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Definitions

Let F be a finite field. We consider bivariate polynomials over a
domain X × Y , where X = {x1, . . . , xn} ⊆ F and
Y = {y1, . . . , yn} ⊆ F .

A polynomial p(x , y) has degree (d , e) if it has degree at most d is
x and degree at most e in y . When we say a polynomial of degree
d , we mean a polynomial of degree at most d . We use them
interchangeably.

Suppose we have a function f (x , y) on X × Y . We can represent
f (x , y) in matrix form as follows:

M =


f (x1, y1) f (x1, y2) . . . f (x1, yn)
f (x2, y1) f (x2, y2) . . . f (x2, yn)

...
...

. . .
...

f (xn, y1) f (xn, y2) . . . f (xn, yn)

 .



Rows and Columns of the Matrix

If we look at each column j ∈ [n], then yj is fixed. Each column
can be viewed as a univariate function with variable x evaluated on
X .

M =


f (x1, y1) f (x1, y2) . . . f (x1, yn)
f (x2, y1) f (x2, y2) . . . f (x2, yn)

...
...

. . .
...

f (xn, y1) f (xn, y2) . . . f (xn, yn)

 .

If we look at each row i ∈ [n], then xi is fixed. Each row can be
viewed as a univariate function with variable y evaluated on Y .



Matrix Representation of a Function

Suppose an adversary gives us a matrix over F

M =


v1,1 v1,2 . . . v1,n
v2,1 v2,2 . . . v2,n
...

...
. . .

...
vn,1 vn,2 . . . vn,n

 .

This can be viewed exactly the same as

M =


f (x1, y1) f (x1, y2) . . . f (x1, yn)
f (x2, y1) f (x2, y2) . . . f (x2, yn)

...
...

. . .
...

f (xn, y1) f (xn, y2) . . . f (xn, yn)

 ,

because M uniquely defines f (x , y).



Well-Known Theorem

Question: How do we know if matrix M represents a bivariate
polynomial?

Theorem (Well-known)

Let f (x , y) be a function on X × Y such that for j ∈ [n], f (x , yj)
agrees with some degree d polynomial in x on X , and for i ∈ [n],
f (xi , y) agrees on Y with some degree e polynomial in y . Then,
there exists a polynomial P(x , y) of degree (d , e) such that f (x , y)
agrees with P(x , y) everywhere on X × Y .
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Proof Explained
Every column pj has degree d . We pick the first e + 1 columns.

M =


p1(x1) p2(x1) . . . pe+1(x1) . . . f (x1, yn)
p1(x2) p2(x2) . . . pe+1(x2) . . . f (x2, yn)

...
...

. . .
...

...
...

p1(xn) p2(xn) . . . pe+1(xn) . . . f (xn, yn)

 .

By Lagrange Interpolation, each δj has degree e.

δ1(y) =
(
1 0 . . . 0 . . . 0

)
=

(y − y2)

(y1 − y2)

(y − y3)

(y1 − y3)
. . .

(y − ye+1)

(y1 − ye+1)

δj(yk) =
e+1∏

j=1,j ̸=k

y − yj
yk − yj

.

The bivariate polynomial is

P(x , y) =
e+1∑
j=1

δj(y)pj(x).



Applying the Well-Known Theorem

Suppose an adversary gives you a matrix

M =


v1,1 v1,2 . . . v1,n
v2,1 v2,2 . . . v2,n
...

...
. . .

...
vn,1 vn,2 . . . vn,n

 ,

and you want to know if M represents some bivariate polynomial
of degree (d , d). What can you do?

▶ We can test if a row/column agrees with some polynomial of
degree d by interpolating any d + 1 points and check if all
other points lie on the polynomial.

▶ If we know that every row agrees with some polynomial of
degree d , and every column agrees with some polynomial of
degree d . We can apply the well-known theorem we just saw.
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An Imperfect World

What if some rows/columns do not fully agree with some
polynomial of degree d?

Question: How do we know if matrix M is “very close” to a
bivariate polynomial?



An Imperfect World

Maybe we can fix some places such that every row agrees with
some polynomial of degree at most d .

M =
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Maybe we can fix some places such that every column agrees with
some polynomial of degree at most d .

M =


v1,1 v1,2 . . . v1,n
v2,1 v2,2 . . . v2,n
...

...
. . .

...
vn,1 vn,2 . . . vn,n

 .

Hard to fix both the rows and the columns simultaneously!



Rows and Columns

Consider a bivariate polynomial R(x , y) of degree (d , n). Every
row fi is a univariate polynomial in x with degree at most d .

R(x , y) =


f1(x1) f1(x2) . . . f1(xn)
f2(x1) f2(x2) . . . f2(xn)

...
...

. . .
...

fn(x1) fn(x2) . . . fn(xn)

 .

Consider a bivariate polynomial C (x , y) of degree (n, d). Every
column gj is a univariate polynomial in y with degree at most d .

C (x , y) =


g1(y1) g2(y1) . . . gn(y1)
g1(y2) g2(y2) . . . gn(y2)

...
...

. . .
...

g1(yn) g2(yn) . . . gn(yn)

 .



Polishchuk-Spielman Bivariate Testing Theorem



What does it mean?

We can fix some places in M to obtain R(x , y), and separately fix
some other places in M to obtain C (x , y). If the total number of
places we fixed among both R(x , y) and C (x , y) is at most δ2n2,
then M is actually very close to a bivariate polynomial Q(x , y) of
degree (d , d).

M =


v1,1 v1,2 . . . v1,n
v2,1 v2,2 . . . v2,n
...

...
. . .

...
vn,1 vn,2 . . . vn,n

 .

(PS: In practice, if M is really close to Q(x , y). Observe that we
can view M as a bivariate Reed-Muller code, then we can recover
Q(x , y).)



Proof 1

Lemma (3)

Let S ⊂ X × Y be a set of size at most (δn)2, where δn is an
integer. Then there exists a non-zero polynomial E (x , y) of degree
(δn, δn) such that E (x , y) = 0 for all (x , y) ∈ S.

The proof is obvious: E (x , y) has (δn + 1)2 unknowns and there
are (δn)2 restrictions.

Let S be the subset of X × Y on which R and C disagree. Then
we have

R(x , y)E (x , y) = C (x , y)E (x , y) for all (x , y) ∈ X × Y .

Observe C (x , y)E (x , y) is a polynomial of degree (n + δn, d + δn)
and R(x , y)E (x , y) is a polynomial of degree (d + δn, n + δn).



Proof 2

By the well-known theorem, there exists a polynomial P(x , y) of
degree (d + δn, d + δn) such that

R(x , y)E (x , y) = C (x , y)E (x , y) = P(x , y)

for all (x , y) ∈ X × Y .

It is natural to continue the proof by dividing P by E . However,
the most we can say is that

P(x , y)

E (x , y)
= R(x , y) = C (x , y),

for all (x , y) ∈ X × Y such that E (x , y) ̸= 0. We can show that if
n is sufficiently large, then E in fact divides P.
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Proof 3

Lemma (4)

Let P(x , y),E (x , y),R(x , y),C (x , y) be polynomials of degree
(δn + d , δn + d), (δn, δn), (d , n), (n, d) respectively such that
R(x , y)E (x , y) = C (x , y)E (x , y) = P(x , y) for all (x , y) ∈ X × Y .
If |X | > δn + d and |Y | > δn + d, then for all y0 ∈ Y and for all
x0 ∈ X, P(x , y0) ≡ R(x , y0)E (x , y0) and
P(x0, y) ≡ C (x0, y)E (x0, y).

The proof is obvious: For fixed y0, P(x , y0) and R(x , y0)E (x , y0)
both have degree δn + d , and they agree on at least d + δn + 1
points.



Proof 4

Lemma (8)

Let E (x , y) be a polynomial of degree (b, a) and let P(x , y) be a
polynomial of degree (b + d , a+ d). If there exists distinct
x1, . . . , xn such that E (xi , y) divides P(xi , y) for i ∈ [n], distinct
y1, . . . , yn such that E (x , yi ) divides P(x , yi ) for i ∈ [n] and if

n > min{2b + 2d , 2a+ 2d},

then E (x , y) divides P(x , y).

The proof is not obvious. We will skip it for time sake.



Recall the main Theorem



Proof 5

Summary of our proof so far: Let S be the set of points where
R(x , y) ̸= C (x , y). By Lemma 3, there exists an error correcting
polynomial E (x , y) of degree (δn, δn) such that E vanishes on S .
By Lemma 4 and Lemma 8, there exists a polynomial Q(x , y) of
degree (d , d) such that

R(x , y)E (x , y) = C (x , y)E (x , y) = Q(x , y)E (x , y),

for all (x , y) ∈ X × Y .

Now we need to show the < 2δ2 part. Note that in any row where
E (x , y) ̸= 0, Q agrees with R on that entire row. However, E has
degree (δn, δn) so it can be (in the worst case) identically zero on
at most δn rows. So E must be non-zero on at least (1− δ)n rows.
Thus, Q must agree with R on at least (1− δ)n rows. Similarly, Q
must agree with C on at least (1− δ)n rows.
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Proof 6

Therefore, we have R and C agree on the intersection of (1− δ)n
columns and rows. This is already a lot of points, but we will show
that they agree on many more points.

Recall S is the set of points where R(x , y) ̸= C (x , y). Let T be
the set of points where R(x , y) = C (x , y), but Q(x , y) ̸= R(x , y)
(and also Q(x , y) ̸= C (x , y)). If we show |T | ≤ |S |, we are done
with the < 2δ2 part.
We say a row/column is bad if Q disagrees on R/C on that
row/column. Let br be the number of bad rows and let bc be the
number of bad columns. Call good any row/column that is not
bad. We say that a row and column disagree if R and C take
different values at their intersection.



Proof 7

Observe there can be at most d + br points of T in any bad
column: if a column has more than d + br points (e.g. d + br + 1
points) of T , note that R(x , y) = C (x , y) in T , then it must have
at least d + 1 points in good rows where Q agrees with R and
therefore Q, implying that column is in fact good.

Recall n > 2δn + 2d . Thus, every bad column must have at least
n/2 points of S in the intersection of that column with the good
rows. Similarly, every bad row must have at least n/2 points of S
in the intersection of that row with the good columns.

Hence, the points of T in every column is less than the points of
S ; the points if T in every row is less than the points of S .
Therefore, |T | ≤ |S |.



Proof 8

Here is a picture illustration. The basic idea is that the points of T
must lie in the lower left-hand corner.



Testing Reed-Solomon Codeword

Let n be a natural number and let Σ be an alphabet. Let x ∈ Σn

be a string, and we use xi to denote the ith symbol of x . We say x
is δ-close to a string y ∈ Σn if |{i | xi ̸= yi}| ≤ δn. I.e. x and y
agree on all but at most a δ-fraction of the symbols.

Suppose you are given an array of values. How do you test that it
is a Reed-Solomon codeword?

What if you are only allowed to query very few values from the
array? Not possible! What if you can relax the requirement? You
can build a proof system that shows the array of values is δ-close
to some Reed-Solomon codeword.
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PCPP

Definition (PCP of Proximity)

A probabilistically checkable proof of proximity (PCPP) system
with soundness error s ∈ (0, 1) and proximity parameter δ ∈ (0, 1)
is a probabilistic proof system (P,V ) in which the prover P on
input (x ,w) generates a proof π, and the verifier V can make at
most q queries to the combined oracle (x , π), and the following
holds.

▶ Completeness: For every (x ,w) ∈ R (which means x ∈ LR),
V accepts with probability 1.

▶ Soundness: For every x that is δ-far from LR, V accepts with
probability at most s, regardless of the proof oracle π.

In this case, we write LR ∈ PCPP[r , q, δ, s, ℓ] where r is the
verifier’s randomness complexity, q is the query complexity, and ℓ
is the length of the proof. We say a PCPP is an exact PCPP if the
proximity parameter δ = 0.



Application of Polishchuk-Spielman

Theorem (Theorem 3.2 in Ben-Sasson Sudan 05)

Let Fq be a finite field of order q = 2w . Let S be a subset of Fq

and S is F2-linear (i.e. for all a, b ∈ S, we have a+ b ∈ S). Then,
for any soundness error s ∈ (0, 1) and any proximity parameter
δ ∈ (0, 1), there exists an explicit construction of a PCPP to test if
an array of values r1, . . . , r|S | ∈ Fq is δ-close to some univariate
polynomial of degree d evaluated at S, and the PCPP has
randomness complexity log(q · polylog(q)), query complexity
polylog(q), and proof length q · polylog(q).

The core idea in the construction is to lay out the array of values
as a bivariate polynomial and apply Polishchuk-Spielman! Maybe a
good topic for my next TSS.
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Q & A

Questions?



Thank you

Thank you!
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