Delegating Computation: Interactive Proofs for
Muggles

Ziyang Jin!

Theory Group
Department of Computer Science
University of Toronto

&

UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 1/34

Intro

Interactive Proofs
[Goldwasser-Micali-Rackoff85, Babai85]

All
powerful
P V<

< —

_-\\\{

i
W

—_———
A —
—_—

% . . - :ﬁ UNIVERSITY OF
(*Images in the slides are stolen from Kalai's talks on YouTube) g oy

2/34

CSC 2429: Derandomization 05 Mar 2024

-
The problem

We have seen interactive protocols where the prover has unbounded

computational resources, and the verifier runs in probabilistic polynomial
time.

Today we will see interactive proofs for muggles: The prover runs in
probabilistic polynomial time (in other words, a “muggle”). The verifier
runs in nearly-linear time (e.g. O(nlog* n)).

&
UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 3/34

-
Why is it useful?

Delegating Computation

f(x) compute f
proof on input x

Verifying should be much easier than computing! 5(le)]

UNIVERSITY OF

@ Proving should not be much harder than computing! ‘5(T,) ' & TORONTO

CSC 2429: Derandomization 05 Mar 2024 4/34

Main theorem

Theorem (Goldwasser-Kalai-Rothblum '08)

Let L be a language that can be computed by a family of O(log(S))-space
uniform boolean circuits of size S and depth d. L has an interactive proof
where:

@ The prover runs in time poly(S). The verifier runs in time
n - poly(d,log S) and space O(log(5)).
@ The protocol has perfect completeness and soundness 1/100.

© The protocol is public-coin, with communication complexity
d - polylog(5).

&
& UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 5/34

[Goldwasser-Kalai-Rothblum08]

Construct Interactive Proofs:

runtime
proportional
to time

P V

depth< o~

runtime
proportional
to depth

-

-

for functions f computable by (log-space uniform) circuits

A
~ e -

CSC 2429: Derandomization

05 Mar 2024

6/34

N
Circuit

Circuit C:
@ NAND gates only
e fan-in 2

@ layered structure

Input x € {0,1}"
Circuit size is S = poly(n).
Circuit depth is d = polylog(n) typically.

&
UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 7/34

[GKRO8] Blueprint

Linear ECC
Linear ECC

Linear ECC

Xy Xy X3 | Xn

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 8/34

Naive approach

[board work]

£

UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 9/34

N
The GKR solution

[board work]

£

UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 10/34

-
Padding each layer

You can think of the circuit evaluation as a table of width S and depth
d+1.

layer O : 100000 ...0
layer 1: 110 00 ... 0
layer 2 : 101100 ...0
layer i : 001 00O0... 0
layeri+1: 1 1 0 1 0 O 0
layjerd: 0 1 1 1 1 1 ... 1

Every row i can be described by a function «; : [S] — {0, 1}.

&

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 11/34

Low Degree Extension 1

We have
ai(g) : [— {01}
where g € [S] is the name of a gate.

Now we one-to-one map each element g € [S] to an element z € H™.
|H|™ = S. H is an extension field of GF[2].

ali(z) : H™ — {0,1}

where z € H" is the name of a gate.

&
= UNIVERSITY OF

& TORONTO

T

05 Mar 2024 12 /34

Low Degree Extension 2

We have
ali(z) : H™ — {0,1}

where z € H™ is the name of a gate.

This is the low-degree extension:
ai(z) :F" > F

where F is an extension field of H, so H C F. &;(z) is a low-degree
polynomial, and &;(z) agrees with o/}(z) on H™.

&
UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 13/34

Standard Low Degree Extension

You have a binary array (or truth table, or a layer of gate outputs)
w € {0,1}°.
w =101000 ... 0

Suppose W = wy, wy, ..., ws. Equivalently, w = wy, wa, ..., Wgm.

The low-degree extension &(z) : F™ — F is

a(z) = Z B(z,t) - wy

teHm

where B(z,t)=1if z=t;
and f(z,t) =0if z# t and z € H™;
and f3(z,t) can “go crazy” when z € F™\ H™.

&
& UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 14 /34

Important Claim

Claim
When @(z) has individual degree at most |H| — 1, thus total degree
m - (|[H| — 1), the low-degree extension is unique.

]!
We will use a different low-degree extension for gate output layers.

il
We will only apply the standard low-degree extension to the input x.

£

UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 15/34

Circuit structure function

Define the circuit structure function ¢;(z, wy, wo) : H3™ — {0,1}

1, zis the parent gate of wy, wy

¢I’(Za wi, W2) = {

0, otherwise.

Low-degree extend it, we get ¢;(z, w1, wp) : F3" — F.

1, z is the parent gate of wy, ws

oi(z, w1, wr) = ¢ 0, not parent-children but z, wy, w, € H™,

“go crazy”, otherwise.

The GKR construction of ¢~),- has individual degree ¢ slightly bigger than

|H| — 1. 2 onvensiry or
& TORONTO

CSC 2429: Derandomization 05 Mar 2024 16 /34

The GKR low-degree extension

Define &;_1 : F™ - IF

dio1(zil) = > ilzi-1, wa, wy) - NAND(&j(wr), &i(ws)).

wy,wr €HM

i means ith layer

zi_1 € F™ is a virtual gate

i is the low-degree extension of the circuit structure
NAND is the arithmetization of NAND gate

&
UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 17 /34

Oracle

Define y
f:{¢i:1§i§d}

and F is given to both the prover and the verifier as an oracle.

£
UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 18/34

The Bare-Bones Protocol

Bare-Bones Protocol (P7(x), V7 (x)):
Input x € {0,1}".
Circuit C: {0,1}" — {0, 1} with fan-in 2 of size S and depth d.

An oracle F computing (an extension of) the function specifying C.

Prover P wants to convince the verifier V that C(x) = 0.

Both prover and verifier have access to oracle F.

&
& UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 19/34

The Parameters

@ x: the input, and |x| =n

e S: circuit size, S = poly(n)

@ d: circuit depth, typically, we take d = polylog(S) = polylog(n)
o H: extension field of GF[2], |H| = n®%, and [H|™ = S

e m:since |H|™ =S, mis a big constant

e [F: extension field of H, |F| = poly(|H]|), but we cannot let |F| to be
bigger than n, so for example, |F| = n%3

&
& UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 20/34

In Phase /

zp is the output gate; set ryp = 0 since we assume C(x) = 0.

Goal

Reduce proving &;_1(zj—1) = ri—1 to proving that &;(z;) = r;. J

Within each phase, we do:
© sum-check protocol
@ 2-to-1 trick

£

UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 21/34

Before Sum-check

Goal 1

Reduce from proving &;_1(zj—1) = ri—1 to proving two points &;(wy) = v
and &;(wp) = va.

Goal 2

Make sure the verifier has a good runtime, i.e. poly(|H]).

&

UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 22/34

Sum-check

Recall

&i-1(zic1) = Y $i(zi-1, wa, we) - NAND(&;(wa), di(we))

wy,wr eH™
Define f, : F?2™ » F
fo(wi, wo) == Gi(zi—1, wr, wo) - NAND(&;(w1), &i(w2)).

Thus, we have

Gi—1(zic1) = Z fz (w1, wa).

wy,wr €H™

So we want to check

=y f(wi,w)

wi,wp eHM &
) UNIVERSITY OF

_ ® TORONTO
and define ri_1 9 1= ri_1.

CSC 2429: Derandomization 05 Mar 2024 23/34

Sum-check continued

&j—10 = Z f (W, wo)

wy,wr €EHM

di-11(x) = > f2(x, w12, ..., W, m, Wa)

W172,.‘,W1,m€H,M72€Hm

&j—12(x) = E f (W11, X, Wi 3, ..., Wi m, W2)
wi,3,..,w1, m €EH,wo € H™

di-13(x) = > fr(Wa,1, Wi 2, X, Wi 4, ooy W1, m, W)

w1 ,4,.., W1, m€EH,Wo cHM

Gi1om(x) = G(wig, ..., wim, w1, Wo,m—1,X)
¥ TORONTO

CSC 2429: Derandomization 05 Mar 2024 24 /34

Sum-check final

Finally, the verifier wants to check
f(W1, Wo) = ri—1om
Replace f, with its definition:
Gi(Z_1, Wy, Wa) - NAND(&; (1), &i(Wa)) = ri—1.0m
Prover sends vi = &;(wy) and vo = @;(wa).

UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 25 /34

N
2-to-1 Trick

Goal
Reduce from proving &;(w1) = vi and &;(wz) = v» to proving a single
point &,‘(Z,') =r.

Q Fixty,tp €F. Think t; =0,t, = 1.

@ Interpolate line v : F — F" s.t. y(t1) = wy,y(t2) = wa.
© Proversends f :==@; o0y :F — F. (or fake g; o ~).

Q \Verifier test f(t1) = v1, f(t2) = vo.

@ \Verifier pick a random t € F, thus z; = (t) and r; = f(t).

£

UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 26 /34

Properties

e Completeness: If C(x) =0, then
Pri(P7(x), V' (x)) =1] =1.
@ Soundness: If C(x) # 0, then for every (unbounded) prover P*,

. B 1
Pr[(P* (x), V7 (x)) =1] < 100"

&

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 27 /34

N
Proof of Soundness

Suppose that C(x) = 1 and there exists a cheating prover P* such that
Pr(P*, V) =1]=s

for some 0 < s < 1. We would like to show s < ﬁ as claimed in the main
theorem.

&
UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 28 /34

@ Let A denote the event (P*f, Vf) =1, i.e., the verifier eventually
accepts.

o Let T; denote the event that indeed &;(z;) = r;, where 0 </ < d.
Thus, C(x) # 0 means = Ty. Note that &;(z;) means the true
polynomial for layer i computed by an honest prover. The cheating
prover will give the verifier a fake polynomial g; (actually &jo, ..., &i2m
in the sum-check, and g; o 7y in the 2-to-1 trick).

@ Let E; denote the event that indeed &;(wi) = vi and &;(wz) = va, for
i € [d]. A cheating prover can send vi, v» such that it matches
gi(w1) = v1 and gi(w2) = va.

&
UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 29 /34

d
s = PrIAA=ToATg] < Pr3i € [d], AA~TiaAT <> PHAAST AT
i=1

PI’[A/\ Tz A T,] = PF[A AN=Tia ANTi A E,] + PF[A ATyt ANT; A —\E,']

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 30/34

4mé
PHAA T 1 ATiAE] <PHAA-Ti_1 AE] < %

Note that AA—T;_1 A Ej is the event that the cheating prover successfully
survive the sum-check protocol.

)

PHAA T, 1 A Ty A—E] < PHAA Ty A —E] < %'

Note that A A T; A —E; is the event that fake polynomial g; agrees with
the true &; on input z;.

&
UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 31/34

Therefore, 5 5 5
4dm m 5m
PF[A/\—\T,',l A Ti] <— 4+ =<
[E|] T
By union bound on d phases,
s= PI’[A/\—|T0/\ Td] < 5I|7;FF|15

Taking F such that |F| > 500md$ = poly(|H]), we get s < 135 as desired.

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 32/34

Q& A

Questions?

£

UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 33/34

References

[1] Yael Kalai. Talk on GKR based Zero-Knowledge Proofs workshop.
https://www.youtube.com/watch?v=x8pUxFptfb0

[2] Yael Kalai. Delegating Computation |. Talk on Cryptography Boot
Camp. https://www.youtube.com/watch?v=ExuEEZ0BjL8

[3] Shafi Goldwasser; Yael Tauman Kalai; Guy N. Rothblum. Delegating
computation: interactive proofs for muggles.
https://eccc.weizmann.ac.il/report/2017/108/

[4] Roei Tell. Mutilinear and Low-Degree Extensions. Unpublished
manuscript:
https://sites.google.com/site/roeitell/Expositions

&
%1 UNIVERSITY OF

& TORONTO

CSC 2429: Derandomization 05 Mar 2024 34/34

https://www.youtube.com/watch?v=x8pUxFptfb0
https://www.youtube.com/watch?v=ExuEEZOBjL8
https://eccc.weizmann.ac.il/report/2017/108/
https://sites.google.com/site/roeitell/Expositions

