John DiMarco on Computing (and occasionally other things)
I welcome comments by email to jdd at cs.toronto.edu.

Mon 30 May 2011 21:26

Einstein's special relativity isn't as complicated as many people seem to think.

I run into people who think that special relativity is some sort of mysterious thing that only Einstein and physicists can understand. But it's not. It's a bit weird, but it's no weirder than the earth being a globe.

Originally people thought that light moved like any other moving object. Einstein thought about this and wondered: what would happen if you followed some light and sped up until you travelled at the same speed as it. Then light would look to you like it was stopped. But stopped light (light "standing still") didn't (and still doesn't) make sense. So Einstein thought: what if light travels at the same speed no matter how fast you're going? What would this mean?

Well, what does it mean to travel "at the same speed"? It means light covers the same amount of distance in a given amount of time. Or, put another way, light takes the same amount of time to cover a given distance. So if the distance is short, light takes less time to go the distance. If the distance is longer, light takes proportionally more time to cover it.

So Einstein thought: OK, if light travels at the same speed for everyone no matter how fast they're going, what would that mean for someone going very fast? Imagine they're going nearly the speed of light, and are being chased by a beam of light. Clearly the light isn't going to get closer to that person as quickly as it would get closer to someone who was standing still. Ordinarily, you would think that light was moving "slower" for the person who is moving away from it. But if light moves at the same speed for everyone, than something else must be going "slower" for that person. The only possibility is time.

Put it this way: light covers a certain distance in a second. To someone watching, the pursuing light isn't making up the distance quite so fast between it and the moving person, because the person is moving away so fast. But for the moving person, light is moving as fast as it always does, it is the second that takes longer.

This sounds a little bit crazy since we aren't used to thinking of time moving faster for some people and slower for others. But it does. The reason we don't notice is that the speed of light is very fast and we can't easily go at speeds close to it.

It's the same sort of thing as the world being round (i.e. a globe). It looks flat to us, but only because it is so big that we can't see enough of it at once to see it curve. Go high enough and we can see the curve of the earth's surface easily enough.

Similarly with special relativity. Time moves slower for those who move fast. It's not obvious to us because we usually don't move very fast, so at the speeds we move, the time differences are too small to notice. But in 1971, Joseph Hafele and Richard Keating took some very accurate (cesium atomic) clocks abord commercial airliners and flew around the world. They compared their clocks to the very accurate clocks in the US naval observatory: the clocks were indeed different, and showed the results that Einstein had predicted.

What this this mean? Well, if you can wrap your head around the concept of the world being a globe, you can wrap your head around the concept of time moving more slowly for those who move fast. And that's it, right?

Well, not really. There's also general relativity (and it affects Hafele and Keating's results too). But that's a bit more complicated, and I'm not going to get into it now.

/misc permanent link


Blosxom