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Intro

(*Images in the slides are stolen from Kalai’s talks on YouTube)
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The problem

We have seen interactive protocols where the prover has unbounded
computational resources, and the verifier runs in probabilistic polynomial
time.

Today we will see interactive proofs for muggles: The prover runs in
probabilistic polynomial time (in other words, a “muggle”). The verifier
runs in nearly-linear time (e.g. O(n logk n)).
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Why is it useful?
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Main theorem

Theorem (Goldwasser-Kalai-Rothblum ’08)

Let L be a language that can be computed by a family of O(log(S))-space
uniform boolean circuits of size S and depth d . L has an interactive proof
where:

1 The prover runs in time poly(S). The verifier runs in time
n · poly(d , log S) and space O(log(S)).

2 The protocol has perfect completeness and soundness 1/100.

3 The protocol is public-coin, with communication complexity
d · polylog(S).
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Circuit

Circuit C :

NAND gates only

fan-in 2

layered structure

Input x ∈ {0, 1}n
Circuit size is S = poly(n).
Circuit depth is d = polylog(n) typically.
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Naive approach

[board work]
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The GKR solution

[board work]
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Padding each layer

You can think of the circuit evaluation as a table of width S and depth
d + 1.

layer 0 : 1 0 0 0 0 0 . . . 0
layer 1 : 1 1 0 0 0 0 . . . 0
layer 2 : 1 0 1 1 0 0 . . . 0

...
...

layer i : 0 0 1 0 0 0 . . . 0
layer i + 1 : 1 1 0 1 0 0 . . . 0

...
...

layer d : 0 1 1 1 1 1 . . . 1

Every row i can be described by a function αi : [S ] → {0, 1}.
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Low Degree Extension 1

We have
αi (g) : [S ] → {0, 1}

where g ∈ [S ] is the name of a gate.

Now we one-to-one map each element g ∈ [S ] to an element z ∈ Hm.
|H|m = S . H is an extension field of GF[2].

α′
i (z) : Hm → {0, 1}

where z ∈ Hm is the name of a gate.

Z. Jin CSC 2429: Derandomization 05 Mar 2024 12 / 34



Low Degree Extension 2

We have
α′
i (z) : Hm → {0, 1}

where z ∈ Hm is the name of a gate.

This is the low-degree extension:

α̃i (z) : Fm → F

where F is an extension field of H, so H ⊆ F. α̃i (z) is a low-degree
polynomial, and α̃i (z) agrees with α′

i (z) on Hm.
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Standard Low Degree Extension

You have a binary array (or truth table, or a layer of gate outputs)
w⃗ ∈ {0, 1}S .

w⃗ = 1 0 1 0 0 0 . . . 0

Suppose w⃗ = w1,w2, ...,wS . Equivalently, w⃗ = w1,w2, ...,w|H|m .

The low-degree extension α̃(z) : Fm → F is

α̃(z) =
∑
t∈Hm

β̃(z , t) · wt

where β̃(z , t) = 1 if z = t;
and β̃(z , t) = 0 if z ̸= t and z ∈ Hm;
and β̃(z , t) can “go crazy” when z ∈ Fm \Hm.
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Important Claim

Claim

When α̃(z) has individual degree at most |H| − 1, thus total degree
m · (|H| − 1), the low-degree extension is unique.

!!!

We will use a different low-degree extension for gate output layers.

!!!

We will only apply the standard low-degree extension to the input x .
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Circuit structure function

Define the circuit structure function ϕi (z ,w1,w2) : H3m → {0, 1}

ϕi (z ,w1,w2) =

{
1, z is the parent gate of w1,w2

0, otherwise.

Low-degree extend it, we get ϕ̃i (z ,w1,w2) : F3m → F.

ϕ̃i (z ,w1,w2) =


1, z is the parent gate of w1,w2

0, not parent-children but z ,w1,w2 ∈ Hm,

“go crazy”, otherwise.

The GKR construction of ϕ̃i has individual degree δ slightly bigger than
|H| − 1.

Z. Jin CSC 2429: Derandomization 05 Mar 2024 16 / 34



The GKR low-degree extension

Define α̃i−1 : Fm → F

α̃i−1(zi−1) =
∑

w1,w2∈Hm

ϕ̃i (zi−1,w1,w2) · ˜NAND(α̃i (w1), α̃i (w2)).

i means ith layer

zi−1 ∈ Fm is a virtual gate

ϕ̃i is the low-degree extension of the circuit structure

˜NAND is the arithmetization of NAND gate

Z. Jin CSC 2429: Derandomization 05 Mar 2024 17 / 34



Oracle

Define
F = {ϕ̃i : 1 ≤ i ≤ d}

and F is given to both the prover and the verifier as an oracle.
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The Bare-Bones Protocol

Bare-Bones Protocol (PF (x),VF (x)):

Input x ∈ {0, 1}n.
Circuit C : {0, 1}n → {0, 1} with fan-in 2 of size S and depth d .

An oracle F computing (an extension of) the function specifying C .

Prover P wants to convince the verifier V that C (x) = 0.

Both prover and verifier have access to oracle F .
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The Parameters

x : the input, and |x | = n

S : circuit size, S = poly(n)

d : circuit depth, typically, we take d = polylog(S) = polylog(n)

H: extension field of GF[2], |H| = n0.01, and |H|m = S

m : since |H|m = S , m is a big constant

F: extension field of H, |F| = poly(|H|), but we cannot let |F| to be
bigger than n, so for example, |F| = n0.3
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In Phase i

z0 is the output gate; set r0 = 0 since we assume C (x) = 0.

Goal

Reduce proving α̃i−1(zi−1) = ri−1 to proving that α̃i (zi ) = ri .

Within each phase, we do:

1 sum-check protocol

2 2-to-1 trick
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Before Sum-check

Goal 1

Reduce from proving α̃i−1(zi−1) = ri−1 to proving two points α̃i (w1) = v1
and α̃i (w2) = v2.

Goal 2

Make sure the verifier has a good runtime, i.e. poly(|H|).
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Sum-check

Recall

α̃i−1(zi−1) =
∑

w1,w2∈Hm

ϕ̃i (zi−1,w1,w2) · ˜NAND(α̃i (w1), α̃i (w2))

Define fz : F2m → F

fz(w1,w2) := ϕ̃i (zi−1,w1,w2) · ˜NAND(α̃i (w1), α̃i (w2)).

Thus, we have
α̃i−1(zi−1) =

∑
w1,w2∈Hm

fz(w1,w2).

So we want to check

ri−1 =
∑

w1,w2∈Hm

fz(w1,w2)

and define ri−1,0 := ri−1.
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Sum-check continued

α̃i−1,0 =
∑

w⃗1,w⃗2∈Hm

fz(w⃗1, w⃗2)

α̃i−1,1(x) =
∑

w1,2,..,w1,m∈H,w⃗2∈Hm

fz(x ,w1,2, ...,w1,m, w⃗2)

α̃i−1,2(x) =
∑

w1,3,..,w1,m∈H,w⃗2∈Hm

fz(w1,1, x ,w1,3, ...,w1,m, w⃗2)

α̃i−1,3(x) =
∑

w1,4,..,w1,m∈H,w⃗2∈Hm

fz(w1,1,w1,2, x ,w1,4, ...,w1,m, w⃗2)

. . .

α̃i−1,2m(x) = fz(w1,1, ...,w1,m,w2,1, ...,w2,m−1, x)
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Sum-check final

Finally, the verifier wants to check

fz(w⃗1, w⃗2) = ri−1,2m

Replace fz with its definition:

ϕ̃i (z⃗i−1, w⃗1, w⃗2) · ˜NAND(α̃i (w⃗1), α̃i (w⃗2)) = ri−1,2m

Prover sends v1 = α̃i (w⃗1) and v2 = α̃i (w⃗2).
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2-to-1 Trick

Goal

Reduce from proving α̃i (w1) = v1 and α̃i (w2) = v2 to proving a single
point α̃i (zi ) = ri .

1 Fix t1, t2 ∈ F. Think t1 = 0, t2 = 1.

2 Interpolate line γ : F → Fm s.t. γ(t1) = w1, γ(t2) = w2.

3 Prover sends f := α̃i ◦ γ : F → F. (or fake g̃i ◦ γ).
4 Verifier test f (t1) = v1, f (t2) = v2.

5 Verifier pick a random t ∈ F, thus zi = γ(t) and ri = f (t).
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Properties

Completeness: If C (x) = 0, then

Pr[(PF (x),VF (x)) = 1] = 1.

Soundness: If C (x) ̸= 0, then for every (unbounded) prover P∗,

Pr[(P∗F (x),VF (x)) = 1] ≤ 1

100
.
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Proof of Soundness

Suppose that C (x) = 1 and there exists a cheating prover P∗ such that

Pr[(P∗F ,VF ) = 1] = s

for some 0 ≤ s ≤ 1. We would like to show s ≤ 1
100 as claimed in the main

theorem.
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Let A denote the event (P∗F ,VF ) = 1, i.e., the verifier eventually
accepts.

Let Ti denote the event that indeed α̃i (zi ) = ri , where 0 ≤ i ≤ d .
Thus, C (x) ̸= 0 means ¬T0. Note that α̃i (zi ) means the true
polynomial for layer i computed by an honest prover. The cheating
prover will give the verifier a fake polynomial g̃i (actually g̃i ,0, ..., g̃i ,2m
in the sum-check, and g̃i ◦ γ in the 2-to-1 trick).

Let Ei denote the event that indeed α̃i (w1) = v1 and α̃i (w2) = v2, for
i ∈ [d ]. A cheating prover can send v1, v2 such that it matches
g̃i (w1) = v1 and g̃i (w2) = v2.
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s = Pr[A∧¬T0∧Td ] ≤ Pr[∃i ∈ [d ],A∧¬Ti−1∧Ti ] ≤
d∑

i=1

Pr[A∧¬Ti−1∧Ti ]

Pr[A∧¬Ti−1 ∧Ti ] = Pr[A ∧ ¬Ti−1 ∧ Ti ∧ Ei ] + Pr[A ∧ ¬Ti−1 ∧ Ti ∧ ¬Ei ]
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Pr[A ∧ ¬Ti−1 ∧ Ti ∧ Ei ] ≤ Pr[A ∧ ¬Ti−1 ∧ Ei ] ≤
4mδ

|F|
Note that A∧¬Ti−1 ∧ Ei is the event that the cheating prover successfully
survive the sum-check protocol.

Pr[A ∧ ¬Ti−1 ∧ Ti ∧ ¬Ei ] ≤ Pr[A ∧ Ti ∧ ¬Ei ] ≤
mδ

|F|

Note that A ∧ Ti ∧ ¬Ei is the event that fake polynomial g̃i agrees with
the true α̃i on input zi .
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Therefore,

Pr[A ∧ ¬Ti−1 ∧ Ti ] ≤
4mδ

|F|
+

mδ

|F|
≤ 5mδ

|F|
By union bound on d phases,

s = Pr[A ∧ ¬T0 ∧ Td ] ≤
5mdδ

|F|

Taking F such that |F| ≥ 500mdδ = poly(|H|), we get s ≤ 1
100 as desired.
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Q & A

Questions?
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