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Abstract. This note is prepared for presenting the paper Sunflowers:
from soil to oil [1] in the theory reading group at University of Toronto
in summer 2023. A sunflower is a collection of sets whose pairwise inter-
sections are identical. We will introduce two related concepts: sunflower
and the threshold of monotone functions. The paper introduces a main
theorem, which can be used to prove 1. the newest result in the size of set
that contains a sunflower, and 2. the Kahn-Kalai conjecture of threshold
vs. expectation threshold for monotone functions.

Keywords: Complexity · Erdős-Rado sunflower conjecture · Kahn-Kalai
conjecture · probabilistic combinatorics.

Disclaimer: This note is essentially a selected copy-paste from Anup Rao’s
paper Sunflowers: from soil to oil and his YouTube video The Sunflower Lemma
and Monotone Thresholds with some of the comments and explanations made
by me to help people in the reading group better understand the original paper.

1 Introduction to Sunflowers

Definition 1 (Sunflower). A sunflower is a collection of sets whose pairwise
intersections are identical.

A sunflower with w petals is a collection of w sets whose pairwise intersections
are identical. The common intersection is called the core. Note that the core can
be an empty set, i.e., a collection of pairwise disjoint sets is also a sunflower. On
the other hand, a collection of sets each containing exactly the same elements is
also trivially a sunflower.

Sunflower was originally called ∆-systems in the paper by Erdős and Rado[4]
in 1960. The name sunflower was given by Deza and Frankl [5] and is now widely
accepted. In Erdős and Rado [4]’s paper, they proved that every collection of
more than k!(w − 1)k sets of size at most k must contain a sunflower with w
petals. In the same paper, they conjectured that there is a constant c such that
every family of (cw)k sets of size k contains a sunflower with w petals.

In 2019, Alweiss, Lovett, Wu, and Zhang [3] proved for w ≥ 3, there exists
some constant c, such that any k-set system S of size |S| ≥ (cw3 log k log log k)k

contains a w-sunflower. Subsequently, Rao [8], Frankston, Kahn, Narayanan and
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Park [6] and Bell, Chueluecha, and Warnke [7] further improved it to (cw log k)k

for some constant c. This is the best known result so far for the sunflower con-
jecture, which is a log k term off the conjectured size.

Below is a picture taken from Rao’s YouTube video that shows a sunflower
with 4 petals exists in the given set.

Fig. 1. Figure taken from Anup Rao’s YouTube video [2]

2 Threshold of Monotone Functions

Definition 2 (Monotone function). Function f : 2{1,...,n} → {0, 1} is mono-
tone if S ⊆ T implies f(S) ≤ f(T ).

For example, a monotone function can take a graph as the input and output
1 if the graph contains a K5 (complete graph of 5 vertices).

Definition 3 (Family of minimal sets). Let f : 2{1,...,n} → {0, 1} be a mono-
tone function, define the family of minimal sets F to be a collection of minimal
sets X, where f(X) = 1.

See the figure below, the set F containing all bold black dots are a collection
of minimal sets in f .

Let P be a random set where every element in {1, ..., n} is independently
drawn to set P with probability p; let Q be a random set where every element
in {1, ..., n} is independently drawn to set Q with probability q.

Definition 4 (Threshold of monotone function). The threshold of f is the
minimal probability p such that E[f(P )] = 1/2.

For any non-trivial (i.e. f is not always 0 or not always 1) monotone function
f , when p = 0, then E[f(P )] = 0 since P will be an empty set. When p = 1,
E[f(P )] = 1 since every element will be selected. Therefore, as p is increasing
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Fig. 2. Figure taken from Anup Rao’s YouTube video [2]

from 0 to 1, there must be a value of p that makes the expectation equal to 1
2

exactly. It is interesting to understand the threshold p for different monotone
functions, as the threshold captures something about the structure of f .

Definition 5 (Shadow). Given a family of sets F and a set X, define the
shadow FX = {F ∈ F : F ⊆ X}.

I would like to think about FX as X’s shadow projected on F . It is easy to
see that every monotone function f is associated with a minimal collection of
sets F such that f(X) = 1 for every X ∈ F . Moreover, if F is the family of
minimal sets of f , then f(X) = 1 if and only if |FX | ≥ 1.

Suppose we have a monotone function f , and F is the minimal family of f .
Let X ∈ 2[n] be a random set, where is element in {1, ..., n} is drawn to X with
probability ϵ. So we have

E[f(X)] = Pr[
⋃

Y ∈F
(Y ⊆ X)] ≤

∑
Y ∈F

Pr[Y ⊆ X] = E[|FX|]

The middle inequality is due to union bound.
Thus, if X is a random set, then the expectation of f(X) is less than or equal

to the expected size of the shadow of X in F .
More generally, for every monotone function g where f(X) ≤ g(X) for every

set X, and suppose X ∈ 2[n] is a random set, and G is the family of minimal sets
of g, then we have the bound

E[f(X)] ≤ E[g(X)] ≤ E[|GX|]

Why do we want to bound E[f(X)] by E[|GX|]? Suppose f is a compli-
cated function, where it contains a lot of small sets in the family of minimal
set F . Thus, it makes finding the threshold of f hard. But we can find a much
nicer/simpler function g, that “covers” f , and it is much easier to compute the
expected size of shadow of X in the family of minimal sets G. We hope E[|GX|]
would be a good/close estimate of E[f(X)].
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Definition 6 (Expectation Threshold). The expectation threshold of f is
the largest value of q such that E[|GQ|] = 1

2 for some monotone function g with
f ≤ g.

For example, if f is a boolean function that computes whether a graph has
a perfect matching, the threshold p ≈ logn

n , while the expectation threshold
q ≈ 1

n . In 2006, Kahn and Kalai conjectured that the threshold is always at
most O(log n) times greater than the expectation-threshold[10].

Theorem 1 (Kahn-Kalai Conjecture (Resolved)). For any monotone boolean
function f : {0, 1}n → {0, 1}, the threshold p is at most O(log n) times larger
than the expectation threshold q.

The conjecture is proven by Park and Pham [9] in 2022, following a similar
idea to 2019 paper by Alweiss, Lovett, Wu, and Zhang in finding sunflowers.

3 Relationship Between Threshold and Sunflower

Suppose you have a family of minimal set F , and you can define function f
on F . Let W be a uniform random set of size n

2w drawn from {1, ..., n}, and
E[f(W)] = 1

2 , so the threshold is like p = 1
2w .

Let W1,W2, ...,W2w be a uniform random partition of {1, ..., n}, each has
the same size n

2w . Then we have

2w∑
i=1

E[f(Wi)] = 2w × 1

2
= w

which means there exists a fixed partition W1, ...,W2w where we can find ≥ w
disjoint sets W ′

1, ...,W
′
w and f(W ′

1), ..., f(W
′
w) are evaluates to 1, which means

we can find w disjoint minimal sets from F , a trivial sunflower with an empty
core.

4 Main Theorem and Proof

4.1 Statement of the main theorem

Definition 7 (r-spread). Given a collection of sets S, let U ∈ S be uniformly
random. We shall say that U is r-spread if for every set Z, Pr[Z ⊆ U] ≤ r−|Z|.

Here Z is any set since if Z contains other unrelated elements, Z will not be
a subset of U thus the probability will be 0. So it does not matter what Z is.
We think r-spread is more of a property of S rather than a property of U, but
we will be consistent with the notation in the paper.

Here is how the concept of r-spread related to sunflowers. If U is r-spread,
then we are likely to find a collection of pairwise disjoint sets, which is a trivial
sunflower. If U is not r-spread, then that means there exists a set Z (that acts
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like the core of the sunflower), such that Pr(Z ⊆ U) ≥ r−|Z|. Suppose |S| ≥ rk.
That means there are at least rk × r−|Z| = rk−|Z| sets in S such that Z is a
subset of. We call this family of sets S ′ = {S ∈ S : Z ⊆ S} and so |S ′| ≥ rk−|Z|.
And we obtain a new family of sets S ′− = {S \ Z : S ∈ S ′} by deleting Z from
each element S, and we will inductively find sunflower in S ′−, and then adding
Z back will give a sunflower in the original set S.
Theorem 2 (Main Theorem). Let S ⊆ 2[n] be a family of sets of size at most
k. Then there is a distribution on pairs (W,G), where W ∈ 2[n] is a uniformly
random set of size ϵn and G ⊆ 2[n] is a family of sets, then we have the following
two guarantees:

1. either SW ̸= ∅, or for every S ∈ S,GS ̸= ∅ and
2. for any r-spread U that is independent of (W,G) with r = 64 log k

ϵ , we have
E[|GU|] < 1

8 .

Fig. 3. Figure taken from Anup Rao’s YouTube video [2]

Basically, we can think S as the family of minimal sets that defines the mono-
tone function f . Then for every probability ϵ, we can draw a uniform random
set W of size ϵn from {1, ..., n}, and we are able to find a family of minimal sets
G that defines the monotone function g.

In the figure above, the grey area represents the function f , and the red area
represents the function g. The first condition of the main theorem says that, it
is either the case where g covers f (the top left picture), or the W we draw lies
in the grey area of f (the top right picture). It cannot be the case that the W
we draw is outside of the grey area and g does not cover f (the bottom picture).

Such that it is either SW ̸= ∅, which means f(W) = 1, or for every minimal
set S ∈ S, we have GS ̸= ∅, which means g ≥ f . The second condition basically
says that G cannot have too many small sets.
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4.2 Proof of the main theorem

Proof. Let W1,W2, ...,Wlog k be uniformly random disjoint sets of size m =
ϵn

log k . Here all logs are base 2. Our goal is to use W1, ...,Wlog k to define a
sequence of sets G1, ...,Glog k. Eventually, we will set W = W1 ∪ ... ∪ Wlog k

(since Wi’s are disjoint, then the final set W will have size ϵn) and G = G1 ∪
G2 ∪ ... ∪ Glog k. (i.e. we are gradually constructing the family of minimal sets
that defines monotone function g which is supposed to “cover” f , and we do not
want to include too many small sets in G).

Let Wi := W1 ∪ ... ∪ Wi, and let Gi := G1 ∪ ... ∪ Gi. Define G1, ...,Glog k

iteratively as follows. For each i, and for each S ∈ S, include T := S −W i in Gi

if and only if
(i). |T | ≥ k

2i , and

(ii). T is a minimal set of {S −W i : S ∈ S,Gi−1
S = ∅}

We could similarly define gi to be the function defined by Gi. The second
condition says T := S−W i is a minimal set of {S−W i : S ∈ S, f(S) > gi−1(S)},
so in the ith round, we want to add the sets that have not been covered by gi−1.

Intuitively, the above process attempts to cover all the sets of S. In each step,
we discard the elements of S that have already been covered (either by Wi or by
Gi), and proceed to cover more elements by including sets of size at least k

2i in Gi.
By the time i = log k, then the first condition becomes |S −Wi| ≥ k/2log k = 1,
which means in the final round, we will cover all remaining sets that are not
included in W1 ∪ ...∪Wlog k. So, a set of S is left uncovered in the process only
if it is contained in W = Wlog k. This proves the first guarantee of the theorem,
that either SW ̸= ∅ or g ≥ f (i.e., for every S ∈ S,GS ̸= ∅).

Now we need to prove the bound E[|GU|] < 1
8 . The idea is that we do not want

to include too many small sets, as small sets in G will increase the expectation of
|GU|. We start by giving an upper bound on the expected number of sets T ∈ Gi

of size a. Then eventually we do a summary of size a from k/2i to ∞ to include
every potential set to be added, and we will bound that sum.

Claim: expected number of sets T in Gi of size a is at most ( log k
ϵ )a · 4k/2i .

Fix W1, ...,Wi−1. First we bound the number of choices of Wi ∪ T .
(i). Let ni denote the size of the universe after deleting Wi−1. Note that

each Wi is of size m and we consider T with size a. So there are at most
(

ni

m+a

)
choices for the set T ∪Wi. We have(

ni

m+ a

)
=

ni!

(m+ a)!(ni −m− a)!
=

ni!(ni −m− 1)...(ni −m− a)

m!(m+ 1)...(m+ a)(ni −m)!
=

(
ni

m

)
(

ni

m+ a

)
=

(
ni

m

) a∏
j=1

ni −m− j

m+ j
≤

(
ni

m

)(ni

m

)a

and notice that m = ϵn
log k , so

ni

m = log kni

ϵn ≤ log k
ϵ . Therefore,(

ni

m+ a

)
≤

(
ni

m

)(
log k

ϵ

)a
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Fig. 4. Figure taken from Anup Rao’s YouTube video [2]
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Then we want to say, once the union Wi ∪ T is specified, there is relatively
few choices for T .

(ii). Given a fixed T ∪Wi, let T
′ := S′ −W i−1 be the smallest set of {S −

Wi−1 : S ∈ S,Gi−1
S = ∅} that is contained in T ∪Wi; break ties by picking the

lexicographically first set. So T ′ is a candidate for generating T , and T must be
a subset of T ′, otherwise S′ − W i would be a strict subset of T , and T would
not be included in Gi. Secondly, it must be that |T ′| ≤ k/2i−1, otherwise T ′

would have been included in the previous round Gi−1. Since |T ′| ≤ k/2i−1 and

T must be a subset of T ′, then there can be at most 2k/2
i−1

= 4k/2
i

choices of
T consistent with T ∪Wi.

Fig. 5. Figure taken from Anup Rao’s YouTube video [2]

The above count shows that the expected number of sets T of size a in Gi is

at most 4k/2
i
(

log k
ϵ

)a

. Thus we can bound

E[|GU |] ≤ E[
∑
Y ∈G

(
ϵ

64 log k
)|Y |]

=

log k∑
i=1

E[
∑
Y ∈Gi

(
ϵ

64 log k

)|Y |

]

≤
log k∑
i=1

∞∑
a=k/2i

(
ϵ

64 log k

)a

· 4k/2
i

(
log k

ϵ

)a

=

log k∑
i=1

(1/16)k/2
i

1− 1/64

<

∞∑
j=1

64

63
(
1

16
)j

<
1

8

The second line is by linearity of expectation where we separate the contribution
from each round Gi. The third line is using the bound we just proved, which we
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can see that the numbers are being set-up so they cancel each other, leaving a
sum unrelated to ϵ. The last two lines are just sum of geometric sequence. ⊓⊔

5 Using the Main Theorem to prove sunflower and
Kahn-Kalai conjecture

5.1 Proof of sunflower lemma

Lemma 1 (Sunflower Lemma). If |S| ≥ q−k = (128w log k)k, then we can
find a sunflower with w petals in S.
Proof. Let f be the monotone function defined by S. LetU be a uniform random
set drawn from S.

Let ϵ = 1
2w , then r = 64 log k

ϵ = 128w log k, and q = 1
128w log k . Let W be a

random set where every element in {1, ..., n} is independently drawn to set W
with probability ϵ. Let Q be a random set where every element in {1, ..., n} is
independently drawn to set Q with probability q. There are 2 cases.

Case 1: For every set Z, Pr(Z ⊆ U) ≤ Pr(Z ⊆ Q). In this case,

Pr(g ≥ f) = Pr(∀U ∈ S,GU ̸= ∅) = Pr(∀U ∈ S, |GU | ≥ 1) ≤ E[|GU|]

and
E[|GU|] =

∑
G∈G

Pr(G ⊆ U)

Since Pr(Z ⊆ U) ≤ Pr(Z ⊆ Q) for any set Z, and G such a set, so

E[|GU|] =
∑
G∈G

Pr(G ⊆ U) ≤
∑
G∈G

Pr(G ⊆ Q) = E[|GQ|] < 1

8

Thus we get

Pr(g ≥ f) <
1

8
and applying the first “either-or” property of the main theorem, we know that
the Pr[f(W) = 1] > 7

8 .
Let W1,W2, ...,W2w be a random partition of {1, ..., n}, so each set has size

n
2w . Let n

2w = ϵn, we get ϵ = 1
2w , and r = 128w log k.

2w∑
i=1

E[f(Wi)] >
7

8
× 2w =

7

4
w

So there must exist an instance of W1,W2, ...,W2w such that at least 7
4w of

them will have f evaluate to 1. Consider SWi
, that means we can find at least

7
4w disjoint sets (since the Wi’s are disjoint) in S, which is a sunflower of at least
7
4w petals in S.

Case 2: There exists some set Z such that Pr(Z ⊆ U) > Pr(Z ⊆ Q). Let
S ′− = {S \ Z : Z ⊆ S, S ∈ S}. Since |S| ≥ q−k, then we have |S ′−| ≥ q−(k−|Z|),
and the sets in S ′− have size at most k−|Z|, so we can inductively find sunflower
in S ′−. Once we find a sunflower in S ′−, we can put Z back to the sunflower and
obtain a sunflower in S. ⊓⊔
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5.2 Proof of Kahn-Kalai conjecture

Let us reiterate the statement: For any monotone boolean function f : {0, 1}n →
{0, 1}, the threshold p is at most O(log n) times larger than the expectation
threshold q.

Proof. Let S be the family of minimal sets that defines monotone function f ,
and let p = ϵ be the threshold of f . Let P be a uniformly random set of size ϵn
from {1, ..., n}, so E[f(P)] = 1

2 .
By standard concentration bound, there must exist some number w close

to p, and let W be a uniformly random set of size wn from {1, ..., n}, then
E[f(W)] ≤ 3

4 .
Since E[f(W)] ≤ 3

4 , by definition of expectation, we have Pr[f(W) = 1] ≤ 3
4 .

Applying the main theorem, the “either-or” property, we know that

Pr(f ≤ g) ≥ 1

4

Let q = w
64 log k , and let Q be a random set of size qn selected from {1, ..., n}.

Now we use the other condition provided by the theorem, which is E[|GQ|] < 1
8 .

By Markov’s inequality,

Pr[X ≥ a] ≤ E[X]

a

Pr
G
[E[|GQ|] ≥ 1

2
] ≤ E[|GQ|]

1/2
<

1/8

1/2
=

1

4

in short

Pr
G
[E[|GQ|] ≥ 1

2
] <

1

4

which means

Pr
G
[E[|GQ|] > 1

2
] >

3

4

Therefore, there exists some choice of g (and associated G), such that g ≥ f ,
and E[|GQ|] < 1

2 . Note that q here is not the true expectation threshold, because
we want E[|GQ|] = 1

2 if q is the true expectation threshold. Let q̂ be the true
expectation threshold, so q̂ > q.

This proves the true expectation threshold q̂ must be at least q = w
64 log k ,

and the threshold p is very close to w (p ≈ w). So q̂ ≥ p
64 log k ⇒ p

q̂ ≤ 64 log k,

and k ≤ n, so p
q̂ = O(log n). ⊓⊔
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