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We present an approach to the recovery and recognition of 3-D
objects from a single 2-1) image. The approach is motivated by the
need for more powerful indexing primitives, and shifts the burden
of recognition from the model-based verification of simple image
features to the bottom-up recovery of complex volumetric primi-

tives. Given a recognition domain consisting of a database of

objects, we first select a set of object-centered 3-I) volumetric
modeling primitives that can be used to construct the objects.
Next, using a CAD system, we generate the set of aspects of the
primitives. Unlike typical aspect-based recognition systems that
use aspects to model entire objects, we use aspects to model the
parts from which the objects are constructed. Consequently, the
number of aspects is fixed and independent of the size of the object
database. To accommaodate the matching of partial aspects due to
primitive occlusion, we introduce a hierarchical aspect represen-
tation based on the projected surfaces of the primitives; a set of
conditional probabilities captures the ambiguity of mappings be-
tween the levels of the hierarchy. From a region segmentation of
the input image, we present a novel formulation of the primitive
recovery problem based on grouping the regions into aspects. No
domain dependent heuristics are used; we exploit only the proba-
bilities inherent in the aspect hierarchy. Once the aspects are
recovered, we use the aspect hierarchy to infer a set of volumetric
primitives and their connectivity relations. Subgraphs of the re-
sulting praph, in which nodes represent 3-D primitives and arcs
represent primitive connections, are used as indices to the object
database. The verification of object hypotheses consists of a topo-
logical verification of the recovered graph, rather than a geometri-
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cal verification of image features. A system has been built to dem-
onstrate the approach, and it has been successfully applied to both
synthetic and real imagery. © 1992 Academic Press. Inc

1. INTRODUCTION

1.1.

A major problem in computer vision is the recognition
of three-dimensional objects from a single two-dimen-
sional image. A functional decomposition of a typical ob-

Motivation

ject recognition system is given in Fig. [. From an input

image, a set of features, or primitives, is extracted. The
choice of which primitives to recover from the image
depends on the task; primitives can range in complexity
from collections of 2-D points to collections of 3-IJ vol-
umes. In some cases, knowledge of the objects in the
database can be used to aid primitive recovery. The next
step, called the database indexing step, consists of query-
ing the database to find out which object models contain a
particular image primitive; hence, we call the extracted
image primitives indexing primitives. The indexing pro-
cess matches the image primitives to primitives compos-
ing the object models, returning a set of hypothesized
correspondences between image and model primitives.
The final step involves a verification of the hypothesized
correspondences; verified correspondences are ranked
according to an appropriate goodness-of-fit.

A multitude of object recognition paradigms have been
proposed (see Besl and Jain [4], Chin and Dyer [15], and
Binford [8] for comprehensive reviews), all differing in
their primitive extraction, matching strategy, model rep-
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it image l“e§ct1latio:1, veriﬁcal_ion strategy, or cverail control. De—

spite the overwhelming variety of approaches, there is a

very powerful metric that can be used (o compare them.

podract In particular, by examining the indexing primitives used

in the various approaches, we can draw some powerful

prdoxing. conclusions about building object recognition systems. In

addition, we will see that the selection of indexing primi-

Hygg}ggfslza Y tives not only affects system performance, but constrains
the design of other recognition system modules.

_ Candidate A comparison of object recognition systems according

_“; Ojects to their indexing primitives is given in Fig. 2. In the left

- column are various indexing primitives ranging in com-

R plexity from low (e.g., 2-D points) to high (e.g., 3-D vol-

umes), as depicted by the width of the lefimost ba: (bar

Resbanized [). Some of the indexing primitives are two-dimensional,

while others are three-dimensional, often reflecting the

type of input as intensity or range image data. Accompa-

FIG. 1. The components of a Lypical ohject recopaition system . A . LT
nying each indexing primitive is a reference to an exam-

Inqe).u.ng primitive made) search  rellance on  model ease of
Primitive complexty complexity complexity verlfication fexibllity recovery

3-D volemetrie primitives
generalized cylinders
{Brooks 1983)
geons (Bleterman 1985)
superquadrics
{Pentiand 1966).
delermable models
(Terzopoulos et al 1487}

3-D surlaces
{Besl and Jain 1986)

2-B contour groupings
{Lowe 1985)

3-D contours
{Bolles and Horauvd 1986)

2-D contours
(Huttanlocher and
Utlman 1887)

3-D points
{Grimson and
Lozang-Parez 1984}

2-0 paints
{Lamdan el ai 1988)

1 2 3 4 5 6

F1G. 2 A comparison of object recognition systems according 1o their indexing primitives
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ple system that employs that primitive, Note that this list
of indexing primitives is not complete; it is meant only to
exemplify the range in complexity of possible indexing
primitives.

Working from left to right in Fig. 2, we see that as the
complexity of indexing primitives increases, the number
of features making up the object models decreases (bar
2). since an object can be described by a few complex
parts or by many simple parts. This, in turn, implies that
the search complexity, i.e., the number of hypothesized
matches between image and maodel primitives, decreases
with increasing primitive complexity (bar 3). The high
search complexity involving simple indexing primitives is
compounded by large object databases. As a result, most
sysiems using simple indexing primitives, e g, Lowe
{38], Huttenlocher and Ulman [33], Thompson and
Mundy [71], and Lamdan et al. [36], are applied 1o small
databases typically containing only a few objects

Since the simple indexing primitives represent a more
ambiguous inlerpretation of the image data {e.g., a few
corners in the image may correspond to many corner
triples on many objects), systems that employ simple
primitives must rely heavily on a top-down verification
step to disambiguate the data (bar 4). In this manner, the
burden of recognition is shifted from the recovery of
complex, discriminating indexing features to the model-
based verification of simple indexing features. Since
many different objects may be composed of the same
simple features, these systems are faced with the difficult
task of deciding which object to use in the verification
step. However, there is 2 more fundamental problem
with simple indexing features.

Relying on verification to group or interpret simple in-
dexing primitives has two profound effects on the design
of recognition systems. First, verifying the position or
orientation of simple indexing features such as points or
lines requires an accurate determination of the object’s
pose with respect to the image. If the pose is incorrect,
searching a local vicinity of the image for some model
feature may come up empty. Needless to say, accurately
solving for the object’s pose can be computationally com-
plex, particularly when a perspective projection camera
model is used.

Relying on verification also affects object modeling.
Specifically, the resulting object models must specify the
exact geometry of the object, and are not invariant to
minor changes in the shape of the object (bar 5). Con-
sider, for example, a polyhedral model of a chair If we
streich the legs, broaden the seat, or raise the back, we
would require a new model if our verification procedure
were checking the position of points and lines in the im-
age. Excellent work has been done to extend this ap-
proach to certain types of parameterized models, e.g.,
Grimson [29], Huttenlocher [32], and Lowe [39]. How-

ever, by nature of the indexing primitives, these models
do not explicitly represent the gross stiucture of the ob-
ject, and therefore cannot easily accommodate certain
types of shape changes.

So far, bars | through 5 in Fig. 2 clearly indicate the
advantages of using complex indexing features over sim-
ple ones. Why then do most 3-D from 2-D recognition
systems use simple indexing primitives?! First of all, in
certain domains, e g., typical CAD-based recognition, in
which the object database is very small, object models
are constructed from simple primitives, object shape is
fixed, and exact pose determination is reqguired, simple
indexing primitives have proven to be guite successful
However, more importantly, the reliable recovery of
more complex features, particularly from a single 2-D
image, is a very difficult problem (bar 6), particularly in
the presence of noise and occlusion. Clearly, the major
obstacle in the path of any effort to build a recognition
systemn based on complex indexing primitives will be the
reliable recovery of those primitives. This paper ad-
dresses this challenge. From a single 2-D image, we
present an approach Lo the recovery and recognition of 3-
D objects using complex 3-D volumetric indexing primi-
tives.

1.2. Gverview of the Approach

The approach presented in this paper is outlined in Fig.
3. Given a recognition task domain consisting of a data-
base of objects, the first step is to select a set of object-
centered 3-D volumetric primitives which, when assem-
bled together, can be used {0 consiruct the objects. Next,
using a CAD system, we map the set of volumetric primi-
tives 1o a set of viewer-centered 2-D aspects whose num-
ber is fixed and independent of the size of the object
database.

The aspects are represented by a hierarchy of 2-D fea-
tures, called the aspect hierarchy, whose levels include
the qualitative shapes of the primitives’ projected sur-
faces (faces), subsets of the contours that bound the faces
{boundary groups), and gioups of faces (aspects). The
relations between these features are then assessed from
all viewpoints, resulting in 2 table of estimated condi-
tional probabilities for each 2-D feature and primitive as a
function of less complex 2-D features For instance, one
entry in this table might be the conditional probability
that we are viewing a cylinder primitive given that we
have found a rectangular face in the image. The computa-
tion of the aspect hierarchy, including tabulation of the
conditional probabilities, is performed off-line.

! Many ol the more complex indexing primitives, e.g . 3-D surface
patches, deformable medels, and superguadrics are typically recovered
from range data images
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Object Dalabase Representing
Task Domain

Select Set of 3-D Volumetric Primitives
Suitable for Constructing Objects in Database

Finite Set of 3-D Voilumetric
Modeling (Indexing) Primitives

Using CAD System, Map Volumetric
Primitives to Set of Aspects

input image —l

Recover Primitives by Grouping Regions into Aspects

1. Recover Faces
2. Retover Aspects
3 Recover Primitives

Aspect Hierarchy

Recovered Primitives

Match Recovered Primitives to Objecls

Recognized Objects

FIG. 3 Overview of the approach

The recovery of 3-D volumetric primitives from a 2-D
image would normally entail a high search cost due to the
complexity of the primitives. However, we have been
able to avoid this problem by taking advantage of the
computed probabilistic information about whatever set of
modeling primitives the user has chosen. Given an image
of a scene, this table of conditional probabilities is then
used to guide a combinatorial search that yields a full and
consistent interpretation of the viewed scene. The key
idea is that the statistical properties of the set of user-
defined primitives are used to avoid a combinatorial ex-
plosion in the search process. Knowledge about how
each primitive looks from all angles makes for a more
informed search, supporting the recovery of much more
complex image features than are typically employed.

Primitive recovery consists of three steps. From a re-
gion segmentation of the image, each region is classified
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{or labeled) according {o the faces in the aspect hierar-
chy; if a face is occluded, it may receive multiple labels.
Next, the regions are partitioned into groups, each corre-
sponding 1o an aspect of a primitive. We formulate the
problem as a region labeling and again use the conditional
probabilities within the hierarchy to avoid a combinato-
rial explosion. The final step consists of mapping the 2-D
aspects o the 3-D primitives, and recovering the primi-
tive conneclions.

From a set of recovered 3-D volumetric primitives, we
then proceed to the task of recognizing the object(s) con-
tained in the scene. Groups of recovered primitives, in-
cluding their connections, are used as indices to the ob-

ject database. Unlike typical 3-I recognition systems

which rely heavily on geometric verification to confirm or
reject object hypotheses, we rely on topological (qualita-
tive} verification of part aspects (image faces}. We show
that the same mechanisms can be applied both to the
problem of unexpected object recognition (Rosenfeld
{58]) and to the problem of searching the image for a
particular object (expected object recognition).

In previous work, we described our representation in-
tegrating object-centered and viewer-centered models
{16} and our technigue for recovering 3-D volumetric
primitives from a 2-D image [18]. This paper focuses on
the final component of our system, the object recognition
component, Following a review of the representation and
recovery technigues, we present the recognition algo-
rithm in detail. The integrated system, including the rec-
ognition component, is demonstrated on both synthetic
and real imagery.

2, OBJECT MODELING

2.1.  Choosing the 3-D Primitives

As discussed in Section [, volumetric primitives offer a
powerful indexing mechanism for object recogmtion.
Nevertheless, the question arises: Why volumetric primi-
tives? Why not 3-D surface patches, or even complete
objects, as in the case of typical aspect-based recognition
systems? We believe that volumeltric primilives represent
the moslt intuitive decomposttion of an object into parts.
Object models composed of volumetric primitives easily
suppoit part articulation, and at the structural level are
insensitive to dimensional changes in the parts. Another
compelling reason for their selection is their ability to
support functional-based object recognition (Stark and
Bowyer [64]). Reasoning about object function requires
notl only a higher-level representation of the image data,
bui a pood mapping between shape and functional primi-
tives. For example, reasoning about the functionality of a
recovered chair leg is better served by a volumetric rep-
resentation of the leg than by a representation consisting
of a series of surface patches. Additional support for vol-
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umetric primitives based on the criteria of accessibility,
scope and uniqueness, and stability and sensitivity is
given by Marr [41].

Many researchers use volumetric primitives 1o model
objects. An often used class of primitives is the class of
generalized cylinders (e .g., Binford {7], Agin and Binford
[1], Nevatia and Binford [47], Marr and Nishthara [40],
Brooks [10]) whose cross-section, axis, and sweep prop-
erties are arbitrary functions. Supcrguadrics (Gardiner
[24]) provide a volumetric representation requiring only a
few parameters. Pentland {49] first applied superquadrics
to primitive modeling for object recognition, while
Pentland [50] and Solina [62] have achieved considerable
success in deriving superquadiic primitives from range
data. Active or physically-based models have been used
by Terzopoulos e al. [68-70], Metaxas and Terzopoulos
{43, 44}, and Pentland and co-workers [51-54] to success-
fully recover 3-D shape and nonrigid motion from natural
imagery . Although generalized cylinders, superquadrics,
and active models provide a rich language for describing
parts, their extraction from the image Is computationally
complex In addition, many of the above systems rely on
range data as input, and often require strong initial condi-
tions or even manual intervention,

Giiven a database of object models representing the do-
main of & recognition task, we seck a set of three-dimen-
sional volumetric primitives that, when assembled to-
gether, can be used to construct the object models.
Whichever set of volumetric modeling primitives is cho-
sen, they will be mapped to a set of viewer-centered as-
pects. Consider, for example, a rectangular block primi-
tive which might be a component of many objects in a
database [L.et us assume that for each object of which it is
a component, its dimensions are different. If our aspect
definitions were guantitative, specifying the exact geom-
etry of image features, each instance of the block would
map to a different set of aspects. However, if the aspect
definitions were gualitative, providing stability under mi-
nor changes in the shape of the primitives (e.g., scale,
dimension, and curvature), a single set of aspects might
represent all possible instances of a rectangular block.
Our approach, therefore, has been to select a set of quali-
tatively-defined volumetric primitives, so that their de-
scription will be invariant under such changes in shape,

To demonstrate our approach to primitive recovery,
we have selected an object representation similar to that
used in Biederman’s Recognition by Components (RBC)
theory 16]. RBC suggests that from nonaccidental refa-
tions in the image, a set of contrastive dichotomous (e.g.,
straight vs. curved axis) and trichotomous {e.g., constant
vs. tapering vs expanding/contracting cross-sectional
sweep) 3-D primitive properties can be determined, The
Cartesian product of the values of these properties pives
rise to a set of volumetric primitives called geons.

5. Cylinder

BT
g 2
A | Y
iz

9. Eltipsoid

19. Bent Cylinder

FIG 4 The 10 primitives

Biederman's geons constitute only one possible selec-
tion of qualitatively-defined volumetric primitives; the
general approach of applying the Cartesian product to a
set of contrastive primitive properties can be used to gen-
erate many different volumetric primitive representa-
tions. For our investigation, we have chosen three prop-
erties: cross-section shape, axis shape, and cross-section
sweep. The values of these properties give rise to a set of
10 qualitative volumetric primitives > To construct ob-

jects, the primitives are simply attached 1o one another

with the restriction that any junction of two primitives
involves exactly one attachment surface from each primi-
tive, i.e., an altachment cannot lie on a surface discontin-
uity.

In our sysiem, these 10 primitives were modeled using
Pentland’s SuperSketch 3-D modeling tool {49], as illus-
trated in Fig. 47 We believe that this taxonomy of volu-

* The Cartesian product of the values of these properties results in a
set of 20 primitives; however, to simplify the investigation in terms of
generating the conditional probability tables described in the next sec-
tion, we have chosen a subset of {0 primitives which we believe to be a
good basis for modeling a wide range of objects If necessary, more
primitives could easily be added to erhance the vocabulary

Y SuperSketch models each primitive with a superguadric surface that
is subjected 1o bending, tapering, and pinching deformations
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metric primitives is sufficient to model a large number of

objects; however, nothing in our approach is specialized
for this particular set of primitives. If necessary, our ap-
proach can easily accommodate other sets of volumetric
primitives.

2.2, Defining the 2-D Aspects

Traditional aspect graph representations of 3-D objects
model an entire object with a set of aspects, each defining
a topologically distinct view of an object in terms of iis
visible surfaces (Koenderink and van Doorn [34]). Our
approach differs in that we wuse aspects to represent a
{typically smalily set of volumetric primitives from which
each object in our database Is constructed, rather than
representing an entive object direcrly. Consequently, our
goal is to use aspects to recover the 3-I¥ primitives that
make up the object in order Lo carry out a recognition-by~
parts procedure, rather than attempting to use aspects to
recognize entire objects. The advantage of this approach
is that since the number of gualitatively different primi-
tives is generally small, the number of possible aspects is
limited and, more important, independent of the number

of objects in the database In contrast, the number of

aspects required to model complete objects grows with
the size of the database, and is compounded by articulat-
ing objects. The disadvantage is that if a primitive is oc-
cluded from a given 3-D viewpoint, its projected aspect in
the image will also be occluded . Thus we must accommo-
date the matching of occluded aspects, which we accom-
plish by introducing a hierarchical aspect representation
we call the aspect hierarchy.

The aspect hierarchy consists of three levels, based on
the faces appearing in the aspect set; Fig. 5 illustrates a
portion of the aspect hierarchy.

Primitives
|inks indicate possitio
parent primilivos of
aspacts
Aspecls
Links Indicate possibis
paront aspecly of
facos
Aspect
Higrarchy Faces
Links incicalo possible
paront faces of
boundary groups
Boundary
Groups
FIG. 5 The aspect hierarchy
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* Aspects constitute the top level of the aspect hierar-
chy; they consist of the possible groups of faces for each
of the primitives. ldentification of the aspects can allow
identification of the visible primitives. However, due 1o
occlusion, some of the faces in an aspect may be partially
or completely missing. When this occurs, we may need to
analyze the arrangement of the remaining faces, and so
we introduce the second level of the aspect hierarchy.

+ Faces that make up the various aspects form the sec-
ond level of the aspect hierarchy. Reasoning about the
type and arrangement of visible faces can allow identifi-
cation of an aspect even when it is partiaflly occluded.
However, again due to occlusion, some of the contours
that make up a face may be partiaily or completely miss-
ing. When this occurs, we may need to analyze the ar-
rangement of the remaining contours bounding the face,
and so we introduce the lowest level of the aspect hier-
archy

» Boundary Groups are subsets of the faces’ bounding
contours and make up the third and lowest level of the
aspect hierarchy. The boundary groups provide a mecha-
nism for identifying the face type even when the face is
partially occluded.

2.3, Relating the 2-D Aspects to the 3-I) Primitives

A given boundary group may be common to a number
of faces. Similarly, a given face may be a component of a
number of aspects, while a given aspect may be the pro-

jection of a number of primitives. To capture these ambi-

guities, we have created a matrix representalion that de-
scribes conditional probabilities associated with the
mappings from boundary groups to faces, faces {o as-
pects, and aspects o primilives. For example, consider
the mapping between faces and aspects. To describe this
mapping, we creale a matrix whose rows represent faces
and whose columns represent aspects. If a particular face
can be a component of 10 different aspects, then those 10
column entries corresponding Lo the 10 aspects each con-
tain a value from 0 to 1.0, indicating the probability that
the face is part of that particular aspect. Thus, the entries
along each row sum to 1.0,

To generate these conditional probabilities for the
boundary group 1o face, face to aspect, and aspect 1o
primitive mappings, we use the following procedure. We
first model our 3-D volumetric primitives using the Su-
perSketch modeling tool 1491, as shown in Fig. 4. The
next slep in penerating the probability tables involves
rotating each primitive about ils internal x, y, and z axes
in 10° intervals. The resulting quantization of the viewing
sphere gives rise to 648 views per primitive; however, by
exploiting primitive symmetries, we can reduce the num-
ber of views for the entire set of primitives to 688. For
each view, we orthographically project the primitive onto
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the image plane, and note the appearance of each feature
{boundary group, face, and aspect) and its parent. The
resulting frequency distribution gives rise to the three
conditional probability matrices (which can be found in
(7

This procedure implicitly assumes that all primitives
are equally likely to appear in the image, and that all
spatial orientations of the primitives are equally likely. In
practice. this is a strong assumption since hoth the fre-
quency of occurrence and the spatial orientation distribu-
tion of a primitive are governed by the contents of the
object database. A more effective approach would be to

preprocess the object database, counting the number of

times each primitive appears in each object and noting
the primitive’s orientation. The resulting set of a priori
probabilities of occurrence and orientation could then be

easily incorporated into the analysis, providing a set of

tables that accurately reflect the contents of the object
database.

It should be emphasized that these results offer only a
rough approximation to the true probabilities. A more
thorough analysis would use a finer quantization of both
the primitives’ parameters and the viewing sphere, and
would measure the conditional probabilities directly from
image data. The resalting explosion of views would re-
quire an automated tool to perform the analysis and gen-
erate the probabilities; much of the current analysis is
performed manually,

A number of algorithms exist for automatically com-
puling aspect graphs for specific object and projection
models. For example, for convex polyhedra, see Stew-
man and Bowyer [66] (perspective); for general poly-
hedra, see Plantinga and Dyer [533] (orthographic and per-
spective}, Gigus and Malik {25] (orthographic), Gigus,
Canny, and Seidel [26] {orthographic), and Stewman and
Bowyer [63] (perspective); for solids of revolution, see
Eggert and Bowyer {19} (orthographic) and Kriegman
and Ponce [35] {orthographic): for curved objects, see
Sripradisvarakul and Tain [63] (orthographic); and for ar-
ticulated objects, see Sallam and Bowyer [60]. Unfortu-
nately, our needs extend beyond the computation of as-
pect graphs. In fact, the transitions between aspects
{called visual events) in an aspecl graph are not used in
our approach; only the set of distinct aspects is applica-
ble. However, in addition to the aspecis, we need the
conditional probabilitics associated with the aspects and
their component features.

3. PRIMITIVE RECOVERY

The aspect hierarchy effectively prunes the mapping
from boundary groups to primitives by introducing topo-
logical and probabilistic constraints on the boundary
group to face, face to aspect, and aspect to primitive

mappings. An analysis of the conditional probabilities
[8] suggests that for 3-I) modeling primitives which re-
semble the commonly used generalized cylinders, super-
quadrics, or geons, the most appropriate image features
for recognition appear to be Image regions, or faces
Moreover, the utility of a face description can be im-
proved by grouping the faces into the more complex as-
pects, thus obtaining a less ambiguous mapping to the
primitives and further constraining their orientation.
Oniy when a face’s shape is altered due to primitive oc-
clusion or intersection should we descend to analysis at
the contour or boundary group level. Gur approach,
therefore, first segments the input image inte regions and
then determines the possible face labels for each region.
Next, we assign aspect labels to the faces, etfectively
grouping the faces into aspects. Finally, we map the as-
pecis to primitives and exlract primitive connectivity.
The following sections describe the approach in greater
detail.

3.1. Face Extraction

From an analysis of the conditional probabilities, we
concluded that the aspect-to-primitive mapping was the
least ambiguous mapping 1o the primitives. In addition,
we concluded that the best mapping to the aspects was
from the faces rather than from the boundary groups.
This sugpests that faces are an appropriate starting point
in the primitive recovery process. Since we characterize
faces by their bounding contours, our first step is to
extract a set of contours from the image; this can be
accomplished using either region-based or edge-based
methods.?

Once a set of contours has been extracted from the
image, the next step is to partition the contours at signifi-
cant curvature discontinuilies. The segmented conlours
are captured in a contonr graph in which nodes represent
junctions or significant curvature discontinuities, and
arcs are the actual bounding face contours. Given the
contour graph reptesentation of an input scene, our next
task is Lo construct its corresponding face graph in which
nodes represent faces and arcs represent face adjacen-
cies.” The algorithm for transforming a contour graph
into a face graph is based on Roberts [57] and can be
found in [18].

3.2. Face Labeling

Once the faces have been extracted, we must classify
each face according to the faces in the aspect hierarchy.
Each face is represented by a graph in which nodes repre-

* For our lask of exiracting fuces, region-based methods are prefera-
hle since they avoid the problem of contour gaps which can break the
cycle of contours hounding a region.

¥ Two faces are said to be adjacent if they share one or more contours
in the contour graph representation
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Primitivas

Baunday
Groups

FiG. 6.

sent the face’s contours and arcs represent relations be-
tween contours.% Thus, the classification of a face in the
image consists of comparing its graph to those graphs
representing the faces in the aspect hierarchy. If there is
an exact match, as shown in Fig. 6, then we immediately
generate a face hypothesis for that image face, identifying
the label of the face. If, due to occlusion, there is no

match, we must descend to the boundary proup level of

the aspect hierarchy, as shown in Fig. 7. We then com-
pate subgraphs of the graph representing the image face
to those graphs at the boundary group level of the aspect
hierarchy. For each subgraph that matches, we generate
a face hypothesis with a probability determined by the
appropriate entry in the conditional probability matrix
mapping boundary groups to faces.

Thus, from the original contour graph representation of
the image, we first construct a face graph, and then for
each face in the face graph, the classification process
resuits in a list of hypotheses about the face’s label. In the
simple case of an image face that exactly matches a face
found in the aspect hierarchy, the list contains a single
hypothesis with probability 1.0.7 For an image face that
does not exactly match a face found in the aspect hierar-
chy, the list contains one or more face hypotheses listed
in decreasing order of probability

& Two adjacent collinear or curvilinear contours bounding a face may
have been separated in the contour graph by a jusction if se. they are
merged to form one node in the graph In addition, all nedes are classi-
fied as either a stzaight line, a concave curve, or a convex curve

7 Due {o occlusion, the fact that an image face exactly matches an
aspect hierarchy face does pot puarantee that the interpretation {label)
of the imape lace is correct. A more precise analysis would go ahead
and compare the image face's boundary groups to aspect hiesarchy
boundary groups, ensuring that the correct fuce hypothesis is pener-
ated Nevertheless, the hypothesis representing the maiched face
woud still have the highest probability

¥ There can be no redundancy in this list since we do aot allow muslti-
ple face hypotheses with the same label If two boundary groups give
rise to the same face hypothesis, the hypothesis is assigned the highe:
probability of the two boundary group to face mappings [18]
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Praoblem Definition

Extracting Aspects
3.3.1.

We now have a face graph with one or more face hy-
potheses at each face. We can formulate the problem of
extraciing aspects as follows: Given a face graph and a
set of face hypotheses at each face, find a covering of the
face graph using aspects in the aspect hierarchy, an as-
pect covering, such that no face is lefl uncovered and
each face is covered by only one aspect. Or, more for-
mally: Given an input face graph, FG, partition the verti-
ces (faces) of FG into disjoint sets, S1, §2, 83, . . ., 5S¢,
such that the graph induced by each set, S;, is isomorphic
to the graph representing some aspect, 4;, from a fixed
set of aspects, Ay, Ax, A3z, . . ., A,

There is no known polynomial time algorithm to solve
this problem (see [18] for a discussion of the problem'’s
complexity); however, the conditional probability matri-
ces provide a powerful constraint that can make the prob-
lem tractable. After the previous sieps, each face in the
face graph has a number of associated face hypotheses.
For each face hypothesis, we can use the face-to-aspect
mapping to generate the possible aspect hypotheses that
might encompass that face, as shown in Fig. &; the face
hypothesis becomes the seed face hypothesis of each of
the resulting aspect hypotheses. The probability of an
aspect hypothesis is the product of the face to aspect
mapping and the probability of its seed face hypothesis.
Al each face, we collect all the aspect hypotheses (corre-
sponding to all face hypotheses) and rank them in de-
creasing order of probability.

Each aspect hypothesis is merely an informed guess as
10 the aspect label of its seed face hypothesis. The pro-
cess of verifying the hypothesized aspect label is called
aspect instantiation. For an aspect to be instantiated
from an aspect hypothesis, the relations between the
seed face hypothesis and neighboring face hypotheses
must be consistent with the definition of the aspect. More
formally, there must exist a set of faces, S, including the
face corresponding to the seed face hypothesis, such that
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the face subgraph induced by 5 is isomorphic Lo the graph
representing the aspect. Since there may be multiple sets
of faces which satisfy this criterion, there may be multi-
ple aspects instantiated from a single aspect hypothesis.
Hence, the process of aspect instantiation produces a
(possibly empty) set of instantiated aspects for a given
aspect hypothesis. For a detailed discussion of aspect
instantiation and how occluded aspects can be instan-
tiated, see [18].

We can now reformulate our problem as a search
through the space of aspect labelings of the faces in our
face graph In other words. we wish to choose ane aspect
hypothesis from the list at each face, such that the instan-
tiated aspects completely cover the face graph Figure 9
illustrates the correct aspect covering of the face graph
representing the object composed of two blocks; one as-

pect label, in this case, A27 (see [18] for a description of

all aspects), is selected from the list at each face to com-
pletely cover the graph. There may be many labelings
which satisfy this constraint. Since we cannot guaraniee
that a given aspect covering represents a correct interpre-
tation of the scene, we must be able to enumerate, in
decreasing order of likelihood, all aspect coverings until
the objects in the scene are recognized.

33.2. Algorithm for Enumerating Aspect Coverings

For our search through the possible aspect labelings of

the face graph, we employ Algorithm A (Nilsson [48])
with a heuristic based on the probability estimates for the

Primilives

Aspects
Face Label
(Ft,F2,F3, . Fn) Faces
Boundary
Groups

FIG 8.
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(F1,F2,F3, .. Fn)

Prob{Fi} >= Prob{Fi{}. i <]

Labeling #n occluded face.

aspect hypotheses. The different labelings are ordered in
the open list according to the heuristic. At each iteration,
a labeling, or state, is removed from the open list and
checked to see if it represents a solution (a covering). The
successor states are then generated, evaluated, and
added to the open list. The actual instantiation of aspects
is performed during successor generation. The algorithm
continues until all possible solutions are found; i.e., all
labelings are checked. However, it should be pointed out
that in an object recognition framework, once a solution
is found, the search would only be continued if the recov-
ered shapes (inferred from the aspect covering) could not
ke recognized.

Before adding a successor state to the open list, it is
evaluated using the heuristic function. This function has
been designed to meet three objectives. First, we favor
selections of aspects instantiated from higher probability
aspect hypotheses. Second, we favor sclections whose
aspects have fewer occluded faces, since we are more
sure of their labels. Finally, we favor those aspects cov-
ering more faces in the image; we seek the minimal as-
pect covering of the face graph. These three objectives
have been combined to form the algorithm for evaluating
a state, described in [18].

3.4, Extracting Primitives

We can represent an aspect covering by a graph in
which nodes represent aspects and arcs represent aspect
adjacencies. The next steps are to map the aspects in the

n . g Aspect Label
(AT,AZ,A3, . AN}

Prob{Ai) >= Prob{Aj),i<]

Generating the aspect Iabels of o face
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FIG. 9  Covering the face graph with aspects (the aspect labeling
problem)

covering lo a setl of primitives and to extract their con-
nectivity. The following sections desciibe this process in
greater detail,

341

For each aspect in the aspect covering, we can use the
aspect to primitive mapping to hypothesize a set of primi-
tives, as illustrated in Fig. 10.* As in the case of aspect
hypotheses generated from face hypotheses, we can rank
the primitives in decreasing order of probability. A selec-
tion of primitives, one per aspect, represents a 3-D inter-
pretation of the aspect covering; we call such a selection
a primitive covering. Since we cannol guaraniee that a
given primitive covering represents a correct interpreta-
tion of the scene, we must be able lo enumerate, in de-
creasing order of likelihood, all primitive coverings until
the objects in the scene are recognized. To enumerate the
selections, we employ a variation on the search algorithm
used 1o enumerate the aspect coverings. The heuristic
function simply negates the sum of the probabilities of the
primitives, thereby favoring higher probability interpreta-
tions.

Algorithm for Enumerating Primitive Coverings

342 Extracting Primitive Connectivity

A primitive covering, represented by a graph in which
nodes represent primitives and arcs represent primitive
adjacencies, is then compared to the object database dur-
ing the recognition process. If two aspects are not adja-
cent in the aspect covering, their corresponding primi-
tives are not adjacent in the primitive covering.
However, if two aspects are adjacent in the aspect cover-
ing, this does not mean that their corresponding primi-
tives are necessarily adjacent in-3-D; one primitive may

¥ In addition, the aspect hierarchy defines a mapping {rom the faces in
an aspect to the sttachment surfaces of a primitive.
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be occluding the other without being attached to it. A
primitive connection between primitives £, and P, is said
to be visible if the following condition is satisfied [18]:

« There exists a pair of faces, F| and F», such that F|
belongs to the aspect corresponding 1o P and F; belongs
to the aspect corresponding to Py, F) and F» are adjacent
in the face graph, and F, and F; share a contour {follow-
ing collinearity or curvilinearity grouping) *

Therefore, we define two types of primitive connectivity
based on connection visibility:

« Two primitives are said to be strongly connected if
their corresponding aspects are adjzcent in the aspect
graph, and the primitive connection is visible; in this
case, we assume that the primitives are attached.

» Two primitives are said 1o be weakly connccted if
their corresponding aspecis are adjacent in the aspecl
graph, and the primitive connection is not visible; in this
case, one primitive occludes the other and it is not known
whether or not they are attached.

A strong primitive connection strongly suggests the ex-
istence of a connectlion between two primitives. We can
enhance the indexing power of a strongly connected sub-
graph if the attachment surfaces involved in each connec-
tion are hypothesized. Although it is impossible to define
a set of domain independent rules which will, for any
given set of primitives, correctly specify the attachment
surfaces involved in a connection, we can define a set of
heuristics which will specify a set of likely candidates
[18]. If a strongly connected subgiaph is common to two
obiect models, these heuristics can then be used to rank
order the candidates during verification.

4. OBJECT RECOGNITION

Given a primitive covering representation of the scene,
in which nodes represent 3-D volumetric primitives and
arcs iepresent strong or weak connections between the
primitives, the final task is to identify the objeci(s) in the
scene. There are two cases to consider. In an unexpected
object recognition domain, we have no a priori knowl-
edge of the contents of the scene. In this case, the recog-
nition task consists of two steps: (1) identifying possible
candidate models that might be present in the scene
(model! indexing), and (2) verifying that these models ac-
tually appear in the scene. In an expecred object recogni-
tion domain, we search the image for one or more in-
stances of a particular object. In this section, we present

# Before grouping, two adjacent faces in the face graph share a con-
tour by definition However, following collinearity and curvilinearity
grouping within their respective lices, they may not have a contour in
commen
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solutions to each of these problems, and show how the
two solutions share the same underlying mechanism.

4.1. Unexpected Object Recognition

The simplest unexpected object recognition strategy is
lo compare the entire primitive covering to each model in
the object database, i.e., verify each object mode! in the
image. If the graph representing the primitive covering is
isomorphic 1o the graph (or subgraph) representing an
object in the database, then the object in the scene has
been identified. However, there are two major problems
with this naive approach. First, for large object data-
hases, the cost of verification may be prohibitive, as was
shown by Grimson [30]. Second, this approach assumes
that a primitive covering represents a single object. If the
scene contains multiple occluded objects, the primitive
covering will not match a single object in the database.
Thus, we are left with two problems: (1} How do we
avoid matching the recovered primitives to cach object in
the database? and (2) What portions of the primitive cov-
ering likely belong to a single object, and should hence
participate in the maiching process? Together, these two
issues lie at the heart of the model indexing problem, the
subject of the next section. Following that, we discuss
the verification of object models.

4.1. 1

An alternative to sequentially matching the recovered
primitives to each model object is provided by hashing
techniques. A hash table is a precomputed data structure
each of whose entries (in our case) maps some recovered
image feature(s) to a list of object models that contain
that feature. The mapping between a recovered image
feature and a location in the {able is provided by a hash
function. Once an image feature is **hashed’ 1o an entry
in the hash table, each of the objects referenced in the
table entry must be verified. The advantage of hashing is
that by preprocessing off-line the models in the object
database, considerable on-line search can be avoided.

Model Indexing

The hash table alone does not solve the problem, for if

the recovered image features are simple, e g, points,
lines, or corners, they will be present in every objecti. The

DICKINSON, PENTLAND. AND ROSENFELD
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Generating the primitive kbels of an aspect

resulting hash table will have few entries {corresponding
to a few simple indexing primitives), with each entry
pointing to every object. Unfortunately, such a hash table
leads us back to a sequential search of the database.
Clearly, the goal in designing the hash table is to increase
the size of the table, so that there are more entries, each
having fewer pointers 1o object models.

Hash tables have been used in a variety of object rec-
ognition sysiems. For example, Flynn and Jain [23] pro-
pose a technique for 3-D object recognition from range
data that automatically constructs invariant feature in-
dexed tables from a CAD database. Invariant features
include the angle between the normals of two planar sur-
faces, the angle between a plane’s normadl and a cylin-
der's axis of symmetry, the minimum distance between a
plane and a sphere’s center, the angle between two cylin-
der’s axes, the minimum distance between a cylinder’'s
axis and a sphere’s center, and the distance between two
spheres’ centers. Breuel [11] describes a hashing tech-
nique whose hash function maps an invariant (under 2-D
transiation, rotation, and scale} description of a pair o
triple of 2-D image featurcs to a location in a combined
feature vector represeniing a distinct view of a 3-D ob-
jecl. Each distinct view therefore requires a separale
combined feature vector. Combined feature veclors re-
covered from the image are compared to mode! feature
vectors, each representing a distinct view of a model ob-

ject. In a similar approach, Lamdan et «l. [36] describe a

geometric hashing technique used in the recognition of 3-
D planar objects. Specifically, three noncollinear image
points are used to define a 2-D basis. The coordinates of
the other image points are then represented with respect
to this basis, and are invariant to any affine transforma-
tion. The resuiting coordinates of an image point define
an index into a hash table whose location contains the
identity of the model(s) and the three points used to de-
fine the basis, A final example is provided by Ettinger [20]
who addresses the problem of 2-D object recognition. In
this approach, a 2-D subpart recovered from the image is
used as an index to a table entry containing a list of 2-D
objects containing the subpart. The subparts are contour
features based on Asada and Brady's Curvature Primal
Sketch (CPS} representation [21.
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As stated in Section I, our goal has been to recover
from the image richer, more complex primitives whose
combination offers a more discriminating index into the
object database Unlike simple features such as lines,
points, or corners which are abundant in every object, a
particular collection of 3-D volumetric primitives is un-
likely to be common to many objects. Qur solution,
therefore, is to index with a collection of recovered prim-
itives. Since we have a variety of primitives which can be
connected in a variety of ways, the size of our hash table
will be much larger than if we index with simple primi-
tives. However, our second problem still remains: What
collection of recovered primitives do we use as an index?

From a primitive covering of the input scene, we would
like to index using a collection of recovered primitives
that belongs to the same object. In Section 3 4, we as-
sumed that if a connection between two primitives was
visible, l.e., a strong connection, the primitives were
connected in 3-D. Therefore, our model indexing strategy
consists of first identifying all the strongly connected!!
components in the primitive graph.

Having decided on strongly connected primitives as
our indexing structure, we can proceed to construct the
hash table. First, we need all possible combinations of
primitives appearing in obiects in the database; this is
equal to the union of the set of all object subgraphs. Un-

13 By strongly connected, we mean connected by sirong wrcs.

fortunately, there is no unique polynomial-time (in the
number of graph nodes) mapping from a general graph (o
a string (or address of a location in the hash table); if
there were, we could solve the subgraph isomorphism
problem in polynomial time. One alternative is Lo encode
all possible string representations of a graph (through a
depth-first search) and have an entry for each string. Al-
though this would be a polynomial-time mapping, the size
of the hash table would be enormous. In the worst case,
each graph would have n! redundant entries, where n is
the number of nodes in the graph.

Our solution is to provide a more efficient mapping in
terms of time and space at the cost of giving up some of
the information encoded in a graph, i e., a strongly con-
nected component. We propese a two-level hash table.
At the first level, we hash on the basis of a string formed
from the labels of the primitives in the strongly connected
component. At the second level, we hash on the basis of
a string formed from the connections.

Figure 11 illustrates the hash function in more detail.
The first hash function is based solely on the primitive
labels and is calculated as follows. To limit the size of the
table, we assume an upper bound on the size of a strongly
connecled component, say .

I. Collect in a list the primitive labels of the primi-
tives contained in the strongly connected component.
2. Sort the labels lexicographicaily.

3. The sorted labels represent the digits of an integer
index whose base is equal to the number of primitive
classes plus one.

Each entry in this table will point to a separate table at
the second level which encodes primitive connections.
A hash table at the second level corresponds to objects
that contain a particular set of primitives (number and
type). It is at this level that we further discriminate the
objects on the basis of their primitive connections. The
second-level hash function is defined as follows:

1. Take the sorted list of primilive labels and remove
duplicates. Let the number of remaining labels be »

2. Construct an 7 X n matrix whose rows and
columns correspond to the remaining labels. Initialize its
elements to zero.

3. For each primitive connection, of the form (a, b)
where a and b are the labels of the two primitives, incre-
ment by one the entries a, b and b, a in the matrix.

4, The entries in the upper triangular portion of the
{symmetric) matrix visited in row-major order form an
n X (i — 1) digit integer index whose base is equali to the
maximum number of connections in a strongly connected
component.

Each entry in this table will contain all the objects which
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have the same number and type of primitives, as well as
the same number and type of connections. Of course,
what is lost is a specification of which parricular primi-
tives participate in a given connection. The entire pro-
cess is repeated for each strongly connected component
in the primitive covering, resulting in a set of candidate
object hypotheses for each strongly conneclied compo-
nent.

Due to the relatively small number of objects in our
demonstration database (order [0), the second hashing
level was deemed unnecessary. Instead, entries in the
first table point to objects that contain a particular num-
bers and types of primitives. Furthermore, to limit the
size of the table, we consider only strongly connected
components with three or fewer primitives: components
having more than three primitives are broken down into
their constituent components having three primitives.
For our set of 10 primitives, the resuliing size of the hash
table is 1331 entries. We are currently adding more ob-
jects to the database; when hashing to the first table
yields many candidate object hypotheses, we will add the
second hash function and index with larger strongly con-
nected components,

4 1.2 Model Verification

Given a set of candidaie models, each containing a
given strongly connected component (or part thereof),
the final step is to evaluate how well each modei fits the
scene (primitive covering). This process is known as hy-
pothesis verification and consists of two stages. The first
stage is to find the maximal correspondence between re-
covered primitives and model primitives in terms of the
number of primitives. The second stage is to rank the
various correspondences according fo an appropriate
goodness of fit,

Growing Correspondences.  Since our hash function
ignores the connections in the strongly connected com-
ponent, the first step is to check that the strong connec-
tions in the strongly connected component exist between
the corresponding primitives in each candidale model;
this may result in some candidale models being dis-
carded. At this point, for each remaining candidate
model, the strongly connected component in the primi-
tive graph is isomorphic to a subgraph of the candidate
model. We then grow this correspondence according to
the following steps:

1. Given a correspondence between a primitive sub-
graph P§ and a model subgraph MS, we first choose a
model primitive M; that {s not contained in the model
subgraph, but is connected to a primitive M; in the model
subgraph. In the primitive subgraph, let the primitive cor-
responding to M; be P;.

2. Among the neighbors (through strong or weak con-

DICKINSON, PENTLAND, AND ROSENFELD

goodness of fil = §
for ench image primitive in correspondence do
goodness of fit = goodness of fit + probability(imege primilive)
for each arc in primitive aubgroph do
if arc is weak then
goodness of fit = goodness of fit + &4
else (arc is strong)
if arc correctly specifies attathment surfaces then
goodness of fil == goodness of fit + ¢;
elae
goodness of fil = goodness of fit 4 c3

FIG 12 Goodness of fit algorithm for model candidates.

nections) of P; in the primitive subgraph which are not
contained in PS, select those whose label matches that of
M;. If more than one such neighbor exists, we create a
new carrespondence for each neighbor

We repeat this sequence of steps for each correspon-
dence until its size slabilizes. The entire process is then
repealed for each strongly connected component in the
primitive covering. The final result is a list of correspon-
dences, each mapping a subgraph of the primitive cover-
ing to a model subgraph.

Ranking the Correspondences, The final step ranks
the correspondences according to a goodness of fit mea-
sure defined by the algorithm shown in Fig. 12 The good-
ness of fit measure is a function of the size of the corre-
spondence, the probability of the recovered primitive
hypotheses, the visibility of the primitive connections,
and the degree to which the connections are correctly
specified The input to the algorithm is a correspondence,
consisting of a primitive subgraph whose nodes represent
image primitives, and a meodel subgraph whose nodes
represent model primitives. For the experiments de-
scribed in Section 3, the values of ¢;, ¢a, and ¢ were
chosen to be 1.0, 3.0, and 2.0, respectively; highest
weight has been given to visibly connected primitives
whose attachment surfaces have been correctly hypothe-
sized,

4.1.3  Recognizing Multiple Objects

Once the correspondences are tanked according to our
goodness of fit measure, we choose the best correspon-
dence and remove those aspects from the image that cor-
respond to the recognized primitives. From the remain-
ing aspects, forming a new aspect covering, we repeat the
entire process. We first apply the primitive covering algo-
rithm, establish primitive connectivity, extract strongly
connected components, determine candidate models,
grow and rank the correspondénces, and select the most
likely correspondence. The process is repeated until no
aspects remain in the image Al any stage, a primitive
covering may aot yield any recognizable objects, t.e.,
candidate models. In this case, we generate a new primi-
tive covering from the current aspect covering and repeat
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FIG 13. Expected object recognition

the process. Only when all primitive coverings are ex-
hausted do we generate a new aspect covering.

4.2. Expected Object Recognition

In the domain of expected object recognition, the im-
age is searched for one or more instances of a particular
object. In this case, there is no need for a complicated
indexing step since we know what object the image fea-
tures will be matched to. Iastead, we are faced with the
question: What features of the object do we search for in
the image? Our approach is to start with a primitive cov-
ering and then constrain further primitive and aspect cov-
ering generation by exploiting knowledge of the object.

Figure 13 illustrates our approach to expected object
recognition. The first step is the generation of the first
primitive covering given the first aspect covering; this
represents the most likely interpretation of the scene in
terms of recovered shape. Next, as in the case of our
approach to unexpected object recognition, we extract
the strongly connected components. For each strongly
connected component, the indexing step returns a list of
model candidates that contain the component. Since we
are looking for a particular object, we can discard all

candidates but the object we are searching for (if it exists
as a candidate). As before, we grow the correspondence
between image and model primitives. However, it is due-
ing this last step that our approach differs

In the unexpected object recognition algorithm, we at-
tempt to completely recognize the entire primitive cover-
ing. Only when recognition fails do we generale another
primitive covering Furthermore, only when all primitive
coverings are exhausted do we penerate another aspect
covering. Our expected object recognition approach at-
tempts to integrate the three processes based on knowl-
edge of which object part we are searching for.

During the correspondence growing step, some primi-
tive in the primitive covering is checked to see if it
matches some primitive in the model. If not, the unex-
pecled object recognition approach does not include that
primitive in the correspondence, i.e., growth of the cor-
respondence is discontinued through that primitive.
However, there may be an alterpalive primitive interpre-
tation of that primitive’s seed aspect that maiches the
expected model primitive. Recall that from the aspect
covering, each aspect was used to infer a list of primitives
in decreasing order of probability. By checking the vari-
ous primitive hypotheses {in which the current primitive
is included), we may find that the primitive label we are
searching for is among the possible primitive interpreta-
tions of the seed aspect. If so, we choose the alternative
interpretation and continue the correspondence. it not,
we can probe deeper for the correct inlerpretation,

Let us assume, for example, that during our correspon-
dence growing step, we examine a particular primitive P
for a particular label L. Upon examination, we find that
not only does primitive P not have label L, but there is no
mapping from P’s seed aspect SA to a primitive with label
L. Let the set of faces belonging to seed aspect SA be f
The search for the correct primitive inlerpretation pro-
ceeds according to the following steps:

1. Choose one of the faces in f; call it F.

2. Recail that in the tace graph, we generated a set of
aspect labels for each face. Let the set of aspect labels for
face F be a.

3. For each aspect label A in a do

(a) If A in instantiable and 4 covers all the faces in
f, then from the table mapping aspects to primitives,
check the mapping between A and [

(b) If the probability of the mapping is nonzero,
then we have found the correct primilive interpretation.

The above technique searches for the correct primitive
interpretation from among all possible primitive interpre-
tations of the faces covered by P. It implicitly assumes
that although a particular aspect label in the aspect cover-
ing may be incorrect, the first enumerated (i e, most
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FIG. 14 Correct first interpretation of an occluded scene.

likely) aspect covering represents the correct partition of
image faces into aspects. Although this technique has
been applied to expected or top-down object recognition,
there is no reason that it could not be applied to the
verification step in our approach to unexpected recogni-
tion. Although systematic generation of all primitive cov-
erings is necessary to guarantee a correct interpretation,
it is likely that a constrained seaich for the correct primi-
tive would make the unexpected ohject recognition algo-
rithm more efficient.

5. RESULTS

We have built a system to demonstrate our approach to
3-D object recognition. The system is called OPTICA
(Object recognition using Probabilistic Three-dimen-
stonal Interpretation of Component Aspeets), and has
been implemented in COMMON LISP on a Sun 4/330™
workstation. In the foilowing sections, we demonslrate
the approach on both synthetic and real imagery.

5.1. Synthetic Image Data

In the first example, we apply the recovery and recog-
nition processes to the manually segmented contour im-

age presented in Fig. 14 Each face in Fig. {4 is described
by a small box containing some mnemonics. The mne-
monics PN, PL, PP, and PS, refer to the primitive num-
ber (simply an enumeration of the primitives in the cover-
ing), primitive label (see Fig. 4), primitive probability,
and primitive attachment surface (see [18]), respectively,
of the primitive that includes that face. The mnemonics
AN, AL, and AP refer to the aspect number (an enumera-
tion), aspect label (see [18]), and aspect probability, re-
spectively, of the aspect from which the primitive was
inferred. The mnemonics FN, FL, and FP refer o the
face number (an enumeration), face label (see [18]), and
face probability, respectively, of the face from which the
aspect was inferred.

The smaller box to the upper right indicates the aspect
covering iteration and primitive covering iteration (given
the aspect covering). In this case, the first aspect and
primitive coverings represent the correct interpretation
of the scene. In addition, this box lists all objects cur-
rently (at the above iterations) identified in the image,
including their corresponding primitive numbers (PN).
Note that the handle of the cooking pot has been inter-
preted as two distinct primitives; no collinearity grouping
is performed at the primitive level
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The smailer box to the lower right indicates the primi-
tive connections by primitive number (PN}, if two primi-
tives are strongly connected, a list of probable attach-
ment surfaces appears in parenptheses next to the
primitive number. This list is not exclusive, but rather a
list of likely candidates.

5.2. Real Image Data

The first step in applying our approach to real images is
the segmentation of an inputl image inlo homogeneous
regions. To extract regions, we first apply the Canny
edge detector [13] to the input image to detect the pro-
jected surface discontinuities of the object. From the re-
sulting edge pixels, our goal is to locate cycles of edge
pixels that bound regions. However, since there may be
small gaps in the edge pixel map that break cycles, we
dilate the image to fill the gaps. The result is then skele-
tonized to yield an image containing single pixel width
contours.

From the image of contours, we apply a connected
components algorithm to extract a set of contours, each
beginning and ending at a junction of three or more con-
tours; all other contours are discarded. The next step is
to partition the contours at significant curvature disconti-
nuities. We first apply Ramer’s algorithm [56] to produce
an initial set of breakpoints. Although effective for the
partitioning of straight lines, the algorithm overpartitions
curves. However, the resulting partition points are a su-
perset of the correct partition points (Liao [37]). To re-
move the false partition points, we fit circular arcs to the
left and right neighborhoods of each potential breakpoint,
and discard the breakpoint if the angle between the tan-
pents to the two circles at the breakpoint is near 180°. The
resulting set of contours are classified as lines or curves
depending on how well a line can be fitted to them.

FFrom the set of partitioned contours, we build the face
graph using the algorithm described in [18]. For each face
in the face graph, our next task is to represent the face by
a graph in which nodes represent contours and arcs rep-
resent certain nonaccidental relations among the con-
tours. For a given face, adjacent lines or adjacent curves
which meet at a junction are merged (according to the
criteria used to check initial partition points) if they are
collinear or curvilinear. Any curves bounding the face
are further classified as concave or convex by checking
the angle between the lines joining the midpoint to the
two ends of the curve. Nonadjacent lines are labeled par-
allel if the angle between them is small, and symmelric if
they are opposite and nonparallel. Nonadjacent curves
are labeled parallel if one is concave, the other is convex,
and they face in similar directions, where the direction of
a curve is defined by the vector whose head is at the
midpoint of the line joining the two ends of the curve and
whose tail is that point on the curve whose perpendicular
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distance to the line is maximum. A similar test is used for
curve symmetry if both curves are concave or convex. If,
for parallel or symmetric curves, the radii of the circles
fitted to the curves are significantly differemt, the relative
size of the curves is noted.

In the following two examples, we apply the approach
to real images of objects taken against a black back-
ground. The time required to generate the first interpreta-
tion of the scene was approximately 7 s, excluding time
required io produce the skeletonized edge 1mage. Gener-
ation of subsequent interpretations required an average
of only 0.2 s each, indicating that much of the execution
time was spent in the connected components and contour
segmentation and fitting routines.

The entire process was first applied 10 the 256 x 256
image of a table lamp shown in Fig. 15; the resulting
primitive covering is presented in Fig. 16 (partitioned
contours extracted from the skeleion image have been
enumerated). Despite the underpartitioning of the con-
tours (contour 11), the first aspect and primitive cover-
ings represent the correct interpretation of the scene.

In the second example, the entire process was applied
to the 256 x 256 image of a padlock shown in Fig. 17.
Figure 18 shows the partitioned contours extracted from
the skeleton image. Faces FN2, FN3, and FN4 were cor-
rectly grouped and interpreted as the block primitive
(PL.1}. However, faces FNO and FN{ were grouped and
interpreted as the truncated ellipsoid primitive (PL8}. In
face FNI, the contours have been overpartitioned; there-
fore, the face could not be matched to the faces in the
aspect hierarchy. Furthermore, due to noise, contour 2
was classified as a line The strongest face inference,
representing the projection of the body of a truncated
ellipsoid, was generated by the boundary group consist-
ing of contours 0 and 4. When grouped with the elliptical
face FNO, the resulting aspect was mapped to the trun-

FI1G. 15.

Image of a table lamp (256 x 256)
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FIG 16. Correct first interpretation of a table lamp

cated ellipsoid. The second strongest (correct) face infer-
ence, representing the projection of the body of a bent
cylinder, was also generated by contours 0 and 4. The
second aspect covering from which the correct primitive
covering was inferred is shown in Fig. 9.

If we apply the expected object recognition algorithm
to the image in Fig. 17, we can constrain the search for

FIG 17

Image of a lock (256 x 256)

the arm of the lock. In this case, the lock body is used as
the database index, with verification searching the aspect
hierarchy for a bent cylinder interpretation of the remain-
ing faces. The successful first interpretation is shown in
Fig. 20,

These examples illustrate the results of applying our
shape recovery and recognition algorithm to real images,
Despite the use of simple, standard techniques for image
segmentation and contour grouping, which resulted in
several segmentation errors, the algorithm was able to
produce a correct interpretation of these scenes. With
more effective techniques for region extraction (e.g.,
Meer ef al. {421, Besl and Jain [5]), contour partitioning
(e g, Saint-Marc and Medioni [59], Fischler and Bolles
[221), perceptual grouping (e.g., Mohan and Nevatia [45],
Lowe [38]), and the model-based correction of segmenta-
tion ervors discussed in [ 18], we expect the system’s per-
formance to improve significantly.

6. RELATED WORK

In this section, we review a number of related ap-
proaches 1o object recognition, and compare them to our
own approach. Since the field of 3-D object recognition is
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so extensive, we have chasen to focus only on those
technigues which address the problem of 3-D object rec-
ognition from a single 2-D image. We first review related
work in object-centered recognition, followed by related
work in viewer-centered recognition The review is by no
means complete, and is meant only to contrast our ap-
proach with some of the more established techniques;
more comprehensive reviews can be found in Binford [8],
Besl and Tain [4], and Chin and Dyer [{5].

7. OBIECTI-CENTERED RECOGNITION

The seminal work of Roberts [57] addresses the lask of
recognizing polyhedral objects composed of cubes,
wedges, and hexagonal prisms. Given four points in the
image and four non-coplanar points in the model, the
system solves for eight transformation parameters. The
computed transformation is verified by projecting
the model points back into the image and checking that
they do not lie outside the object’s boundary. The sys-
tem’s indexing features are limited to vertices and their
surrounding unoccluded polygons; no partial information
is extracted from occluded polygons. In addition, the
guantitative nature of the verification step restricts recog-

the image for a lock.

nition to rigid objects whose exact geometry musl be
specified.

In Brooks’ ACRONYM system [10], objecis are repre-
sented as constructions of generalized cylinders Recog-
nition of a particular model object consists of predicting
the projecied appearance in the image of the object’s
components; partial constraints on the 3-D parts of the
model are mapped to constraints on the 2-D projections
of the parts (e.g., ribbons). The image contours aie then
examined, subject to these constraints, and matched con-
tours are used to further constrain the sizes and orienta-
tions of the 3-D parts. Local matches are grouped into
complete objects during the interpretation phase, further
constraining the parameters of the object. Unfortunately,
the top-down nature of ACRONYM makes it unsuitable
for unexpected object recognition; ACRONYM can only
confirm or deny the existence in the image of a user-
specified ohject.

In contras! to ACRONYM's top-down approach,
Lowe's SCERPO system [38] takes a more bottom-up
approach to the recognition of polyhedial objects. Image
contours are first grouped according to perceptual organi-
zation rules, including parallelism, symmetry, and col-
linearity, providing more powerful indexing features than
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simple lines or points. From these groupings, simple 3-D
inferences are made about the 3-D contours comprising
the object. The 3-D inferences are matched against manu-
ally identified instances of the properties in the model.
Assuming a perspeciive projection imaging model, Lowe
requires up to six pairs of image and model points to
solve (using Newlon—Raphson iteration) for the orienta-
tion and position of the model. Back-projected features
are then used to verify the object and further constrain its
position and orientation. Although SCERPO could be ap-

plied to unexpected object recognition, the complexity of

polyhedral models and the simplicity of the indexing fea-
tures would result in considerable indexing ambiguity. In
addition, like Roberts” work, SCERPQ’s reliance on veri-
fication of simple image features restricts its recognition
domain to obiects whose exact geometry is known,

Goad {27] presents a technique for locating a known 3-
D polyhedral object in a 2-D image. Like ACRONYM,
the matching of model features to image features is used
to constrain the viewpoint and, hence, the orientation
and position of other image features. However, unlike
ACRONYM, the technique exploits off-line precomputa-
tion {0 save lime during on-line recognition. For each
possible position and orientation of each model feature,
Goad's approach first precomputes the relative position
in the image of every other model feature. Given an initial
pairing of a model edge and an image edge, a precompiled
search tree chooses another edge in the mode! and pre-
dicts its location in the image relative to the first edge. As
new edges in the image are paired with model edges, their
position and orientation are used in a back-projection
operation to constrain the viewpoint.

Another approach which exploits off-line precomputa-
tion to speed up on-line recognition is the geometric
hashing algorithm proposed by Lamdan, er al [36] for the
recognition of 3-D planar objects In their approach,
three noncollinear model points are used to define a 2-D
basis. The coordinates of all other model points are then
represented with respect to this basis and are invariant to
any affine transformation. During precomputation, the
process is repeated for each coplanar noacollinear triplet
of model points (e g., corners or curvature extrema). The
resulting coordinates of a model point define an index
into a hash table whose location contains the identity of
the model(s) and the three points used 1o define the basis.
During on-line recognition, the same process is applied.
A triple of image points is selected to form an affine basis
in which all other image poinis are represented. Fach
image point then votes for a model basis; if enough image
points vote for the same model basis, the object is recog-
nized. Thompson and Mundy [71] present a similar ap-
proach to the recognition of polyhedral objects that is
also based on precomputation and voling techniques.
Unfortunately, like the Lamdan et af. approach, the pre-
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computed tables are not invariant lo minor changes in the
shape of the model.

Huttenlocher and Ullman [31-33} describe another ap-
proach to the recognition of polyhedral objects under a
weak perspective imaging model. The approach is di-
vided into two phases: (1) finding possible transforma-
tions from a model to the image; and (2) verifying those
transformations by aligning the model with the image. In
the first phase, the system segments image contours info
positive, negative, and zero curvature portions {sepa-
rated by zeros of curvature which are preserved under
projection}. The indexing features represent sets of
points extracied from one or more connected contour
portions. Three features are required to solve for the
transformation, and consist of either three points or a
single point and an orientation. During the alignment
phase, each transformation is verified by comparing the
transformed projected model contours with the image
contours. If a significan! portion of a model’s contours
are matched, the transformation is accepted.

A number of researchers have moved away from the
recognition of exact geometrical models and towards the
recognition of coarse qualitative models. Mulgaonkar et
al, [46] describe a recognition system based on a set of
generalized relational blob models including sticks,
plates, and blobs which, in three-space, are modeled as
straight lines, circular disks, and spheres, respectively.
From the 2-D silhouetie of an object, a graph-theoretic
clustering technigue yields a set of convex polygonal
parts; internal image comours are ignored. The projected
parls are then compared to 3-D part instances in the
model database, subject to quantitative geometrical and
relational constraints. These and other constraints are
propagated to adjacent parts to achieve a consistent la-
beling of the scene. Like ACRONYM, the system is pri-
marily top-down, starting with a model and matching im-
age structures to model-based predictions.

Finally, Bergevin and Levine |3] have developed a sys-
tem, called PARVO, to recognize objects composed of
Biederman's geons [6]. Their approach lo grouping lines
consists of pairing segmentalion points resulting from
concave slope discontinuities lying on the sithouetie
boundary of the object. From this pairing, line groups are
formed, and internal contours are later assigned 1o the
line groups on a second pass. Given a set of cross-sec-
tional and body faces representing a line group, a dis-
crimination tree is traversed to determine the symbolic
values of the four geon attributes. The geon connections
are then specified, along with relative part sizes and qual-
itative part aspect ratios. The resulting description is then
matched to the database of object models. The technique
assumes that the segmentation points can be paired, and
assumes that a unique geon label can be assigned to each
group of lines constituting a part. However, in the pres-
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ence of occlusion or degenerate viewpoint, these as-
sumptions may be too strong. The major limitation of the
approach is that it is dependent on the choice of geons as
modeling primitives

8. VIEWER-CENTERED RECOGNITION

The viewer-centered representation of a 3-D object us-
ing a set of aspects has been applied to polygonal object
recognition by Chakravarty and Freeman [{4]. In their
approach, each characteristic view, or aspect, is repre-
sented by its visible junctions and connecting lines. Fur-
thermore, the set of views is organized hierarchically ac-
cording to the number of labeled vertices of each type
(e.g., Y or **T"7). During the recognition process, lines
and junctions are extracted from the image and labeled.
Next, a projection silhouette is extracted from the line
labels and used to select a set of candidate views from the
database which have a similar silhouette, The silhouette
junctions are then compared to the candidate views to
further prune possible matches. Correlated junctions are
then used to compule a transformation between the 3-D
object and the image, followed by a verification proce-
dure based on the computed transformation. This ap-
proach relies on accurate junction laheling which is ditfi-
cult in the presence of noise. In addition, for recognition
from large databases, the number of vicws may be pro-
hibitively large.

Burns and Kitchen [12] describe an approach to poly-
gonal object recognition from large databases based on a
precompiled feature hierarchy, called a prediction hierar-
chy, that guides a bottom-up interpretation of the scene,
Compiling the prediction hierarchy consists of starting
with a set of simple image features, or predictions (paral-
lel or coincident lines), and iteratively searching across
ali views of all objects for commonly occurring groups or
specializations of simpler predictions. By storing all pre-
dictions in & visibility map, the compilation can find pre-
dictions that often occur together in the same projection.
The predictions at the top level of the hierarchy are pre-
dictions that define the views of the objects, During the
recognition stage, {he system builds up correspondences
between image and model segments through & simulta-
neous guided search of the prediction hierarchy and the
image structures Given a unique correspondence be-
tween a set of image lines and some view of an object, the
system uses the view as an initial pose estimate for
Lowe’s iterative pose refinement algorithm [38]. Because
aspects describe entire objects, the size of the prediction
hierarchy is proportional to the number of objects. Fur-
thermore, since views represent entire objects, the addi-
tion of an object to the database requires a recompilation
of the prediction hierarchy.

Swain [67] describes a technique similar to that of
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Burns and Kiichen [12] that precompiles a decision tree
for recognizing a given view of a polyhedral object from a
large database. The technique exploits the probability
distributions for the objects’ frequencies of occurrence,
the objects’ views, and the errors that occur in detecting
image edges. Each node in the tree represents a state
consisting of a collection of mappings between image and
mode! {aspect) features, while a node’s children repre-
sent the possible expanded mappings. Since. using a dy-
namic programming approach, constructing the optimal
search tree is intraciable for large dalabases, the tech-
nique chooses a path, ie, image test, at a tree node
based on the expected cost of recognition in the subtrees.
To calculate the expected cost, an entropy measure is
used, based on the probabilities of the nodes. As in the
Burns and Kitchen approach, the technique can, at any
time during the search, attempt to solve for the object’s
viewpoint. However, like the Burns and Kitchen ap-
proach, not only is the size of the search tree propor-
tional to the size of the object database, but the search
tree must be recampiled with the addition of new objects
to the database.

Shapiro and Lu [61] present an approach to view class
determination of a known object from an unknown view,
The approach begins by using the PADL-2 solid modeling
system 1o create a 3-D CSG object using rectangular
polyhedra, spheres, cylinders, cones, wedges, and tori.
Next, the resulting CAD model is mapped to a set of view
classes, each represented by a relational pyramid strue-
ture. The levels of the pyramid include points (level 0),
lines and curves (level 1}, junctions (level 2}, and combi-
nations of level 2 features (level 3). From a relational
pyramid built from an unknown view, the pyramid is
mapped to an index (summarizing the information in the
pyramid) which points to a list containing all view classes
possessing the summarized structure. In an accumulator-
based matching algorithm, evidence is added to each of
the indexed view classes. The system provides both an
exact matching technique in which only indexed views
are voted for, and an inexact matching technique in
which views at nearby indices are also voted tor (using a
Gaussian distribution voting scheme). Another technique
for coping with missing or extra line segments in Lhe im-
age involves adding imperfect views to the database.

Finally, Ullman and Basri [72] describe an approach
whereby a 3-D object is represented by a small number of
2-D images of the obiect. They show that under ortho-
graphic projection, an object with sharp edges undergo-
ing rigid transformation and scaling in 3-D space can be
represented as a lincar combination of four images of the
object. Objects with smooth boundaries, undergoing sim-
ilar transformation and projection, can be represented as
a linear combination of six images of the object. A num-
ber of methods are presented for determining the align-
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ment coefficients, two of which require correspondence
between image features and model features. The major
advantage of the approach is that unlike Chakravarty and
Freeman [14], Burns and Kitchen [12], Swain [67], or
Shapiro and Lu [61], a 3-D model is not required to pener-
ate the views of an object; a small set of images is suffi-
cient. Unfortunately, each topologically distinct view
{aspect) of the object requires a distinct set of images.
For large databases containing complex objects, the re-
sulting number of images could become prohibitive.
Achieving four- or six-point correspondence between im-
age and 3-ID model fealures is computationally complex;

a multitude of images representing the various aspects of

a model further compounds the problem.

8.1. DISCUSSION

Most of the object-centered (or viewpoint-indepen-
dent) recognition systems discussed in this section are
based on simple indexing features such as points, lines,
zeroes of curvature, or curvature extrema. The resulting
systems must accurately solve for viewpoint in order to
support the geometrical verification of image features (ei-
ther through back-projection or voling techniques). The
resulting models fail 1o capture an object’s intuitive part
structure, and are sensitive to minor changes in object

shape. In most cases, the recognition domain consists of

a single object. While there are exceptions, e.g., Brooks'
ACRONYM [10] and the approach of Mulgaonkar ef al
[46], which attempt a volumetric part-based modeling of
objects, these systems are essentially top-down, search-
ing the image for a particular mode). Bergevin and
Levine's PARVO system [3] attempts to recover volu-
metric primitives for large recognition domains, but
makes strong assumptions about primitive type, primi-
tive orientation, and part segmentation.

All the viewer-centered (or viewpoint-dependent) rec-
ognition systems discussed in this section model entire
objects using a set of views, which can lead to a prohibi-
tively large number of views for a large object database.
Some approaches, e.g., Burns and Kitchen [12] and
Swain [67], have attempted to streamiine the search by
precompiling search strategies that more efficiently
match image features to model aspects. Unfortunately,
the size of search trees is still proportional to the number
of views in the database. Furthermore, the addition of a
new object requires the recompilation of the search strat-
egies. Although many of the approaches, e.g., Burns and
Kitchen [12], Swain [67], and Shapiro and Lu {61], model
aspects with a hierarchical representation, they do not
capture the object's intuitive parts. Consequently, as an
object’s parts articilate or change shape, additional as-
pects may be required.

9. CONCLUSIONS

The inefficiency of most 3-D object recognition sys-
tems is reflected in the relatively small number of objects
in their database {on the order of 10); in many cases,
algorithms are demonstrated on a single object maodel,
The major problem is that these sysiems terminate the
bottom-up primitive extraction phase very early, result-
ing in simple primitives such as lines, corners, and inflec-
tions. These primitives do not provide very discriminat-
ing indices into & large database, so that normally there
are a large number of hypothesized matches. Conse-
quently, the burden of recognition falls on top-down veri-
fication, which for simple geometric image features re-
quires both accurale estimates of the object’s pose and
prior knowledge of the object’s geometry.

We instead index into the model database with more
discriminating primitives, i.e., ones thai do not require
precise knowledge of model geometry or accurate esti-
mates of pose. An appropriate choice for higher-order
indexing primitives is the class of volumetric primitives
which capture the intuitive notion of an object’s parts. In
this approach, object models are constructed from ob-

ject-centered 3-D volumeltric primitives. The primitives,

in turn, are represented in the image by a set of viewer-
centered aspects.

Unlike typical aspect-based recognition systems which
model each entire object in a database using a set of
aspects, we use aspects to model a finite number of volu-
metric parts used to construct the objects. The size of the
resulting aspect set is fixed and, more important, inde-
pendent of the contents of the object database. To ac-
commodate the representation of occluded aspects aris-
ing from occluded primitives, we introduce a hierarchical
aspect structure, called the aspect hierarchy, based on
the faces appearing in the aspect set. The ambiguous
mappings between levels of the aspect hierarchy are cap-
tured by a set of conditional probabilities resulting from a
statistical analysis of the aspects. The aspect hierarchy is
precomputed once off-line and remains fixed while ob-

jects are added or removed from the database.

We have demonstrated our approach using a vocabu-
lary of primitives resembling Biederman's geons 16];
however, our approach is nof dependent on geons as ob-
ject modeling primitives. Although any selection of volu-
melric primitives can be mapped to a set of aspects, our
hierarchical aspecl representation is particularly appro-
priate for primitives with distinct surfaces, ie., primi-
tives whose aspects contain distinct faces. The use of a
face-based aspect hierarchy is the backbone of our ap-
proach, allowing us to obtain probabilistic rules for infer-
ring more complex features from less complex features,
and for merging oversegmented contours and regions
[18]. Although the individual features represented in our
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aspect hierarchy may change when using other types of
volumetric primitives, the concepts of representing a set
of 3-D volumetric primitives as a probabilistic hierarchy
of image features, and exploiting these probabilities dur-
ing recovery and recognition are applicable {0 any object
representation that models objects using velumetric
paris.

The cost of extracting more complex primitives from
the {mmge is the difficulty of grouping less complex fea-
tures into more complex features; the number of possible
groupings is enormous, Our recovery algorithm uses a
statistical analysis of the aspects (explicitly represented
in the aspect hierarchy} to rank-order the possible group-
ings. The result is a heuristic that has been demonstrated
to quickly arrive at the correct interpretation. Note, how-
ever, that our approach will, if need be, enumerate all
possible interpretations (or groupings); the correct inter-
pretation of any scene, no matter how ambiguous or un-
likely, will eventually be generated.

We have presented a database indexing scheme that
maps a group of recovered primitives and their connec-
tions to a hash table location whose contents specify
those models comtaining a similar primitive structure
The candidate hypotheses are then topologically verified
and ranked based on the strengths of the hypethesized
primilives. We show that for both the problems of unex-
pected and expected object recognition, the same recog-
nition engine can be used.

The ability 1o recover a set of volumetric primitives
without a priori knowledge of the object database not
only supports the recognition of objects from large data-
bases, but also supports the automatic acquisition of ob-
ject models. In addition, the bottom-up recovery of an
object’s inluitive parts supports the recognition of objects
based on functionality . You can reason about what func-
tion a collection of volumetric shapes might perform,
whereas little sense can be made from a collection of
points,
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