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Definitions

Let F be a finite field. We consider bivariate polynomials over a
domain X x Y, where X = {x1,...,x,} C F and
Y ={yi,...,yn} C F.

A polynomial p(x,y) has degree (d, e) if it has degree at most d is
x and degree at most e in y. When we say a polynomial of degree
d, we mean a polynomial of degree at most d. We use them
interchangeably.

Suppose we have a function f(x,y) on X x Y. We can represent
f(x,y) in matrix form as follows:

f(Xl,}/1) f(X17y2) f(X17yn)
M = f(X27.y1) f(X27.y2) f(XZ,)/n)
f(xn,y1) f(Xn,y2) oo f(Xny¥n)
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Rows and Columns of the Matrix

If we look at each column j € [n], then y; is fixed. Each column
can be viewed as a univariate function with variable x evaluated on

f(xi,y1) f(xi,y2) ... f(x1,yn)
M — f(X2,Y1) f(Xza)/z) K f(X27}/n)
f(Xm}/1) f(Xm}/Z) cee f(Xna)/n)

If we look at each row i € [n], then x; is fixed. Each row can be
viewed as a univariate function with variable y evaluated on Y.
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Matrix Representation of a Function

Suppose an adversary gives us a matrix over F

Vii Vi2 ... Vi,n
V271 V272 e V2’n
Vnli Vn2 ... Van

)

This can be viewed exactly the same as

f(xi,y1) f(xi,y2) ... f(x1,yn)
M — f(X2,Y1) f(Xza)/z) XK f(X27}/n)
f(Xm}/1) f(Xm}/Z) cee f(Xna)/n)

because M uniquely defines f(x,y). .
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Well-Known Theorem

Question: How do we know if matrix M represents a bivariate
polynomial?
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Well-Known Theorem

Question: How do we know if matrix M represents a bivariate
polynomial?

Theorem (Well-known)

Let f(x,y) be a function on X x Y such that for j € [n], f(x,y;)
agrees with some degree d polynomial in x on X, and for i € [n],
f(xi,y) agrees on Y with some degree e polynomial in y. Then,
there exists a polynomial P(x,y) of degree (d,e) such that f(x,y)
agrees with P(x,y) everywhere on X x Y.
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Proof:  Recall that a degree d univariate polynomial
is uniquely determined by its values at d 4+ 1 points. For
1 <j<e+1,let pj(x) be the degree d polynomial that
agrees with f(z,y;). For 1 < j <e-+1,let §;(y) be the
degree e polynomial in y such that

() = | 1 T3 =k and
JWE) =00, if 1<k <e+1, but j# k.

We let P(z,y) = Zj:} 8i(y)pj(x). It is clear that P
has degree (d,e). Moreover, P(x,y;) = f(z,y;) for all
z€ X and 1 < j < d+ 1. To see that in fact P(z,y) =
f(z,y) for all (z,y) € X x Y, observe that P and f
agree at e + 1 points in column y. Since f agrees with
some degree e polynomial in column y, that polynomial

must be the restriction of P to column y. 0O
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Proof Explained

Every column p; has degree d. We pick the first e + 1 columns.

pi(x1) pP2(x1) ... peri(x1) ... f(x1,yn)
M — pi(x2) P2(x2) ... peri(x2) ... f(x2,yn)
pl(Xn) p2(Xn) pe+1(Xn) f(Xny)/n)
By Lagrange Interpolation, each 4; has degree e.
v —y2) (¥ —ys) (Y = Yet1)
Siy)=(1 0 ... 0 ... 0)=
)= )= o) yer)
e+1 Y —yi
)= [I =—2-
j=vik Ve

The bivariate polynomial is

e+1

P(x,y) = 8i(y)pi(x).
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Applying the Well-Known Theorem

Suppose an adversary gives you a matrix

Vii V12 ... Vip

o1 V22 ... V2.n
M=1 . . |

Vnl Vn2 ... Van

and you want to know if M represents some bivariate polynomial
of degree (d, d). What can you do?
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Applying the Well-Known Theorem

Suppose an adversary gives you a matrix

V171 V172 e Vl,n

o1 V22 ... V2.n
M=1 . . ;

Vnl Vn2 ... Van

and you want to know if M represents some bivariate polynomial
of degree (d, d). What can you do?

» We can test if a row/column agrees with some polynomial of
degree d by interpolating any d + 1 points and check if all
other points lie on the polynomial.

> If we know that every row agrees with some polynomial of
degree d, and every column agrees with some polynomial of
degree d. We can apply the well-known theorem we just saw.
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An Imperfect World

What if some rows/columns do not fully agree with some
polynomial of degree d?

Question: How do we know if matrix M is “very close” to a
bivariate polynomial?
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An Imperfect World

Maybe we can fix some places such that every row agrees with
some polynomial of degree at most d.

Vit Vi2 ... Vinp

o1 V22 ... V2 n
M =

Vnil Vn2 ... Van

)

Maybe we can fix some places such that every column agrees with
some polynomial of degree at most d.

Vii Vi ... Vin

V271 V272 e V2’n
M=1 . .

Vnil Vn2 -+~ Vnon
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Rows and Columns

Consider a bivariate polynomial R(x,y) of degree (d, n). Every
row f; is a univariate polynomial in x with degree at most d.

a(x1) fAlx) ... fA(xn)
fr(x f>(x: ... Hhixp
R(Xv.y): 2(: 1) 2(: 2) 2(: )
fo(x1) fa(x2) ... fa(xn)

Consider a bivariate polynomial C(x,y) of degree (n, d). Every
column g;j is a univariate polynomial in y with degree at most d.

gily1) &) ... &n)

gi1(y2) &(y2) ... &ily2)
Coy)=1 . S

gilyn) &n) .- &nlyn)
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Polishchuk-Spielman Bivariate Testing Theorem

Theorem 9 (Bivariate Testing). Let F be a field,
let X ={xy,...,2,} CF, and letY ={y1,...,yn} C
F. Let R(z,y) be a polynomial over F of degree (d,n)
and let C(z,y) be a polynomial over F of degree (n,d).
If
Prob [R(=x, C(z,y)] < 8,
oiroh L@, ) # Oz, y)

and n > 20n+2d, then there exists a polynomial Q(z,y)
of degree (d,d) such that

Prob [R(z,y) # Q(z,y) or C(z,y) # Q(z,y)] < 26°.

(z,y)eXxY
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What does it mean?

We can fix some places in M to obtain R(x,y), and separately fix
some other places in M to obtain C(x,y). If the total number of
places we fixed among both R(x,y) and C(x, y) is at most §2n?,
then M is actually very close to a bivariate polynomial Q(x,y) of
degree (d, d).

Vii Vi2 ... Vin

V271 V272 . V2,n
M=1 . .

Vnil Vn2 ... Vn.n

(PS: In practice, if M is really close to Q(x, y). Observe that we
can view M as a bivariate Reed-Muller code, then we can recover

Q(x,¥).)
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Proof 1

Lemma (3)

Let S C X x Y be a set of size at most (3n)?, where 6n is an
integer. Then there exists a non-zero polynomial E(x,y) of degree
(0n,dn) such that E(x,y) =0 for all (x,y) € S.

The proof is obvious: E(x,y) has (§n + 1)? unknowns and there
are (0n)? restrictions.

Let S be the subset of X x Y on which R and C disagree. Then
we have

R(x,y)E(x,y) = C(x,y)E(x,y) for all (x,y) € X x Y.

Observe C(x,y)E(x,y) is a polynomial of degree (n+ dn,d + dn)
and R(x, y)E(x,y) is a polynomial of degree (d + dn,n+ dn)
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Proof 2
By the well-known theorem, there exists a polynomial P(x,y) of
degree (d + dn, d + dn) such that

R(x,y)E(x,y) = C(x,y)E(x,y) = P(x,y)

forall (x,y) e X x Y.
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Proof 2

By the well-known theorem, there exists a polynomial P(x,y) of
degree (d + dn, d + dn) such that

R(x,y)E(x,y) = C(x,y)E(x,y) = P(x,y)

forall (x,y) e X x Y.

It is natural to continue the proof by dividing P by E. However,
the most we can say is that

P(x.y) _ _
E(X,y) - R(va) - C(X7y)a

for all (x,y) € X x Y such that E(x,y) # 0.
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Proof 2

By the well-known theorem, there exists a polynomial P(x,y) of
degree (d + dn, d + dn) such that

R(x,y)E(x,y) = C(x,y)E(x,y) = P(x,y)

forall (x,y) e X x Y.

It is natural to continue the proof by dividing P by E. However,
the most we can say is that

P(x.y) _ _
E(X,y) - R(va) - C(X?y)v

for all (x,y) € X x Y such that E(x,y) # 0. We can show that if
n is sufficiently large, then E in fact divides P.
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Proof 3

Lemma (4)

Let P(x,y), E(x,y), R(x,y), C(x,y) be polynomials of degree
(6n+d,én+d),(én,6n),(d, n),(n,d) respectively such that
R(x,y)E(x,y) = C(x,y)E(x,y) = P(x,y) for all (x,y) € X x Y.
If | X| >dn+d and |Y| > dn+d, then for all yo € Y and for all
x0 € X, P(x, ) = R(x,%0)E(x,y0) and

’D(XO?y) = C(Xo,y)E(Xo,y).

The proof is obvious: For fixed yp, P(x,y0) and R(x, yo)E(x, o)
both have degree dn + d, and they agree on at least d + dn+1
points.
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Proof 4

Lemma (8)
Let E(x,y) be a polynomial of degree (b, a) and let P(x,y) be a
polynomial of degree (b+ d,a+ d). If there exists distinct
X1,...,Xn such that E(x;,y) divides P(x;,y) for i € [n], distinct
Yi,.--,Yn such that E(x, y;) divides P(x,y;) for i € [n] and if

n > min{2b + 2d,2a + 2d},

then E(x,y) divides P(x, y).

The proof is not obvious. We will skip it for time sake.
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Recall the main Theorem

Theorem 9 (Bivariate Testing). Let F be a field,
let X ={xy,...,2,} CF, and letY ={y1,...,yn} C
F. Let R(xz,y) be a polynomial over F of degree (d, n)
and let C(z,y) be a polynomial over F of degree (n,d).
If
Prob [R(=x, C(z,y)] < 8,
oiroh L@, ) # Oz, y)

and n > 20n+2d, then there exists a polynomial Q(z,y)
of degree (d,d) such that

Prob [R(z,y) # Q(z,y) or C(z,y) # Q(z,y)] < 26°.

(z,y)eXxY
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Proof 5

Summary of our proof so far: Let S be the set of points where
R(x,y) # C(x,y). By Lemma 3, there exists an error correcting
polynomial E(x,y) of degree (dn,dn) such that E vanishes on S.
By Lemma 4 and Lemma 8, there exists a polynomial Q(x,y) of
degree (d, d) such that

R(Xv)/)E(Xay) = C(va)E(Xv)/) = Q(XaY)E(va)a

forall (x,y) e X x Y.
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Proof 5

Summary of our proof so far: Let S be the set of points where
R(x,y) # C(x,y). By Lemma 3, there exists an error correcting
polynomial E(x,y) of degree (dn,dn) such that E vanishes on S.
By Lemma 4 and Lemma 8, there exists a polynomial Q(x,y) of
degree (d, d) such that

R(Xv)/)E(Xay) = C(va)E(Xv)/) = Q(XaY)E(va)a

forall (x,y) e X x Y.

Now we need to show the < 262 part. Note that in any row where
E(x,y) # 0, Q agrees with R on that entire row. However, E has
degree (0n,dn) so it can be (in the worst case) identically zero on
at most dn rows. So E must be non-zero on at least (1 — d)n rows.
Thus, Q must agree with R on at least (1 — §)n rows. Slmllarly, Q

must agree with C on at least (1 — d)n rows.
WTORONTO



Proof 6

Therefore, we have R and C agree on the intersection of (1 — d)n
columns and rows. This is already a lot of points, but we will show
that they agree on many more points.

Recall S is the set of points where R(x,y) # C(x,y). Let T be
the set of points where R(x,y) = C(x,y), but Q(x,y) # R(x,y)
(and also Q(x,y) # C(x,y)). If we show |T| < |S|, we are done
with the < 262 part.

We say a row/column is bad if Q disagrees on R/C on that
row/column. Let b, be the number of bad rows and let b, be the
number of bad columns. Call good any row/column that is not
bad. We say that a row and column disagree if R and C take
different values at their intersection.
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Proof 7

Observe there can be at most d + b, points of T in any bad
column: if a column has more than d + b, points (e.g. d + b, + 1
points) of T, note that R(x,y) = C(x,y) in T, then it must have
at least d + 1 points in good rows where Q agrees with R and
therefore @, implying that column is in fact good.

Recall n > 26n+ 2d. Thus, every bad column must have at least
n/2 points of S in the intersection of that column with the good
rows. Similarly, every bad row must have at least n/2 points of S
in the intersection of that row with the good columns.

Hence, the points of T in every column is less than the points of
S; the points if T in every row is less than the points of S.
Therefore, |T| < |S].
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Proof 8

Here is a picture illustration. The basic idea is that the points of T
must lie in the lower left-hand corner.

be
——,

d rows

cols
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Testing Reed-Solomon Codeword

Let n be a natural number and let > be an alphabet. Let x € "
be a string, and we use x; to denote the ith symbol of x. We say x
is 0-close to a string y € X" if |[{i | x; # yi}| < dn. lL.e. x and y
agree on all but at most a d-fraction of the symbols.

Suppose you are given an array of values. How do you test that it
is a Reed-Solomon codeword?
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Testing Reed-Solomon Codeword

Let n be a natural number and let > be an alphabet. Let x € "
be a string, and we use x; to denote the ith symbol of x. We say x
is 0-close to a string y € X" if |[{i | x; # yi}| < dn. lL.e. x and y
agree on all but at most a d-fraction of the symbols.

Suppose you are given an array of values. How do you test that it
is a Reed-Solomon codeword?

What if you are only allowed to query very few values from the
array?
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Testing Reed-Solomon Codeword

Let n be a natural number and let > be an alphabet. Let x € "
be a string, and we use x; to denote the ith symbol of x. We say x
is 0-close to a string y € X" if |[{i | x; # yi}| < dn. lL.e. x and y
agree on all but at most a d-fraction of the symbols.

Suppose you are given an array of values. How do you test that it
is a Reed-Solomon codeword?

What if you are only allowed to query very few values from the
array? Not possible!
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Testing Reed-Solomon Codeword

Let n be a natural number and let > be an alphabet. Let x € "
be a string, and we use x; to denote the ith symbol of x. We say x
is 0-close to a string y € X" if |[{i | x; # yi}| < dn. lL.e. x and y
agree on all but at most a d-fraction of the symbols.

Suppose you are given an array of values. How do you test that it
is a Reed-Solomon codeword?

What if you are only allowed to query very few values from the
array? Not possible! What if you can relax the requirement? You
can build a proof system that shows the array of values is d-close
to some Reed-Solomon codeword.
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PCPP

Definition (PCP of Proximity)

A probabilistically checkable proof of proximity (PCPP) system
with soundness error s € (0,1) and proximity parameter § € (0, 1)
is a probabilistic proof system (P, V') in which the prover P on
input (x, w) generates a proof 7, and the verifier V can make at
most g queries to the combined oracle (x,7), and the following
holds.

» Completeness: For every (x,w) € R (which means x € Lg),
V accepts with probability 1.

» Soundness: For every x that is d-far from Ly, V accepts with
probability at most s, regardless of the proof oracle 7.

In this case, we write Lx € PCPP[r, q,d, s, ] where r is the
verifier's randomness complexity, g is the query complexity, and ¢
is the length of the proof. We say a PCPP is an exact PCPP if the

proximity parameter 6 = 0. & LORSTo



Application of Polishchuk-Spielman

Theorem (Theorem 3.2 in Ben-Sasson Sudan 05)

Let F, be a finite field of order q = 2". Let S be a subset of F
and S is Fa-linear (i.e. for all a,b € S, we have a+ b € S). Then,
for any soundness error s € (0,1) and any proximity parameter

d € (0,1), there exists an explicit construction of a PCPP to test if
an array of values 1, ..., ns) € Fq is 6-close to some univariate
polynomial of degree d evaluated at S, and the PCPP has
randomness complexity log(q - polylog(q)), query complexity
polylog(q), and proof length q - polylog(q).
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Application of Polishchuk-Spielman

Theorem (Theorem 3.2 in Ben-Sasson Sudan 05)

Let F, be a finite field of order q = 2". Let S be a subset of F
and S is Fa-linear (i.e. for all a,b € S, we have a+ b € S). Then,
for any soundness error s € (0,1) and any proximity parameter

d € (0,1), there exists an explicit construction of a PCPP to test if
an array of values 1, ..., ns) € Fq is 6-close to some univariate
polynomial of degree d evaluated at S, and the PCPP has
randomness complexity log(q - polylog(q)), query complexity
polylog(q), and proof length q - polylog(q).

The core idea in the construction is to lay out the array of values
as a bivariate polynomial and apply Polishchuk-Spielman! Maybe a
good topic for my next TSS.
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Q& A

Questions?
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Thank you

Thank you!
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