Delegating Computation: Interactive Proofs for Muggles

Ziyang Jin ${ }^{1}$
${ }^{1}$ Theory Group
Department of Computer Science
University of Toronto

Intro

(*Images in the slides are stolen from Kalai's talks on YouTube) $\begin{gathered}\text { (unversir of } \\ \text { TORONTO }\end{gathered}$

The problem

We have seen interactive protocols where the prover has unbounded computational resources, and the verifier runs in probabilistic polynomial time.

Today we will see interactive proofs for muggles: The prover runs in probabilistic polynomial time (in other words, a "muggle"). The verifier runs in nearly-linear time (e.g. $O\left(n \log ^{k} n\right)$).

Why is it useful?

Delegating Computation

\prod_{0}^{1}Verifying should be much easier than computing! $\tilde{\delta}(|x|)$ Proving should not be much harder than computing! $\tilde{o}\left(T_{f}\right)$

Main theorem

Theorem (Goldwasser-Kalai-Rothblum '08)
Let L be a language that can be computed by a family of $O(\log (S))$-space uniform boolean circuits of size S and depth d. L has an interactive proof where:
(1) The prover runs in time poly (S). The verifier runs in time $n \cdot \operatorname{poly}(d, \log S)$ and space $O(\log (S))$.
(2) The protocol has perfect completeness and soundness $1 / 100$.
(3) The protocol is public-coin, with communication complexity d. polylog(S).

[Goldwasser-Kalai-Rothblum08]

Construct Interactive Proofs:

for functions f computable by (log-space uniform) circuits

Circuit

Circuit C:

- NAND gates only
- fan-in 2
- layered structure

Input $x \in\{0,1\}^{n}$
Circuit size is $S=\operatorname{poly}(n)$.
Circuit depth is $d=\operatorname{polylog}(n)$ typically.

[GKR08] Blueprint

Naive approach

[board work]

The GKR solution

[board work]

Padding each layer

You can think of the circuit evaluation as a table of width S and depth $d+1$.

layer 0:	1	0	0	0	0	0	\ldots	0
layer 1:	1	1	0	0	0	0	\ldots	0
layer 2:	1	0	1	1	0	0	\ldots	0
\vdots	\vdots							
layer $i:$	0	0	1	0	0	0	\ldots	0
layer $i+1:$	1	1	0	1	0	0	\ldots	0
\vdots	\vdots							
layer $d:$	0	1	1	1	1	1	\ldots	1

Every row i can be described by a function $\alpha_{i}:[S] \rightarrow\{0,1\}$.

Low Degree Extension 1

We have

$$
\alpha_{i}(g):[S] \rightarrow\{0,1\}
$$

where $g \in[S]$ is the name of a gate.
Now we one-to-one map each element $g \in[S]$ to an element $z \in \mathbb{H}^{m}$. $|\mathbb{H}|^{m}=S . \mathbb{H}$ is an extension field of $\mathbb{G} \mathbb{F}[2]$.

$$
\alpha_{i}^{\prime}(z): \mathbb{H}^{m} \rightarrow\{0,1\}
$$

where $z \in \mathbb{H}^{m}$ is the name of a gate.

Low Degree Extension 2

We have

$$
\alpha_{i}^{\prime}(z): \mathbb{H}^{m} \rightarrow\{0,1\}
$$

where $z \in \mathbb{H}^{m}$ is the name of a gate.

This is the low-degree extension:

$$
\tilde{\alpha}_{i}(z): \mathbb{F}^{m} \rightarrow \mathbb{F}
$$

where \mathbb{F} is an extension field of \mathbb{H}, so $\mathbb{H} \subseteq \mathbb{F} . \tilde{\alpha}_{i}(z)$ is a low-degree polynomial, and $\tilde{\alpha}_{i}(z)$ agrees with $\alpha_{i}^{\prime}(z)$ on \mathbb{H}^{m}.

Standard Low Degree Extension

You have a binary array (or truth table, or a layer of gate outputs) $\vec{w} \in\{0,1\}^{S}$.

$$
\vec{w}=\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 0 & \ldots & 0
\end{array}
$$

Suppose $\vec{w}=w_{1}, w_{2}, \ldots, w_{S}$. Equivalently, $\vec{w}=w_{1}, w_{2}, \ldots, w_{|\mathbb{H}|^{m}}$.
The low-degree extension $\tilde{\alpha}(z): \mathbb{F}^{m} \rightarrow \mathbb{F}$ is

$$
\tilde{\alpha}(z)=\sum_{t \in \mathbb{H}^{m}} \tilde{\beta}(z, t) \cdot w_{t}
$$

where $\tilde{\beta}(z, t)=1$ if $z=t$; and $\tilde{\beta}(z, t)=0$ if $z \neq t$ and $z \in \mathbb{H}^{m}$; and $\tilde{\beta}(z, t)$ can "go crazy" when $z \in \mathbb{F}^{m} \backslash \mathbb{H}^{m}$.

Important Claim

Claim
When $\tilde{\alpha}(z)$ has individual degree at most $|\mathbb{H}|-1$, thus total degree $m \cdot(|\mathbb{H}|-1)$, the low-degree extension is unique.
!!!
We will use a different low-degree extension for gate output layers.
!!!
We will only apply the standard low-degree extension to the input x.

Circuit structure function

Define the circuit structure function $\phi_{i}\left(z, w_{1}, w_{2}\right): \mathbb{H}^{3 m} \rightarrow\{0,1\}$

$$
\phi_{i}\left(z, w_{1}, w_{2}\right)= \begin{cases}1, & z \text { is the parent gate of } w_{1}, w_{2} \\ 0, & \text { otherwise }\end{cases}
$$

Low-degree extend it, we get $\tilde{\phi}_{i}\left(z, w_{1}, w_{2}\right): \mathbb{F}^{3 m} \rightarrow \mathbb{F}$.

$$
\tilde{\phi}_{i}\left(z, w_{1}, w_{2}\right)= \begin{cases}1, & z \text { is the parent gate of } w_{1}, w_{2} \\ 0, & \text { not parent-children but } z, w_{1}, w_{2} \in \mathbb{H}^{m}, \\ \text { "go crazy", } & \text { otherwise. }\end{cases}
$$

The GKR construction of $\tilde{\phi}_{i}$ has individual degree δ slightly bigger than $|\mathbb{H}|-1$.

The GKR low-degree extension

Define $\tilde{\alpha}_{i-1}: \mathbb{F}^{m} \rightarrow \mathbb{F}$

$$
\tilde{\alpha}_{i-1}\left(z_{i-1}\right)=\sum_{w_{1}, w_{2} \in \mathbb{H}^{m}} \tilde{\phi}_{i}\left(z_{i-1}, w_{1}, w_{2}\right) \cdot \operatorname{NA\tilde {ND}}\left(\tilde{\alpha}_{i}\left(w_{1}\right), \tilde{\alpha}_{i}\left(w_{2}\right)\right) .
$$

- i means i th layer
- $z_{i-1} \in \mathbb{F}^{m}$ is a virtual gate
- $\tilde{\phi}_{i}$ is the low-degree extension of the circuit structure
- NAÑND is the arithmetization of NAND gate

Oracle

Define

$$
\mathcal{F}=\left\{\tilde{\phi}_{i}: 1 \leq i \leq d\right\}
$$

and \mathcal{F} is given to both the prover and the verifier as an oracle.

The Bare-Bones Protocol

Bare-Bones Protocol $\left(\mathcal{P}^{\mathcal{F}}(x), \mathcal{V}^{\mathcal{F}}(x)\right)$:

- Input $x \in\{0,1\}^{n}$.
- Circuit $C:\{0,1\}^{n} \rightarrow\{0,1\}$ with fan-in 2 of size S and depth d.
- An oracle \mathcal{F} computing (an extension of) the function specifying C.
- Prover \mathcal{P} wants to convince the verifier \mathcal{V} that $C(x)=0$.
- Both prover and verifier have access to oracle \mathcal{F}.

The Parameters

- x : the input, and $|x|=n$
- S : circuit size, $S=\operatorname{poly}(n)$
- d : circuit depth, typically, we take $d=\operatorname{polylog}(S)=\operatorname{polylog}(n)$
- \mathbb{H} : extension field of $\mathbb{G} \mathbb{F}[2],|\mathbb{H}|=n^{0.01}$, and $|\mathbb{H}|^{m}=S$
- m : since $|\mathbb{H}|^{m}=S, m$ is a big constant
- \mathbb{F} : extension field of $\mathbb{H},|\mathbb{F}|=\operatorname{poly}(|\mathbb{H}|)$, but we cannot let $|\mathbb{F}|$ to be bigger than n, so for example, $|\mathbb{F}|=n^{0.3}$

In Phase i

z_{0} is the output gate; set $r_{0}=0$ since we assume $C(x)=0$.
Goal
Reduce proving $\tilde{\alpha}_{i-1}\left(z_{i-1}\right)=r_{i-1}$ to proving that $\tilde{\alpha}_{i}\left(z_{i}\right)=r_{i}$.
Within each phase, we do:
(1) sum-check protocol
(2) 2-to-1 trick

Before Sum-check

Goal 1

Reduce from proving $\tilde{\alpha}_{i-1}\left(z_{i-1}\right)=r_{i-1}$ to proving two points $\tilde{\alpha}_{i}\left(w_{1}\right)=v_{1}$ and $\tilde{\alpha}_{i}\left(w_{2}\right)=v_{2}$.

Goal 2
Make sure the verifier has a good runtime, i.e. poly $(|\mathbb{H}|)$.

Sum-check

Recall

$$
\tilde{\alpha}_{i-1}\left(z_{i-1}\right)=\sum_{w_{1}, w_{2} \in \mathbb{H}^{m}} \tilde{\phi}_{i}\left(z_{i-1}, w_{1}, w_{2}\right) \cdot \operatorname{NAND}\left(\tilde{\alpha}_{i}\left(w_{1}\right), \tilde{\alpha}_{i}\left(w_{2}\right)\right)
$$

Define $f_{z}: \mathbb{F}^{2 m} \rightarrow \mathbb{F}$

$$
f_{z}\left(w_{1}, w_{2}\right):=\tilde{\phi}_{i}\left(z_{i-1}, w_{1}, w_{2}\right) \cdot \operatorname{NAND}\left(\tilde{\alpha}_{i}\left(w_{1}\right), \tilde{\alpha}_{i}\left(w_{2}\right)\right) .
$$

Thus, we have

$$
\tilde{\alpha}_{i-1}\left(z_{i-1}\right)=\sum_{w_{1}, w_{2} \in \mathbb{H}^{m}} f_{z}\left(w_{1}, w_{2}\right)
$$

So we want to check

$$
r_{i-1}=\sum_{w_{1}, w_{2} \in \mathbb{H}^{m}} f_{z}\left(w_{1}, w_{2}\right)
$$

and define $r_{i-1,0}:=r_{i-1}$.

Sum-check continued

$$
\begin{gathered}
\tilde{\alpha}_{i-1,0}=\sum_{\vec{w}_{1}, \overrightarrow{w_{2}} \in \mathbb{H}^{m}} f_{z}\left(\vec{w}_{1}, \overrightarrow{w_{2}}\right) \\
\tilde{\alpha}_{i-1,1}(x)=\sum_{w_{1,2}, . ., w_{1, m} \in \mathbb{H}_{, w_{2} \in \mathbb{H}^{m}}} f_{z}\left(x, w_{1,2}, \ldots, w_{1, m}, \vec{w}_{2}\right) \\
\tilde{\alpha}_{i-1,2}(x)=\sum_{w_{1,3}, \ldots, w_{1, m} \in \mathbb{H}_{1}, \vec{w}_{2} \in \mathbb{H}^{m}} f_{z}\left(w_{1,1}, x, w_{1,3}, \ldots, w_{1, m}, \vec{w}_{2}\right) \\
\tilde{\alpha}_{i-1,3}(x)=\sum_{w_{1,4}, \ldots, w_{1, m} \in \mathbb{H}, \overrightarrow{w_{2}} \in \mathbb{H}^{m}} f_{z}\left(w_{1,1}, w_{1,2}, x, w_{1,4}, \ldots, w_{1, m}, \overrightarrow{w_{2}}\right) \\
\tilde{\alpha}_{i-1,2 m}(x)=f_{z}\left(w_{1,1}, \ldots, w_{1, m}, w_{2,1}, \ldots, w_{2, m-1}, x\right)
\end{gathered}
$$

Sum-check final

Finally, the verifier wants to check

$$
f_{z}\left(\vec{w}_{1}, \vec{w}_{2}\right)=r_{i-1,2 m}
$$

Replace f_{z} with its definition:

$$
\tilde{\phi}_{i}\left(\vec{z}_{i-1}, \vec{w}_{1}, \vec{w}_{2}\right) \cdot \operatorname{NAND}\left(\tilde{\alpha}_{i}\left(\vec{w}_{1}\right), \tilde{\alpha}_{i}\left(\vec{w}_{2}\right)\right)=r_{i-1,2 m}
$$

Prover sends $v_{1}=\tilde{\alpha}_{i}\left(\vec{w}_{1}\right)$ and $v_{2}=\tilde{\alpha}_{i}\left(\vec{w}_{2}\right)$.

2-to-1 Trick

Goal

Reduce from proving $\tilde{\alpha}_{i}\left(w_{1}\right)=v_{1}$ and $\tilde{\alpha}_{i}\left(w_{2}\right)=v_{2}$ to proving a single point $\tilde{\alpha}_{i}\left(z_{i}\right)=r_{i}$.
(1) Fix $t_{1}, t_{2} \in \mathbb{F}$. Think $t_{1}=0, t_{2}=1$.
(2) Interpolate line $\gamma: \mathbb{F} \rightarrow \mathbb{F}^{m}$ s.t. $\gamma\left(t_{1}\right)=w_{1}, \gamma\left(t_{2}\right)=w_{2}$.
(3) Prover sends $f:=\tilde{\alpha}_{i} \circ \gamma: \mathbb{F} \rightarrow \mathbb{F}$. (or fake $\tilde{g}_{i} \circ \gamma$).
(9) Verifier test $f\left(t_{1}\right)=v_{1}, f\left(t_{2}\right)=v_{2}$.
(5) Verifier pick a random $t \in \mathbb{F}$, thus $z_{i}=\gamma(t)$ and $r_{i}=f(t)$.

Properties

- Completeness: If $C(x)=0$, then

$$
\operatorname{Pr}\left[\left(\mathcal{P}^{\mathcal{F}}(x), \mathcal{V}^{\mathcal{F}}(x)\right)=1\right]=1
$$

- Soundness: If $C(x) \neq 0$, then for every (unbounded) prover \mathcal{P}^{*},

$$
\operatorname{Pr}\left[\left(\mathcal{P}^{* \mathcal{F}}(x), \mathcal{V}^{\mathcal{F}}(x)\right)=1\right] \leq \frac{1}{100}
$$

Proof of Soundness

Suppose that $C(x)=1$ and there exists a cheating prover \mathcal{P}^{*} such that

$$
\operatorname{Pr}\left[\left(\mathcal{P}^{* \mathcal{F}}, \mathcal{V}^{\mathcal{F}}\right)=1\right]=s
$$

for some $0 \leq s \leq 1$. We would like to show $s \leq \frac{1}{100}$ as claimed in the main theorem.

- Let A denote the event $\left(\mathcal{P}^{* \mathcal{F}}, \mathcal{V}^{\mathcal{F}}\right)=1$, i.e., the verifier eventually accepts.
- Let T_{i} denote the event that indeed $\tilde{\alpha}_{i}\left(z_{i}\right)=r_{i}$, where $0 \leq i \leq d$. Thus, $C(x) \neq 0$ means $\neg T_{0}$. Note that $\tilde{\alpha}_{i}\left(z_{i}\right)$ means the true polynomial for layer i computed by an honest prover. The cheating prover will give the verifier a fake polynomial \tilde{g}_{i} (actually $\tilde{g}_{i, 0}, \ldots, \tilde{g}_{i, 2 m}$ in the sum-check, and $\tilde{g}_{i} \circ \gamma$ in the 2-to- 1 trick).
- Let E_{i} denote the event that indeed $\tilde{\alpha}_{i}\left(w_{1}\right)=v_{1}$ and $\tilde{\alpha}_{i}\left(w_{2}\right)=v_{2}$, for $i \in[d]$. A cheating prover can send v_{1}, v_{2} such that it matches $\tilde{g}_{i}\left(w_{1}\right)=v_{1}$ and $\tilde{g}_{i}\left(w_{2}\right)=v_{2}$.

$$
\begin{aligned}
& s=\operatorname{Pr}\left[A \wedge \neg T_{0} \wedge T_{d}\right] \leq \operatorname{Pr}\left[\exists i \in[d], A \wedge \neg T_{i-1} \wedge T_{i}\right] \leq \sum_{i=1}^{d} \operatorname{Pr}\left[A \wedge \neg T_{i-1} \wedge T_{i}\right] \\
& \operatorname{Pr}\left[A \wedge \neg T_{i-1} \wedge T_{i}\right]=\operatorname{Pr}\left[A \wedge \neg T_{i-1} \wedge T_{i} \wedge E_{i}\right]+\operatorname{Pr}\left[A \wedge \neg T_{i-1} \wedge T_{i} \wedge \neg E_{i}\right]
\end{aligned}
$$

$$
\operatorname{Pr}\left[A \wedge \neg T_{i-1} \wedge T_{i} \wedge E_{i}\right] \leq \operatorname{Pr}\left[A \wedge \neg T_{i-1} \wedge E_{i}\right] \leq \frac{4 m \delta}{|\mathbb{F}|}
$$

Note that $A \wedge \neg T_{i-1} \wedge E_{i}$ is the event that the cheating prover successfully survive the sum-check protocol.

$$
\operatorname{Pr}\left[A \wedge \neg T_{i-1} \wedge T_{i} \wedge \neg E_{i}\right] \leq \operatorname{Pr}\left[A \wedge T_{i} \wedge \neg E_{i}\right] \leq \frac{m \delta}{|\mathbb{F}|}
$$

Note that $A \wedge T_{i} \wedge \neg E_{i}$ is the event that fake polynomial \tilde{g}_{i} agrees with the true $\tilde{\alpha}_{i}$ on input z_{i}.

Therefore,

$$
\operatorname{Pr}\left[A \wedge \neg T_{i-1} \wedge T_{i}\right] \leq \frac{4 m \delta}{|\mathbb{F}|}+\frac{m \delta}{|\mathbb{F}|} \leq \frac{5 m \delta}{|\mathbb{F}|}
$$

By union bound on d phases,

$$
s=\operatorname{Pr}\left[A \wedge \neg T_{0} \wedge T_{d}\right] \leq \frac{5 m d \delta}{|\mathbb{F}|}
$$

Taking \mathbb{F} such that $|\mathbb{F}| \geq 500 m d \delta=\operatorname{poly}(|\mathbb{H}|)$, we get $s \leq \frac{1}{100}$ as desired.

Q \& A

Questions?

References

[1] Yael Kalai. Talk on GKR based Zero-Knowledge Proofs workshop. https://www.youtube.com/watch?v=x8pUxFptfb0 [2] Yael Kalai. Delegating Computation I. Talk on Cryptography Boot Camp. https://www.youtube.com/watch?v=ExuEEZOBjL8 [3] Shafi Goldwasser; Yael Tauman Kalai; Guy N. Rothblum. Delegating computation: interactive proofs for muggles. https://eccc.weizmann.ac.il/report/2017/108/ [4] Roei Tell. Mutilinear and Low-Degree Extensions. Unpublished manuscript:
https://sites.google.com/site/roeitell/Expositions

