraint on primitive orienta-
tion, the aspect to primitive mapping is the strongest, with 90%
of the aspects having a high conditional probability (0.80-1.0)
mapping. The mappings from the faces and boundary groups
to the aspects can also be examined; these two histograms
are shown in Figs. 8(b) and (d), respectively. In this case, the
mapping from faces to aspects is much less ambiguous than
the mapping from boundary groups to aspects. The remaining
possible mapping, from boundary groups to faces, is shown
in Fig. 8(a).

The aspect hierarchy effectively prunes the mapping from
boundary groups to primitives by introducing topological and
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Fig. 7. Combining the object-centered and viewer-centered models.

probabilistic constraints on the boundary group to face, face
to aspect, and aspect to primitive mappings. The histograms in
Fig. 8 suggest that for 3-D modeling primitives that resemble
the commonly used generalized cylinders [9], [1], [11], su-
perquadrics [39], [40], or geons [8], [4], the most appropriate
image features for recognition appear to be image regions
or faces. Moreover, the utility of a face description can be
improved by grouping the faces into the more complex aspects,
thus obtaining a less ambiguous mapping to the primitives and
further constraining their orientation. Only when a face’s shape
is altered due to primitive occlusion or intersection should we
descend to analysis at the contour or boundary group level.

III. PRIMITIVE RECOVERY

Given an image of one or more objects, the goal of primitive
recovery is to extract instances of the primitives and their
connectivity relations. Our approach first segments the input
image into regions and determines the possible face labels
for each region. Next, we assign aspect labels to the faces,
effectively grouping the faces into aspects. Finally, we map
the aspects to primitives and extract primitive connectivity.
The following sections describe our approach in detail through
the aid of a comprehensive example.

A. Face Extraction

From the histograms in Fig. 8, we concluded that the aspect
to primitive mapping was the least ambiguous mapping to the
primitives. In addition, we concluded that the best mapping to
the aspects was from the faces rather than from the boundary
groups. This suggests that faces are an appropriate starting
point in the primitive recovery process. Since we characterize
faces by their bounding contours, our first step is to extract
a set of contours from the image; this can be accomplished

using either region-based or edge-based methods.?

Once a set of contours has been extracted from the image,
the next step is to partition the contours at significant curvature
discontinuities. The segmented contours are captured in a
contour graph in which nodes represent junctions or significant
curvature discontinuities, and arcs are the actual bounding face
contours. Fig. 9 illustrates the enumerated contours of a scene
containing an object composed of two blocks.

Given the contour graph representation of an input scene,
our next task is to construct its corresponding face graph, in
which nodes represent faces, and arcs represent face adjacen-
cies.* We represent the contour graph as an adjacency matrix,
where each edge appears twice; the edges incident to each
node are ordered clockwise with respect to some reference.’
The algorithm for transforming the contour graph into a face
graph is based on [47] and proceeds as follows.

Algorithm for Producing the Face Graph: Start at any node
ns and follow a sequence of edges, deleting each edge in the
sequence, until node n, is again encountered; the edges in this
cycle form a face. To ensure that only minimal cycles are fol-
lowed, when arriving at node n; from edge e;, we must leave
node n; on the edge that is the clockwise neighbor of e;. We
repeat the process until all edges in node n,’s adjacency list
have been deleted; any node with a nonempty adjacency list
then becomes the new start node. When all edges in the graph
have been deleted, the algorithm terminates. The final step
involves the deletion of the “background face,” i.e., the face
representing the area external to the graph. This can be iden-
tified by keeping track of the internal angles of all faces and
eliminating the face whose internal angle sum exceeds 180(n—
2), where n is the number of segments bounding the face.

Each edge can be a member of, at most, two faces. By
keeping track of face membership when deleting an edge, we
can keep track of face connectivity. Since each edge in the
adjacency list is encountered exactly twice, the complexity of
transforming a contour graph into a face graph is O(e), where e
is the number of edges in the contour graph. Fig. 10 illustrates
the face graph generated from the contour graph in Fig. 9.

B. Face Labeling

Once the faces have been extracted, we must classify each
face according to the faces in the aspect hierarchy. A face is
represented by a contour graph, in which nodes represent the
face’s contours, and arcs represent relations between contours.”
Thus, the classification of a face in the image consists of
comparing its graph to those graphs representing the faces

3For our task of extracting faces, region-based methods are preferable since
they avoid the problem of contour gaps, which can break the cycle of contours
bounding a region.

#Two faces are said to be adjacent if they share one or more contours in
the contour graph representation.

SIf the segment is curved, then the tangent to the curve at the point of
incidence is used to define its orientation.

SFor the purpose of calculating internal angles, each curved segment is
replaced by a piecewise linear approximation.

"Two adjacent collinear or curvilinear contours bounding a face may have
been separated in the contour graph by a junction, e.g., contours 8 and 9 of
the face consisting of the contours 8, 9, 10, 7, and 2 in Fig. 9. If so, they are
merged to form one node in the graph. In addition, all nodes are classified as
either a straight line, a concave curve, or a convex curve.
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Fig. 9. Contour graph representation of an input scene.

in the aspect hierarchy. If there is an exact match, then
we immediately generate a face hypothesis for that image
face, identifying the label of the face. If, due to occlusion,
there is no match, we must descend to the boundary group
level of the aspect hierarchy. We then compare subgraphs
of the graph representing the image face to those graphs
at the boundary group level of the aspect hierarchy. For
each subgraph that matches, we generate a face hypothesis
with a probability determined by the appropriate entry in
the conditional probability matrix mapping boundary groups
to faces. The complexity of classifying an image face is
polynomial in the number of contours in its corresponding
graph since both the size and number of the graphs in the
aspect hierarchy are fixed.®

Thus, from the original contour graph representation of the
image, we first construct a face graph, and then for each face
in the face graph, the classification process results in a list
of hypotheses about the face’s label. In the simple case of
an image face that exactly matches a face found in the aspect
hierarchy, the list contains a single hypothesis with probability
1.0.° For an image face that does not exactly match a face
found in the aspect hierarchy, the list contains one or more face
hypotheses listed in decreasing order of probability.! Each
face hypothesis lists in decreasing order of probability its seed
contour sets, i.e., contours that gave rise to the hypothesis.
In the case of an image face that exactly matches a face in
the aspect hierarchy, the face has a single seed contour set
containing all of the face’s bounding contours. On the other

81f the maximum number of contours in an aspect hierarchy face is k and
the number of contours in the image face graph is n, then the complexity of
classifying the face is O(n*) for the given aspect hierarchy.

°Due to occlusion, the fact that an image face exactly matches an aspect
hierarchy face does not guarantee that the interpretation (label) of the image
face is correct. A more precise analysis would go ahead and compare the
image face’s boundary groups to aspect hierarchy boundary groups, ensuring
that the correct face hypothesis is generated. Nevertheless, the hypothesis
representing the matched face would still have the highest probability.

0There can be no redundancy in this list since we do not allow multiple
face hypotheses with the same label. If two boundary groups give rise to the
same face hypothesis, the hypothesis is assigned the higher probability of the
two boundary group to face mappings.

@ = face number

Fig. 10. Face graph corresponding to contour graph in Fig. 9.

hand, a face hypothesis inferred from one or more boundary
groups will have a seed contour set for each boundary group,
containing the contours making up the boundary group.

As an example, Table I lists the face hypotheses, in de-
creasing order of probability, for each face in Fig. 10. The
face number field refers to the face numbers in Fig. 10, the
face label field gives the hypothesis label (Fig. 5), and the
probability field gives the probability of the face hypothesis.
The seed contour sets field gives the face hypothesis seed
contour sets, each containing a set of numbered contours
from Fig. 9 (with adjacent collinear or curvilinear contours
parenthesized), while the boundary group label field gives the
boundary group label of those seed contour sets corresponding
to a boundary group.

C. Extracting Aspects

1) Problem Definition: We now have a face graph with one
or more face hypotheses at each face. We can formulate the
problem of extracting aspects as follows: Given a face graph
and a set of face hypotheses at each face, find a covering of
the face graph using aspects in the aspect hierarchy (an aspect
covering) such that no face is left uncovered, and each face
is covered by only one aspect, or, more formally, given an
input face graph F'G, partition the vertices (faces) of F'( into
disjoint sets Si,S5,S53,...,S5; such that the graph induced
by each set S; is isomorphic to the graph representing some
aspect A; from a fixed set of aspects Ay, Ag, As, ..., A,.

There is no known polynomial time algorithm to solve
this problem (see Appendix A); however, the conditional
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TABLE [
FAcE HYPOTHESES FOR FACE GRaPH IN FIG. 10

Seed Contour Sets Boundary Group Label

(3210)

(673 (45)

(2710 (9 8))
(1112 13) 15
(12 13 14) 15
(11 12 13) 15
(12 13 14) 15

(18 17 19 12)
(19 16 15 13)

Face Number Face Label Probability
1 8 1.00
2 8 1.00
3 8 1.00
4 8 0.84
9 0.16
5 8 1.00
6 8 1.00
TABLE II
AsPECT HYPOTHESES FOR FACES 0 AND 3 OF FACE GRAPH IN FIG. 10
Face Number  Aspect Label Aspect Prob.
0 27 0.38
19 0.14
4 0.10
29 0.04
35 0.04
34 0.04
31 0.04
18 0.04
30 0.04
20 0.04
36 0.03
25 0.02
33 0.02
37 0.02
28 0.02
26 0.01
3 27 0.32
19 0.12
4 0.09
29 0.04
29 0.04
37 0.03
35 0.03
34 0.03
31 0.03
18 0.03
30 0.03
20 0.03
30 0.03
33 0.03
36 0.03
25 0.02
33 0.02
37 0.02
20 0.01
28 0.01
21 0.01
5 0.01
26 0.00

probability matrices provide a powerful constraint that can
make the problem tractable. After the previous steps, each
face in the face graph has a number of associated face
hypotheses. For each face hypothesis, we can use the face-to-
aspect mapping to generate the possible aspect hypotheses that
might encompass that face; the face hypothesis becomes the
seed face hypothesis of each of the resulting aspect hypotheses.
The probability of an aspect hypothesis is the product of the
face-to-aspect mapping and the probability of its seed face
hypothesis. At each face, we collect all the aspect hypotheses
(corresponding to all face hypotheses) and rank them in
decreasing order of probability. For faces 0 and 3 in Fig.
10, Table II lists the aspect hypotheses in decreasing order
of probability (faces 1, 2, 4, and 5 are equivalent to face 0).

Each aspect hypothesis is merely an informed guess as
to the aspect label of its seed face hypothesis. The process
of verifying the hypothesized aspect label is called aspect
instantiation. For an aspect to be instantiated from an aspect

hypothesis, the relations between the seed face hypothesis
and neighboring face hypotheses must be consistent with the
definition of the aspect. More formally, there must exist a
set of faces S including the face corresponding to the seed
face hypothesis, such that the face subgraph induced by S is
isomorphic to the graph representing the aspect. Since there
may be multiple sets of faces that satisfy this criteria, there
may be multiple aspects instantiated from a single aspect
hypothesis. Hence, the process of aspect instantiation produces
a (possibly empty) set of instantiated aspects for a given aspect
hypothesis. For a detailed discussion of aspect instantiation and
how occluded aspects can be instantiated, see Appendix B.

We can now reformulate our problem as a search through
the space of aspect labelings of the faces in our face graph.
In other words, we wish to choose one aspect hypothesis
from the list at each face such that the instantiated aspects
completely cover the face graph. There may be many labelings
that satisfy this constraint. Since we cannot guarantee that a
given aspect covering represents a correct interpretation of the
scene, we must be able to enumerate, in decreasing order of
likelihood, all aspect coverings until the objects in the scene
are recognized.

2) Algorithm for Enumerating Aspect Coverings: For our
search through the possible aspect labelings of the face graph,
we employ Algorithm A [38] with a heuristic based on the
probabilities of the aspect hypotheses. The different labelings
are ordered in the open list according to a value determined
by the heuristic function. At each iteration, a labeling, or
state, is removed from the open list and checked to see if
it represents a solution (a covering). The successor states are
then generated, evaluated, and added to the open list. The
actual instantiation of aspects is performed during successor
generation. The algorithm continues until all possible solutions
are found, i.e. all labelings are checked. However, it should
be pointed out that in an object recognition framework, once
a solution is found, the search would only be continued if the
recovered shapes (inferred from the aspect covering) could not
be recognized. The following sections describe the components
of the algorithm in more detail.

a) State Definition: A state has two components: a selec-
tion of instantiated aspects and a numeric value determined by
the heuristic function. The selection of instantiated aspects is
actually a list of indices (one per face) with each index pointing
to a set of one or more aspects instantiated from a particular
aspect hypothesis. For a given face, the value of the index
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input: node

output:

valuevalue = 0

for each index in node do
aspect set =
aspect hypothesis =
value = value

set of aspects pointed to by index
aspect hypothesis from which aspect set was instantiated

- probability (aspect hypothesis) -

(c . Maximum number of visible faces of any aspect in aspect set)
1 number of faces in aspect hypothesis definition
(ce *maximum number of visible faces of any aspect in aspect set)

return value

Fig. 11. Heuristic for evaluating a state.

ranges from one to the number of aspect hypotheses associated
with that face. Therefore, since the aspect hypotheses are
ranked in decreasing order of probability, a lower index points
to a set of aspects instantiated from a higher probability aspect
hypothesis. The numeric value is used to order the states in
the open list by increasing value; a more promising state has
a lower value than a less promising state and appears sooner
in the open list.

b) Generating Successor States: To generate a successor
state, i.e., a new selection of instantiated aspects, we increment
one of the indices of the parent state to point to the next
nonempty list of instantiated aspects. Consider, for example,
a face graph consisting of three faces, and suppose we want
to generate the successors of the state having the index set
(1,1,1). Consider the index corresponding to the first face.
First, we increment the index to point to the set of aspects
instantiated from the second most likely aspect hypotheses for
the first face. If we have not yet attempted to instantiate a list
of aspects from that hypothesis, we do so, producing a possibly
empty set of instantiated aspects. If the set of instantiated
aspects is empty, we increment the index and repeat the
process until the next nonempty set is found. The resulting
index is combined with the original indices corresponding to
the second and third faces to form the new state. Therefore,
the first successor is (n1,1,1), where n; is the index pointing
to the next most likely nonempty list of instantiated aspects
corresponding to the first face. The process is repeated for each
index (face), yielding a total of three successors: (ni,1,1),
(1,m2,1), and (1,1, mn3). If, for a given successor, the index is
incremented beyond the number of aspect hypotheses for that
face, the successor is discarded. Before each successor state is
added to the open list, it is evaluated by the heuristic function.
Provided the successor state does not already appear in either
the open or closed lists, it is merged into the open list and
sorted by increasing value.

c) Verifying a Solution State: When a state is removed
from the open list, we check to see if it represents a solution
state. The state is then added to the closed list, provided that
it does not already appear on the closed list. For each index
in the state’s index list, we gather the corresponding set of
instantiated aspects. If the state is a solution state, there must
be a selection of instantiated aspects (one per set) such that
together, they completely cover the face graph. Since we wish
to enumerate all the solutions, we must return all selections that

cover the face graph. To generate the selections, we perform a
depth-first search. Note that for an aspect with label ¢ to cover
faces fi, f2,..., fm, there must exist an aspect with label ¢
covering faces f1, fo,..., fm in each of the sets of instantiated
aspects corresponding to faces f1, fa, ..., fm, respectively. A
solution is added to the solution list only if it does not already
appear in the solution list.

d) Evaluating a State: Before adding a successor state to
the open list, it is evaluated using a heuristic function. The
heuristic has been designed to meet three objectives. First, we
favor selections of aspects instantiated from higher probability
aspect hypotheses. Second, we favor selections whose aspects
have fewer occluded faces since we are more sure of their
labels. Finally, we favor those aspects covering more faces in
the image; we seek the minimal aspect covering of the face
graph. These three objectives have been combined to form the
algorithm for evaluating a state, which is shown in Fig. 11. For
the experiments described in Section V, the values of ¢; and
co were empirically chosen to be 0.25 and 0.50, respectively.

3) Example: We have applied the algorithm for enumerat-
ing the aspect coverings of a face graph to the face graph in
Fig. 10; the first 12 coverings are shown in Fig. 12. For each
covering, we indicate the partitioning of the faces into aspects
(shading), the labeling of the aspects, and the number of states
removed from the open list (i.e., iterations of the algorithm)
when the covering was found. For this simple example, the
first expanded state represents the correct covering.

D. Extracting Primitives

We can represent an aspect covering by a graph in which
nodes represent aspects and arcs represent aspect adjacencies.
For two adjacent aspects A and B, the arc labels consist of
one or more pairs of indices that represent face adjacencies.
For example, arc label (4,j) indicates that face i in the
graph corresponding to A is adjacent to face j in the graph
corresponding to B. Fig. 13 illustrates the graph representing
the first aspect covering enumerated in Fig. 12. Given the
graph representing an aspect covering, the next steps are to
map the aspects in the covering to a set of primitives and to
extract their connectivity. The following sections describe this
process in detail.

1) Algorithm for Enumerating Primitive Coverings: For each
aspect in the aspect covering, we can use the aspect to
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{n) = number of aspect covering iterations
An = aspect label n

Fig. 12. Enumerated aspect coverings for face graph in Fig. 10.
A27
= aspect number n
(24 3.4 An = aspect label n
(a,b) = face number a adjacent to face number b
A27

Fig. 13. Graph representing first aspect covering in Fig. 12.

primitive mapping to hypothesize a set of primitives; the
aspect becomes the seed aspect of each of the resulting
primitives.!! Table III lists the primitives hypothesized for
each aspect in Fig. 13; as in the case of aspect hypotheses
generated from face hypotheses, we can rank the primitives in
decreasing order of probability. A selection of primitives (one
per aspect) represents a 3-D interpretation of the aspect graph;
we call such a selection a primitive covering. Since we cannot

U n addition, the aspect hierarchy defines a mapping from the faces in an
aspect to the attachment surfaces of a primitive.

TABLE IH
PRIMITIVE HYPOTHESES FOR ASPECT COVERING IN FIG. 13
ﬁspent Primitive Primitive  Seed Aspect Face to Surface
UM abel Prob. Label Map
ber
0 1 1.0 27 01 NANA2NA
1 1 1.0 27 34 NA NA 5 NA

guarantee that a given primitive covering represents a correct
interpretation of the scene, we must be able to enumerate, in
decreasing order of likelihood, all primitive coverings until the
objects in the scene are recognized.

To enumerate the selections, we employ a variation on
the search algorithm used to enumerate the aspect coverings.
Again, a state consists of a list of indices (one per aspect)
and a value used to order the states in the open list; the index
corresponding to an aspect points to a primitive hypothesized
from that aspect. Since one aspect’s hypothesized primitives
are independent of another’s, no verification of nodes removed
from the open list is necessary. Successor generation is the
same as that used in the aspect covering algorithm; however,
since no primitive instantiation is necessary, an index need
only be incremented by 1. The heuristic evaluation function
simply negates the sum of the probabilities of the primitives,
thereby favoring higher probability interpretations.

2) Extracting Primitive Connectivity: A primitive covering,
which is represented by a graph in which nodes represent
primitives and arcs represent primitive adjacencies, is then
compared with the object database during the recognition
process. If two aspects are not adjacent in the aspect covering,
their corresponding primitives are not adjacent in the primitive
covering. However, if two aspects are adjacent in the aspect
covering, this does not mean that their corresponding prim-
itives are necessarily adjacent in 3-D; one primitive may be
occluding the other without being attached to it. A primitive
connection between primitives P; and P» is said to be visible
if the following condition is satisfied:

* There exists a pair of faces F; and F, such that F; be-
longs to the aspect corresponding to P; and F; belongs to
the aspect corresponding to P, F} and F are adjacent in
the face graph, and F; and F) share a contour (following
collinearity or curvilinearity grouping).'?

Therefore, we define two types of primitive connectivity

based on connection visibility:

* Two primitives are said to be strongly connected if their
corresponding aspects are adjacent in the aspect graph,
and the primitive connection is visible; in this case, we
assume that the primitives are attached.

* Two primitives are said to be weakly connected if their
corresponding aspects are adjacent in the aspect graph,
and the primitive connection is not visible; in this case,
one primitive occludes the other, and it is not known
whether or not they are attached.

12Before grouping, two adjacent faces in the face graph share a contour by
definition. However, following collinearity and curvilinearity grouping within
their respective faces, they may not have a contour in common.
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A strong primitive connection strongly suggests the exis-
tence of a connection between two primitives. We can enhance
the indexing power of a strongly connected subgraph if the
attachment surfaces (Fig. 2) involved in each connection are
hypothesized. Although it is impossible to define a set of
domain independent rules that will, for any given set of
primitives, correctly specify the attachment surfaces involved
in a connection, we can define a set of heuristics that will
specify a set of likely candidates. If a strongly connected
subgraph is common to two object models, these heuristics
can be used to rank order the candidates for verification.

Hypothesizing the attachment surfaces proceeds as follows.
Let S; be the set of faces belonging to the aspect corre-
sponding to Py, which are adjacent to a face belonging to
the aspect corresponding to P,. Similarly, let Sy be the set
of faces belonging to the aspect corresponding to P,, which
are adjacent to a face belonging to the aspect corresponding
to P;. There are three cases to consider:

1) Sets Sy and S, each contain a single face. The attach-
ment surface for P, is among the set of attachment
surfaces that are adjacent to, and including, the surface
representing the face in S;. The attachment surface for
P, is among the set of attachment surfaces that are adja-
cent to, and including, the surface representing the face
in S». More intuitively, we believe that the attachment
surface is in the local vicinity (on the primitive) of the
attachment surface corresponding to the single visible
face.

2) Set Sy contains a single face, and set Sa contains mul-
tiple faces. In this case, the attachment surface for
Py is the surface that the face in .S; maps to. The
attachment surface for P is among the set of surfaces
that are adjacent to, but not included in, the surfaces
representing the faces in S3. More intuitively, we believe
that P, penetrates P;; since the connection is visible,
the attachment surface for S; is therefore attached to an
occluded surface of P,. (The same holds true when set
S contains a single face and set S; contains multiple
faces.)

3) Sets S1 and Sy both contain multiple faces. In this
case, the attachment surface for P; is among the set
of surfaces that are adjacent to, but not included in,
the set of surfaces representing the faces in S;. The
attachment surface for P, is among the set of surfaces
that are adjacent to, but not included in, the set of
surfaces representing the faces in Sy. More intuitively,
we believe that although the attachment of P and Ps is
visible, both their attachment surfaces are occluded.

Although the scope of this paper is the recovery and not
recognition of objects, it is important to note that it is at
the primitive covering step that the object model database
is brought into play. Given a primitive covering with strong
and weak connections (arcs), we have developed a recognition
strategy whereby strongly connected subgraphs are used to
index into the object database with verification addressing the
weak connections. If a portion of the graph matches an object,
then subsequent primitive or aspect covering enumeration can

be focused on unrecognized portions of the image. In this
manner, the search for both aspect and primitive coverings can
be constrained by the object model database. A description of
this recognition strategy, along with preliminary results, can
be found in [17].

IV. COPING WITH SEGMENTATION ERRORS

Until now, the discussion has assumed not only a correct
region segmentation of the input image but also a correct
partitioning of the contours bounding the regions. However,
this assumption will often not be valid. Within the context
of our system, two types of segmentation errors are possible.
In the first case, the image regions are correctly segmented,
but their bounding contours are incorrectly segmented or
classified. In the second case, the image regions are incorrectly
segmented. The following sections discuss our approach to
dealing with these two problems.

A. Contour Segmentation Errors

Although an image region may be correctly segmented,
there may be errors in the graph representing its bounding
contours. For example, the partitioning of the contours may be
incorrect, a given contour may be misclassified as straight or
curved, or a contour relation (e.g., parallelism) may be incor-
rect. Even if we ignore these errors, a correct interpretation of
the scene may still be possible. If there exists a subgraph that
is correctly labeled, i.e., a correctly labeled boundary group,
the correct face hypothesis will be generated. Of course, if
the subgraph is smaller, a greater number of different face
hypotheses will be generated, thereby increasing the space of
labelings that must be examined during the aspect covering
process. '3

A more effective approach is to associate probabilities with
the labeling of each contour (node) and contour relation (arc)
in the graph [33]. Although this would result in a greater
number of face hypotheses for an image face, the face labeling
would be less sensitive to errors in contour classification and
perceptual grouping. However, this still assumes that the nodes
in the graph are correct, i.e., the contours bounding the face
have been correctly partitioned.

Our approach to the curve partitioning problem is to assume
an oversegmentation of the bounding contour and use the
aspect hierarchy to perform a model-based merging of adjacent
contours during the face labeling stage. An oversegmentation
can normally be obtained by using conservative parameters in
most curve partitioning algorithms, e.g., [46], [32], [21].

If an image face matches an aspect hierarchy face, we
assume that the image face is correct. However, if no match
is possible, recall that we attempt to match subgraphs of the
graph representing the image face to boundary groups in the
aspect hierarchy. Let F' be the graph representing the image
face, and let S be a subgraph of F’ that matches some boundary
group B in the aspect hierarchy. Consider a contour c; such
that c; is a member of F, cy is not a member of S, and cy is
adjacent to a contour ¢, in S. We replace ¢, with the merger

13The face hypotheses inferred from a smaller subgraph (boundary group)
are likely to have lower probabilities.
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of ¢5 and c;, provided that c; and c; are similar according to
some criteria, and examine the resulting $.!* If the new $ still
matches B, we retain the merge; otherwise, we discard it. The
process continues until no new merges are possible. If, during
the merging procedure, S becomes closed, then we match §
to faces in the aspect hierarchy.

B. Region Segmentation Errors

The other type of error we must address is an incorrect
region segmentation. Our approach to the region segmenta-
tion problem is very similar to our approach to the contour
segmentation problem. Assume an oversegmentation of the
image regions, and use the aspect hierarchy to perform a
model-based merging of adjacent regions during the aspect
labeling stage. An oversegmentation can normally be obtained
by using conservative parameters in most region segmentation
algorithms (see [26] for a review of region segmentation
algorithms).

Consider a region in the input image such that, due to
oversegmentation, the region is split into two smaller regions.
Let the graph representing the complete region be F, and
let those representing the two component regions be f; and
fj- Since each component region is a subset of the complete
region, f; and f; must each have at least one subgraph in
common with F. Therefore, if the correct label of F is I,
then f; and f; must have, in their respective ranked lists
of face hypotheses, a face hypothesis with label [. During
the aspect instantiation phase, a group of neighboring faces,
including face f;, is checked to see whether the faces satisfy
the definition of a particular aspect. If face f; is supposed
to contain (among its face hypotheses) a face hypothesis
with label I, we first examine the faces neighboring face f;.
Since one of these neighboring faces f; has (among its face
hypotheses) a hypothesis with the correct label, faces f; and
f; are candidates for a merge. More specifically, let fh; be
the face hypothesis with label { belonging to f;. If the face
resulting from the merging of faces f; and f; gives rise to a
face hypothesis with label ! having a probability greater than
the probability of fh;, then the merge is retained. If the two
faces are merged, we repeat the process with the new face,
terminating when no merges are performed in a given iteration.

Fig. 14 illustrates how this technique is applied to a scene
in which region oversegmentation has occurred. In this case,
one of the faces of the upright block has been oversegmented
to yield two faces, numbered 1 and 2. The face labels and,
if applicable, the boundary group labels used to generate the
face labels, are given in the table. Consider the iteration of the
aspect enumeration algorithm that checks the labeling in which
faces 0, 1, and 3 are each represented by the aspect label 27.
For this aspect to be instantiated, each of faces 0, 1, and 3 must
have (among their possible face labels) the face label 8. Since
face 1 has the correct face label, we invoke the region merging
algorithm. Face 1 has three neighboring faces excluding 0 and
3; therefore, we examine the results of three merges: faces 1

*An example criterion for merging would be that both ¢y and ¢, are
concave curves that meet at a discontinuity whose magnitude does not exceed
some threshold.

Face Boundary Face
a Number Group Labels Labels
5 0 8
[] 1 15,18 8,9,10,11
2 15,19 89,10
3 8
4 15 89
5 8
6 8
labeling: @7,27,_,27,_._._) Aspect Label 27
face: 0 1 23 4586
Prob(1) < 1.0
Prob(Merge(1,2)) > Prob(1) =~ 4
Prob(Merge(1,6)) <= Prob(1) N 6

Prob(Merge(1,4)) <= Prob(1)

Fig. 14. Rectification of region oversegmentation.

and 2, 1 and 6, and 1 and 4. The only merge yielding a face
whose resulting label is 8 and whose probability (1.0) exceeds
that of face 1 is the merge of faces 1 and 2. Hence, this merge
is retained, and the oversegmentation is rectified.

The above model-based region merging algorithm is based
on the probabilities inherent in the aspect hierarchy. Given
a label specification for an image region, we perform a
constrained growth on that region while the probability of that
region increases and terminate when the probability decreases.
This algorithm, in conjunction with the proposed solutions to
contour segmentation errors, enhances our primitive recovery
algorithm by making it less sensitive to image segmentation
performance.

V. RESULTS

We have built a software system to demonstrate our
approach to shape recovery; the system is known as the
Object recognition using Probabilistic Three-dimensional
Interpretation of Component Aspects (OPTICA) system and
has been implemented on a Symbolics™ 3600. For the
first set of examples, the image segmentation and perceptual
grouping tasks are performed manually. Therefore, the input
to the system is a manually segmented contour image;
graphs representing all faces and boundary groups are entered
manually. We are currently developing a front end to the
system to accept real images. Although still at an early stage
of development, we have successfully applied a complete
working system to real images containing objects; the second
set of examples reports these results.

A. Synthetic Data

For the first example, we apply the primitive recovery
algorithm to our familiar scene containing the two blocks; the
resulting primitive covering is presented in the large box to the
left of Fig. 15. Each face in the image is described by a small
box containing some mnemonics. The mnemonics PN, PL, PP,
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Fig. 15.

and PS, refer to the primitive number (simply an enumeration
of the primitives in the covering), primitive label (see Fig. 1),
primitive probability, and primitive attachment surface (see
Fig. 2), respectively, of the primitive that includes that face;
the name of the primitive is given above the mnemonics. The
mnemonics AN, AL, and AP refer to the aspect number (an
enumeration), aspect label (see Fig. 6), and aspect probability,
respectively, of the aspect from which the primitive was
inferred; faces belonging to the same aspect (primitive) are
shaded similarly. The mnemonics FN, FL, and FP refer to
the face number (an enumeration), face label (see Fig. 5),
and face probability, respectively, of the face from which
the aspect was inferred. The smaller box to the upper right
indicates the aspect covering iteration and primitive covering
iteration (given the aspect covering); in this case, both the first
aspect covering and primitive covering are correct. The smaller
box to the lower right indicates the primitive connections by
PN; for example, primitive PNO is attached to primitive PN1.
If two primitives are strongly connected, a list of probable
attachment surfaces appears in parentheses next to the PN;
for example, the connection between primitive PNO and PN1
involves surface PS2 on primitive PNO and surface PSO on
primitive PN1. Note that this list is not exclusive but, rather, a
list of likely candidates. The time taken to generate the correct
covering was approximately 8 s (including the time taken to
read the input from disk).

In the second example, we apply the recovery technique to
two views of a simple object consisting of a block attached to
the side of a cylinder; the results are shown in Figs. 16 and 17.
In each case, the first aspect and primitive coverings represent
the correct interpretation of the scene. In Fig. 16, the algorithm
converges quickly (10 s) since each primitive projects to
a high probability aspect. In Fig. 17, however, the block

Correct first interpretation of an object composed of two blocks.

primitive does not not project to its highest probability aspect.
Consequently, more aspect hypotheses must be examined
before the aspect covering is found (12 s).

In the third example, we apply the recovery technique
to three views of a cooking pot. In Figs. 18 and 19, the
algorithm quickly converges to the correct solution (7 and 5
s, respectively). In each case, the first aspect and primitive
coverings represent the correct interpretation of the scene.
However, in Fig. 20 (5 s), the first aspect covering and,
consequently, the first primitive covering are incorrect. The
pot body received the correct aspect label (AL 5) and primitive
label (PL 6), but the pot handle did not (AL 19, PL 1).

The highest probability aspect that could be instantiated for
the region corresponding to the pot handle was the aspect
labeled 19. Consequently, the most likely primitive given
aspect label 19 was the block primitive (PL 1). The correct
interpretation, shown in Fig. 21 (6 s), represents the second
aspect covering (two iterations) and the fifth primitive covering
(given the correct aspect covering). This example demonstrates
that ambiguous mappings between the faces and aspects,
and between the aspects and primitives, result in ambiguous
interpretations of the scene. This is where the object model
database can be used to constrain the search. For example, if
the first primitive covering (Fig. 20) was used as an index into
the object database, the correct interpretation of the pot body
could be used to constrain the search for an interpretation of
the handle.

The next example using synthetic data demonstrates the
algorithm applied to the desk lamp drawing from Bergevin and
Levine [4]; the results are presented in Fig. 22. The first aspect
and primitive coverings represent the correct interpretation of
the scene (5 s). In Fig. 23, the algorithm is applied to an
occluded scene containing the desk lamp and the cooking
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Fig. 16. Correct first interpretation of an object composed of a block attached to a cylinder (first view).

Search Status

Aspect Covering Number 1
Aspect Covering lteration 2
Primitive Covering Mumber 1
Primitive Covering Iteration 1

Prinitive Connections

P @ s 2 s P1S(343580)
P1S(34350 » PBSU 2

Block

PN i PL 1 PPO.66 PS 1

AN 1 ALL9 APO.12

FN 3 FU 8 FP1.00

Cylinder

PN @ PL 5 PPB.83 PS 1

AN @ ALI1 APO.17

FN 1 FL18 FP1.9@
Cy1ind:

——J——rN e P

AN B AL
FR @ FL

—-——uy
i3
838

-
°
-

Fig. 17. Correct first interpretation of an object composed of a block attached to a cylinder (second view).

pot. Again, the first aspect and primitive coverings represent
the correct interpretation of the scene (7 s). Note that the
handle of the cooking pot has been interpretated as two
distinct primitives; no collinearity grouping is performed at
the primitive level.

B. Image Data

The first step in fully automating our system is the seg-
mentation of the image into homogeneous regions. To extract
regions, we first apply the Canny edge detector [12] to the

input image to detect the projected surface discontinuities of
the object. From the resulting edge pixels, our goal is to locate
cycles of edge pixels that bound regions. However, since there
may be small gaps in the edge pixel map that break cycles,
we dilate the edge image to fill the gaps. The result is then
skeletonized to yield an image containing single pixel width
contours. The entire sequence of steps is executed on a Sun™
3 in approximately 140 s.

From the image of contours, we apply a connected com-
ponents algorithm to extract a set of contours, where each
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Fig. 18. Correct first interpretation of a pot (first view).
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Fig. 19. Correct first interpretation of a pot (second view).

begins and ends at a junction of three or more contours; all
other contours are discarded. The next step is to partition the
contours at significant curvature discontinuities. We first apply
Ramer’s [46] algorithm to produce an initial set of breakpoints.
Although effective for the partitioning of straight lines, the al-
gorithm overpartitions curves. However, the resulting partition
points are a superset of the correct partition points [32]. To
remove the false partition points, we fit circular arcs to the
left and right neighborhoods of each potential breakpoint and
discard the breakpoint if the angle between the tangents to the

two circles at the breakpoint is near 180°. The resulting set
of contours are classified as lines or curves depending on how
well a line can be fitted to them.

From the set of partitioned contours, we apply the algorithm
in Section III-A to yield a face graph. For each face in
the face graph, our next task is to represent the face by a
graph in which nodes represent contours and arcs represent
certain nonaccidental relations among the contours. For a given
face, adjacent lines or adjacent curves that meet at a junction
are merged (according to the criteria used to check initial
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Fig. 20. Incorrect first interpretation of a pot (third view).
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Fig. 21. Correct interpretation of a pot (third view).

partition points) if they are collinear or curvilinear. Any curves
bounding the face are further classified as concave or convex
by checking the angle between the lines joining the midpoint
to the two ends of the curve. Nonadjacent lines are labeled
parallel if the angle between them is small and symmetric
if they are opposite and nonparallel. Nonadjacent curves are
labeled parallel if one is concave, the other is convex, and
they face in similar directions, where the direction of a curve
is defined by the vector whose head is at the midpoint of
the line joining the two ends of the curve and whose tail is

that point on the curve whose perpendicular distance to the
line is maximum. A similar test is used for curve symmetry
if both curves are concave or convex. If, for parallel or
symmetric curves, the radii of the circles fitted to the curves are
significantly different, the relative size of the curves is noted.

The entire process was first applied to the 256 x 256 image of
a table lamp as shown in Fig. 24. Excluding the time required
to transform the raw image into a skeleton image (140 s), the
time required to generate the first primitive covering was 60
s. Fig. 25 shows the partitioned contours extracted from the
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Fig. 23. Correct first interpretation of an occluded scene.

skeleton image. Despite the underpartitioning of the contours
(contour 11), the first aspect and primitive coverings represent
the correct interpretation of the scene.

In the second example, the entire process was applied to
the 256 x 256 image of a padlock as shown in Fig. 26.
Excluding the time required to transform the raw image into a
skeleton image (140 s), the time required to generate the first
primitive covering was 62 s. Fig. 27 shows the partitioned
contours extracted from the skeleton image. Faces FN2, FN3,
and FN4 were correctly grouped and interpreted as the block

primitive (PL1). However, faces FNO and FN1 were grouped
and interpreted as the truncated ellipsoid primitive (PL8). In
face FN1, the contours have been overpartitioned; therefore,
the face could not be matched to the faces in the aspect
hierarchy. Furthermore, due to noise, contour 2 was classified
as a line. The strongest face inference given the possible
boundary groups was the face labeled 15 (FL15) inferred
from the boundary group (labeled 9 in Fig. 4) consisting of
contours 0 and 4. When grouped with the elliptical face FNO,
the resulting aspect was mapped to the truncated ellipsoid.
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Fig. 24. Image of a table lamp (256 x 236).
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Fig. 25. Correct first interpretation of a table lamp.

Fig. 26. Image of a lock (256 x 256).

The second strongest face inference (also from contours 0 and
4, boundary group label 9) was the face labeled 10 (FL10).
The second aspect covering from which the correct primitive
covering was inferred is shown in Fig. 28. The time taken to
generate the second covering was an additional 2 s.

These examples illustrate the results of applying our shape
recovery algorithm to real images. Despite the use of sim-
ple, standard techniques for image segmentation and contour
grouping, which resulted in several segmentation errors, the
algorithm was able to produce a correct interpretation of
these scenes. With more effective techniques for region ex-

traction (e.g., [34], [7]), contour partitioning (e.g., [49], [21]),
perceptual grouping (e.g., [35], [33]), and the model-based
segmentation correction of Section IV, we expect the system’s
performance to improve significantly. In addition, with a more
efficient implementation on a faster target machine (such as
a Sun™ Sparcstation 2 with a standard image preprocessor
for operations such as filtering, line/region finding, etc.), we
expect up to two orders of magnitude speedup.

VI. RELATED WORK

In this section, we briefly review a number of related
approaches and compare them with our own approach. The re-
view is by no means complete; it is meant only to contrast our
approach with some of the more established techniques. More
comprehensive reviews can be found in [10], [6] and [14].

Many researchers use volumetric primitives to model ob-
jects. An often used class of primitives is the class of gener-
alized cylinders [9], [1], [37], [11] whose cross section, axis,
and sweep properties are arbitrary functions. Superquadrics
[22] provide a volumetric representation requiring only a few
parameters. Pentland [39] first applied superquadrics to prim-
itive modeling for object recognition, whereas Pentland [40],
Solina [51], and Terzopoulos and Metaxas [58] have achieved
considerable success in deriving superquadric primitives from
range data. Active or physically based models have been used
by Terzopoulos et al. [56], [57] and Pentland [42]-[45] to suc-
cessfully recover 3-D shape and nonrigid motion from natural
imagery. Although generalized cylinders, superquadrics, and
active models provide a rich language for describing parts,
their extraction from the image is computationally complex.

Brooks” ACRONYM system [11] exemplifies the object-
centered approach to object recognition. In ACRONYM, ob-
jects are represented as constructions of generalized cylinders.
Recognition of a particular model object consists of predict-
ing the projected appearance in the image of the object’s
components; constraints on the 3-D parts of the model are
mapped to constraints on the 2-D parts of the projection.
The image contours are then examined, subject to these
constraints, and matched contours are used to further constrain
the size and orientation of the 3-D parts. The top-down
nature of ACRONYM makes it unsuitable for unexpected-
object recognition; ACRONYM can only confirm or deny the
existence in the image of a user-specified object. In addition,
the quantitative nature of ACRONYM’s constraints requires
the overhead of a complex constraint manipulation system.
ACRONYM s appropriate for recognizing subtypes of a
particular type of aircraft, which our system cannot handle;
however, in distinguishing an aircraft from, say, a horse, we
avoid detailed quantitative constraints.

In contrast with ACRONYM’s top-down approach, Lowe’s
SCERPO system [33] takes a more bottom-up approach to
object-centered recognition. In SCERPO, objects are repre-
sented as polyhedra or constructions of 3-D faces. Image
contours are first grouped according to perceptual organization
rules, including parallelism, symmetry, and collinearity. From
these groupings, simple 3-D inferences are made about the
3-D contours comprising the object; for example, parallel
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Fig. 28. Correct interpretation of the lock.

lines in the image imply parallel edges in the polyhedral
object. The 3-D inferences are matched against manually
identified instances of the properties in the model. Back-
projected features are used to verify the object and constrain its
position and orientation. Although SCERPO could be applied
to unexpected-object recognition, the complexity of polyhedral
models and the simplicity of the indexing features result in
large indexing ambiguity. In addition, SCERPO’s polyhedral
models restrict its recognition domain to rigid objects. Our
modeling scheme and indexing primitives, on the other hand,
support the recognition of articulated objects.

Modeling objects using a set of qualitative primitives is not
new. Mulgaonkar et al. [36] describe a recognition system
based on a set of generalized blob models including sticks,
plates, and blobs. From the 2-D silhouette of an object, a
graph-theoretic clustering technique yields a set of convex
polygonal parts; internal image contours are ignored. The
projected parts are then compared with 3-D part instances in
the model database and are subject to quantitative geometric
and relational constraints. Like ACRONYM, the system is
primarily top-down, starting with a model and matching image
structures to the model-based predictions.



DICKINSON er al.: 3-D SHAPE RECOVERY USING DISTRIBUTED ASPECT MATCHING 195

Biederman [8] proposed a set of primitives, called geons,
based on dichotomous and trichotomous properties of gen-
eralized cylinders. Bergevin and Levine [2]-[4] have applied
Biederman’s geons to 3-D object recognition from 2-D images
in a system called PARVO. Their approach to grouping lines
consists of pairing segmentation points resulting from concave
slope discontinuities lying on the silhouette boundary of the
object. From this pairing, line groups are formed, and internal
contours are later assigned to the line groups on a second pass.
Given a set of cross-sectional and body faces representing a
line group, a discrimination tree is traversed to determine the
symbolic values of the geon attributes. The technique assumes
that the segmentation points can be paired and assumes that
a unique geon label can be assigned to each group of lines
constituting a part. However, in the presence of occlusion or
degenerate viewpoint, these assumptions may not be correct.
The major disadvantage of their approach is that it is dependent
on their choice of geons as modeling primitives.

The viewer-centered representation of an object by a set of
aspects was applied to 3-D object recognition by Chakravarty
and Freeman [13] and more recently by lkeuchi and Kanade
[28], Fan et al. [20], Stark et al. [53], and Shapiro and
Lu [50]. These approaches model the entire object using a
set of aspects. The number of aspects required to represent
the objects in a database is proportional to the number of
objects in the database and to object model complexity; in our
case, the number of aspects is finite. Rather than matching
image features to a large number of complex aspects, we
identify local instances of simple aspects. This allows us, like
ACRONYM, to have articulated models since we are matching
aspects to primitives rather than to objects.

Another recent approach to 3-D object recognition using
viewer-centered models has been proposed by Ullman and
Basri [60]. In this approach, a 3-D object is represented by
a linear combination of a small number of 2-D images of
the object. A major advantage of this approach is the ease
in which object models can be acquired. Unfortunately, each
topologically distinct view (aspect) of the object requires a
distinct set of images. For large databases containing complex
objects, the number of views could become prohibitive.

VII. DISCUSSION

The inefficiency of most 3-D object recognition systems is
reflected in the relatively small number of objects in their
databases (on the order of 10); in many cases, algorithms
are demonstrated on a single object model. The major prob-
lem is that these systems terminate the bottom-up primitive
extraction phase very early, resulting in simple primitives
such as lines, corners, and inflections. These primitives do
not provide very discriminating indices into a large database;
therefore, there are normally a large number of hypothesized
matches. Consequently, the burden of recognition falls on top-
down verification, which, for simple geometric image features,
requires both accurate estimates of the object’s pose and prior
knowledge of the object’s geometry.

We instead index into the model database with more dis-
criminating primitives (ones that do not require precise knowl-

edge of model geometry or accurate estimates of pose). An
appropriate choice for higher order indexing primitives is
the class of volumetric primitives that capture the intuitive
notion of an object’s parts. In this approach, object models are
constructed from object-centered 3-D volumetric primitives.
The primitives, in turn, are represented in the image by a set
of viewer-centered aspects.

Although any selection of volumetric primitives can be
mapped to a set of aspects, our hierarchical aspect represen-
tation is particularly appropriate for primitives with distinct
surfaces, i.e. primitives whose aspects contain distinct faces.
The use of a face-based aspect hierarchy is the backbone of our
approach, allowing us to obtain probabilistic rules for inferring
more complex features from less complex features and for
merging oversegmented contours and regions. Although the
individual features represented in our aspect hierarchy may
change when using other types of volumetric primitives, the
concept of representing a set of 3-D volumetric primitives
as a probabilistic hierarchy of image features is applicable to
any object representation that models objects using volumetric
parts.

The cost of extracting more complex primitives from the
image is the difficulty of grouping less complex features into
more complex features; the number of possible groupings is
enormous. Our recovery algorithm uses a statistical analysis
of the aspects to rank-order the possible groupings. The result
is a heuristic that has been demonstrated to quickly arrive at
the correct interpretation. Note, however, that our approach
will, if need be, enumerate all possible interpretations (or
groupings); the correct interpretation of any scene, no matter
how ambiguous or unlikely, will eventually be generated.

Our recovery algorithm has been demonstrated to effectively
recover a set of occluded 3-D volumetric primitives from an
input scene, providing a powerful front end to a recognition
system. In fact, we have developed a prototype of such a
recognition system that has successfully recognized all the
objects recovered in Section V [17]. A recognition system that
can recognize objects based on their coarse structure could also
serve as a front end to a more quantitative recognition system.

APPENDIX A
THE COMPLEXITY OF THE ASPECT COVERING PROBLEM

The partition into isomorphic subgraphs problem [23] is
stated as follows: Given two graphs G = (V,E) and H =
(V',E’), can the vertices of G be partitioned into g disjoint
sets V1, Va, Vs, ...,V such that, for 1 < ¢ < g, the subgraph
of G induced by V; is isomorphic to H? Kirpatrick and Hell
[29] prove that this problem remains n-p complete for any
fixed H, |H| > 3. Whether or not the problem is n-p complete
for planar G and H remains an open problem. However,
Berman et al. [5] have recently shown that the problem is n-p
complete for any connected outerplanar H, |[H| > 4 and that
the problem is solvable in linear time for any triangulated H,
|H| > 4. Since our aspect face graphs are neither outerplanar
nor triangulated, the complexity of our problem remains open.
In any case, we know of no polynomial time solution to this
problem.
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If we assume that the partition into isomorphic subgraphs
problem (for fixed H, planar G, and H) is n-p complete, we
can prove that our problem is n-p complete. We begin by
reducing an instance of partition into isomorphic subgraphs
into an instance of the decision problem: Does there exist an
aspect covering of the face graph? The reduction is simple.
Let G become a face graph F'G in our problem, and let
H become A, which is the graph representing the singleton
aspect defined in an aspect hierarchy; both of these mappings
are polynomial in the number of nodes in G. Thus, if we could
solve our decision problem in polynomial time, we could solve
the “partition into isomorphic subgraphs” problem (for fixed
H, planar G, and H) in polynomial time, making our problem
n-p hard. Since our problem is in n-p (generate both a partition
and a labeling, and check their consistency in polynomial
time), our decision problem is n-p complete. Since our actual
problem of finding an aspect covering is at least as hard as the
corresponding decision problem and is also in n-p, the problem
of finding an aspect covering is n-p complete.

APPENDIX B
ASPECT INSTANTIATION

Consider a face graph F'G and an aspect hypothesis ah with
label ¢ seeded at face f in F'G. The aspect hierarchy aspect
corresponding to label ¢, herein called the aspect definition,
specifies that the aspect contains k faces, where each has
a specified label and adjacency relations. We first collect
together all neighboring faces of f (including f itself) in
F@G. Next, we generate all face subsets of size < & from this
collection; recall that there is an upper bound on k that is fixed
(specified by the aspect hierarchy) and independent of the size
of F°G. For each subset, we check to see if the subgraph of FG
(i.e., face subgraph) induced by the face subset is isomorphic to
the aspect definition. For each matching subset, we instantiate
an aspect; the result is a (possibly empty) list of instantiated
aspects.

An aspect can be instantiated from an aspect hypothesis
and a face subgraph if and only if the following conditions
are satisfied:

1) For each face in the face subgraph, there must exist,
among its list of face hypotheses, a hypothesis whose
label agrees with the label of its matching face in the
aspect definition; if such a face hypothesis is found, it
is assigned to the face in the subgraph.

2) For each arc (or face adjacency relation) in the face
subgraph, there must exist a corresponding arc in the
aspect definition. Similarly, for each arc in the aspect
definition, there must exist a corresponding arc in the
face subgraph.

3) For each arc in the face subgraph involving two faces A
and B, there must exist a seed contour set belonging to
the face hypothesis assigned to A and a seed contour set
belonging to the face hypothesis assigned to B such that
each of the two seed contour sets includes the contours
shared by A and B. More intuitively, the contour(s)
shared by two faces must be seed contours of both faces.

4) For each face in the face subgraph, there must exist
at least one seed contour set belonging to its assigned
face hypothesis that satisfies all face adjacency relations
involving that face.

If an aspect with k& faces cannot be instantiated from an
aspect hypothesis, it may be due to the fact that the aspect is
occluded in the image. In this case, our goal is to find subsets
of image faces that match portions of the aspect definition.
Consider the set S of all subsets of image faces such that
for each s in S, |s| < k, and the face subgraph induced by
s matches some portion of the aspect definition (according
to the above set of conditions). In addition, according to the
partial match, let the valid seed contour sets at face i in s be
SCi,8Cs,...,SCt . Finally, let r represent the faces in the
aspect definition not included in s (presumably occluded). We
instantiate the aspect encompassing s, provided the following
conditions are satisfied:

1) There exists no other subset ¢ in .S such that s is a proper
subset of ¢ and the aspect encompassing ¢ has been
instantiated. More intuitively, if a set of faces satisfies
an aspect, we ignore its subsets (which may also satisfy
the aspect).

2) For each arc in the face graph involving a face fs in s
and a face fr in r, there must exist a valid seed contour
set SC]’-‘ ° belonging to the face hypothesis assigned to
fs such that the contours shared by fs and fr do not
appear in the seed contour set. More intuitively, if face
A is occluded by face B, then the contours shared by
faces A and B (which belong to face B) should not be
seed contours of face A.

The above restrictions have a significant impact on the
selection of boundary groups. If we have a weak (i.e., low
probability) face hypothesis, then it is likely that each of its
seed contour sets represents a small fraction of the contours
comprising the face. Consequently, instantiation of an aspect
including such a face hypothesis may fail since it is likely
that the required neighboring faces do not border at seed
contours. However, with the lack of seed contours, smaller
subgraphs may match the aspect definition since it is likely
that neighboring faces do not border at seed contours. We
conclude that there is a tradeoff between selecting only the
best boundary groups and exhaustively selecting all boundary
groups. In the former case, a strong face hypothesis supported
by strong boundary groups will likely match few aspect
definitions, pruning out many interpretations of the face.
However, if weaker boundary groups are not included in the
face hypothesis, a correct interpretation may be impossible.
Conversely, the presence of weak boundary groups allows
occluded aspects to be instantiated. Although this may guar-
antee a solution, the increased number of interpretations may
lengthen the search for a solution and may result in less likely
solutions being prematurely generated.
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