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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

1.1 Markov’s Inequality and Chebyshev’s Inequality

Theorem 1.1 (Markov’s Inequality) Let X be a non-negative random variable. Then for any a > 0,

&=

x]

Pr[X >a] <

Proof: Note that

E[X] =Pr[X < a]-E[X|X < a] +Pr[X > q] - E[X|X > q

> Pr[X > a]-E[X|X > d (since X is non-negative)
>Pr[X >a]-a (since E[X|X > a] > a).
Reordering the terms, we obtain
Pr[X >a] < E[jﬂ
as wanted. ]

Theorem 1.2 (Chebyshev’s Inequality) Let X be a random variable. Let p = E[X] and let 0% = Var(X)

(the variance). Then for any k > 0,
2

Pr{lX —pl>k < 7

SR
Proof: Note that
Pr(|X — p|> K]
= Pr[(X — p)? > k?] (squaring on both sides)
E[(X — u)?
< % (apply Markov’s inequality on r.v. (X — p)?)
0'2 . 2
=1z (since Var(X) = E[(X — p)7)).

Alternatively, when o2 > 0 (the non-trivial case), we can also write Chebyshev’s inequality as follows:
1
Pr[|X — u|> ko] < w2
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Remark 1.3 Markov’s inequality, Chebyshev’s inequality, and Chernoff bounds are also known as concen-
tration bounds. The rule of thumb for concentration bounds is that the more information you have, the better
bound you can obtain. If you only know the expectation and non-negativity of the random variable, then you
can use Markov’s inequality. If you also know the variance of the random variable, you can use Chebyshev’s
inequality. In the future, we will also look at Chernoff bounds, which applies specifically to the sum of n
idependent coin tosses.

1.2 Concentration of n Independent Random Bits

Let X1,..., X, be n independent random variables, and for ¢ € [n] (where [n] denotes {1,2,...,n}),

X — 1 with probability p,
" 10 with probability 1 — p.
We can see that each X; is an independent random bit, and we have a string of n independent random bits.
Let random variable X = " | X;. Thus, X can be interpreted as the total number of 1’s among these

n independent random bits. You can also view X as a binomial random variable with n trials and with
probability p. By knowledge of binomial random variable, we have

E[X] = np,
Var(X) = np(1 — p).
By Chebyshev’s inequality (assuming 0 < p < 1), we have
1

Pr[1X = npl> k/mp(1 = p)] < 1. (1.1)

Plugging k = \/% where € > 0 is a constant into (1.1), we obtain
p(l—p
1
Pr{|X —np|>en] < —5—. (1.2)
p(1-p)"
Note that p(fiip) is just some constant. Thus, we have
1
Pr[|X —np|>en] <O () =o(1) (1.3)
n

as n — oo. This says that Pr[|X — np|> en] can be arbitrarily small for sufficiently large n. For example,
if we take € = 0.001,p = 0.5,n = 2.5 x 107, then Pr[|X — np|> 0.001n] < 0.01, which means 99% of the
outcomes lie within the interval [np — 0.001n, np + 0.001n]. Equation (1.3) is the conclusion we will use in
future classes.

1.3 Entropy Computation and Compression

Consider a discrete random variable Y with alphabet {a,b, ¢} defined as follows:

a w.prob. %,
Y =<b w.prob. %,
¢ w.prob. i.
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We compute the entropy of Y as follows:
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Consider a random string s of length n, where each character is generated independently by Y. To naively
represent s in binary, since there are 3 outcomes a,b,c, we can use [log, 3] = 2 bits to represent each
character. Since there are n characters, the naive encoding takes a total of 2n bits.

To compress it, we can use a single bit “0” to represent a, and use two bits “10” to represent b, and use two
bits “11” to represent c. Intuitively, since a appears more frequently, we should use fewer bits to represent a,
and since b and ¢ appear less frequently, so we are okay with using more bits to represent them. Under this
representation, a is expected to appear 4 times in s, and b and c are expected to appear 7§ each. Therefore,
the expected length of such encoding is 1 x § +2 x 7 +2 x 7 = 1.5n.

Claim 1.4 The encoding scheme above takes (1.5 + €)n bits with probability > 0.999 for sufficiently large n.

Ezercise: Use Chebyshev’s inequality to convince yourself that the claim above is true.



