
CSC 310: Information Theory Winter 2026

Tutorial 5: Arithmetic Coding, Integer Code, and LZ Compression
Instructor: Swastik Kopparty TA: Ziyang Jin

Date: 04 Feb 2026

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

5.1 Arithmetic Coding

Consider running the arithmetic coding on a distribution X1, . . . , Xn on Σn, where Σ = {0, 1, 2, 3, 4, . . . , 15}.
Random variable X1 is uniform on Σ, and for each i ∈ {1, . . . , n− 1}, we have

Xi+1 =

{
Xi, with prob. 1/2;

Xi + 1, with prob. 1/2.

Note that Xi + 1 is computed mod 16.

What is H(X1, . . . , Xn)? First, we compute H(X1) = 16× 1
16 × log 16 = 4. Observe that this is a Markov

source (Xi+1 only depends on Xi). Given Xi, random variable Xi+1 is uniformly distributed among a set
of two elements. Therefore, we have H(Xi+1|Xi) = 2 × 1

2 × log 2 = 1. Applying the chain rule, we get the
joint entropy

H(X1, . . . ,Hn) = H(X1, . . . , Xn−1) +H(Xn|X1, . . . , Xn−1)

= H(X1, . . . , Xn−2) +H(Xn−1|X1, . . . , Xn−2) +H(Xn|X1, . . . , Xn−1)

= H(X1) +

n−1∑
i=1

H(Xi+1|X1, . . . , Xi)

= H(X1) +

n−1∑
i=1

H(Xi+1|Xi) (due to Markov source)

= 4 + (n− 1) · 1
= n+ 3.

How good was the compression? For arithmetic coding, the best achievable expected code length is
the joint entropy H(X1, . . . , Xn), up to a small constant. Therefore, running the arithmetic coding will give
us expected compression length n+3 bits. The per-symbol compression rate will be (n+3)/n = 1+ 3

n → 1
as n → ∞.

What happens if (1/2, 1/2) got replaced by (1/4, 3/4)? What if it was (0, 1)? In this case (1/4, 3/4),
we have the conditional entropy

H(Xi+1|Xi) =
1

4
× log 4 +

3

4
× log

4

3
=

1

2
+

3

4
(2− log 3) = 2− 3

4
log 3 ≈ 0.81.

5-1

5-2 Tutorial 5: Arithmetic Coding, Integer Code, and LZ Compression

As a result, the joint entropy becomes

H(X1, . . . ,Hn) = 4 + (n− 1)(2− 3

4
log 3) ≈ 4 + 0.81(n− 1).

This is smaller than n+3 we had in the original (1/2, 1/2) setup. The expected length will also be 4+ (n−
1)(2− 3

4 log 3), which is shorter than the original setup.

If it was (0, 1), then we have the conditional entropy H(Xi+1|Xi) = 0 as Xi uniquely determines Xi+1. As
a result, the joint entropy becomes H(X1, . . . ,Hn) = 4. The expected compression length is 4 bits. As long
as you know the first symbol c ∈ Σ, the next symbols will be (c+ 1), (c+ 2), ... mod 16.

5.2 Quiz Time

We will take a 15-minute quiz.

5.3 Integer Code

An integer code is a mapping C : N → {0, 1}∗ that maps an integer to a binary string. Integer code
is prefix-free, and is decodable without external delimiters. Unlike Huffman codes, integer codes do not
depend on a specific probability distribution. The goal of integer code is to represent an integer using a
variable-length binary string without needing to know an upper bound in advance, while keeping the code
uniquely decodable.

Example. Let’s encode integer 93 using integer code. First, the binary representation of 93 is 1011101 as
1 + 4 + 8 + 16 + 64 = 93. This is 7 bits long. So we write 111 as the binary representation of 7 and then
insert 0’s to 111 every other location. As a result, it becomes 010101, which will be a representation of 7 in
our integer code. Then we append a 1 to indicate the end of the “length indicator”. After that, we append
1011101, which is the binary representation of 93.

Therefore, the final code is 010101||1||1011101 = 01010111011101. This is in total 6 + 1 + 7 = 14 bits.

In general, for an integer n, encoding it using integer code following the above encoding procedure requires
2⌈log (⌈log n⌉)⌉+ 1 + ⌈log n⌉ bits.

5.4 Lempel–Ziv Compression

The method of Lempel-Ziv (LZ) compression is to replace a substring with a pointer to an earlier occurrence
of the same substring. There are several versions of LZ compression algorithm, and we use the verion in the
textbook Information Theory, Inference, and Learning Algorithms by David J. Mackay.

Consider running LZ compression to compress a string made of 0’s and 1’s, each sampled independently and
identically with probability of 1 equal to 1/100. Observe the string is mostly 0’s and occasionally has 1’s.
We can think of the string as runs of zeros separated by ones:

0L110L210L31 . . .

where each Li has expected length 99. For a string of length n, the expected number of 1’s is n/100.
Therefore, since 1 appears not so frequently, we are okay paying 1 bit to encode 1. If many zeros appear,

Tutorial 5: Arithmetic Coding, Integer Code, and LZ Compression 5-3

it is highly likely to appear in the dictionary built by LZ compression so far, so we can just point to the
previous occurrence of zeros.

If, at the nth bit, we have enumerated s(n) substrings, then we can give the value of the pointer in ⌈log s(n)⌉
bits. Observe that using 7 bits, we can index all 27 = 128 entries of the LZ dictionary, which contains entries
λ, 0, 00, 000, . . . , 0 . . . 0 where the last one has 127 zeros. The concentration bounds tells us that most Li’s
will be falling into interval [99− ϵ · 99, 99 + ϵ · 99] for some constant ϵ > 0. Roughly speaking, we can use 7
bits to represent 99 bits. So it compresses quite a lot. When n goes to infinity, this actually compresses to
a per symbol cost of H2(1/100).

