
Entropy Compression on Frugal Colouring

Ziyang Jin1

Department of Computer Science
University of Toronto

ziyang@cs.toronto.edu

Abstract. In Molloy’s talk[1], it is mentioned that any graph can be
2∆-coloured such that every colour appears at most ℓ times in each
neighborhood, for ℓ = 10 ln∆

ln ln∆
. Molloy mentioned that there is a simple

proof using entropy compression. In this note, we will write the proof in
details. We will also discuss different colouring procedures. In the end,
we will apply the theorem by Achlioptas and Iliopoulos to get the same
result.

Keywords: Entropy Compression · Frugal Colouring.

1 The problem

Theorem 1. We can 2∆-colour any graph such that each colour appears at most
ℓ times in each neighborhood, for

ℓ =
10 ln∆

ln ln∆

This theorem is adapted from a similar theorem in [2].
By Brooks’ theorem, we know that any graph can be coloured using ∆ + 1

colours, so 2∆ colours are more than enough to obtain a proper colouring.
The constant 10 here is not the best constant that can be achieved by entropy

compression. In fact, we can get it down to 1 following the entropy compression
approach.

2 Entropy Compression

To apply entropy compression, there are two parts. One is the colouring algo-
rithm, and the other is the analysis.

2.1 Initial Colouring

First of all, we must start from some initial colouring of the graph. It would be
nice that we start from a proper colouring. Otherwise, in our recolouring step,
in addition to dealing with a neighborhood with the same colour repeated too
many times, we might also need to deal with monochromatic edges.

2 Ziyang Jin

Since we have 2∆ colours. It is easy to start from any vertex, give it an
arbitrary colour, and then we colour the neighbors greedily (where we do not
pay attention to how many times the same colour appears in a neighborhood)
until we colour the whole, which gives us a proper colouring of the graph to start
with.

2.2 Recolouring Algorithm

We need to propose a randomized recolouring algorithm to recolour the vertices
until the target property is satisfied. Entropy compression will help us prove
that the proposed randomized algorithm terminates with high probability, which
means a colouring satisfying the given property exists. We make no attempt to
optimize the runtime of the algorithm.

The main idea of our algorithm is to keep recolouring the neighborhood of
the vertex who has more than ℓ neighbours of the same colour.

For any vertex v ∈ V , let Nv be the neighborhood of v (not including v). Let
B(v, j, p) be the (bad) event that vertex v has ℓ neighbours u1, ..., uℓ with the
same colour j, where 1 ≤ j ≤ 2∆. There are

(
∆
ℓ

)
ways for u1, ..., uℓ to lie in the

neighborhood of v, and the number p denotes the pth combination out of them.
For any vertex v ∈ V , let Lv be the list of colours that do not appear in its

neighborhood, i.e., list of colours available to v if we want to recolour v while
still maintaining a proper colouring.

Here is our recolouring algorithm:

FIX(G):
Let S be the set of all B(v, j, p)’s

in the initial colouring
While there exists any B(v, j, p) ∈ S:

Write down "Fix B(v, j, p)" to the log
RECOLOUR(B(v, j, p))

RECOLOUR(B(v, j, p)):
For i from 1 to ℓ

Recolour ui with a uniformly random colour in Lui

Let the new colour assignment be σ(ui)

While there exists any bad event B(w, σ(ui), q) for
some 1 ≤ i ≤ ℓ and w ∈ Nui , 1 ≤ q ≤

(
∆
ℓ−1

)
:

Write down "Fix B(w, σ(ui), q)" to the log
RECOLOUR(B(w, σ(ui), q))

Write down "Return" to the log

We make three observations:
1. If a vertex v has l ≫ ℓ neighbours with the same colour j, then we can

divide them into B(v, j, p1), B(v, j, p2), ..., B(v, j, pl/ℓ), where we divide l neigh-
bours into disjoint sets of size ℓ.

Entropy Compression on Frugal Colouring 3

2. When we recolour the neighbours u1, ..., uℓ, we recolour them one at a
time. After recolouring u1, the lists Lu2

, ..., Luℓ
might be updated if it has an

edge connected to u1. The list of the colours available to the next vertex depends
on the colour assignment of previous vertices. This is the key challenge in this
algorithm that makes tools like Lovász Local Lemma difficult to apply as we have
a series of dependent events, but entropy compression would skip the discussion
of dependent events.

3. After we recolour u1, ..., uℓ, it is possible that we create new bad events.
For example, one of ui’s neighbour w originally had exactly ℓ− 1 neighbours of
colour j, and σ(ui) = j, and now adding ui, it just passes the threshold and a
new bad event B(w, σ(ui), q) occurs. Since we know one of w’s neighbour is ui,
we only need to choose from

(
∆
ℓ−1

)
combinations to show how the neighbourhood

looks like.

2.3 Analysis

In order to make entropy compression work, we need to find a representation
such that:

– We can recover the whole history of the colouring
– Our representation will eventually be shorter than the random bits generated

by a random number generator

Every time we call RECOLOUR, the algorithm will need at least ℓ log∆ bits
from the random number generator since every |Lui | ≥ ∆. This is the target to
beat.

Every time we call RECOLOUR, we say the algorithm takes a step.

A shorter Representation Our representation consists of four parts:

1. Representation of Fix B(v, j, p). For every vertex, summing up all the “bad-
event" colours in the neighborhood, there are at most ∆

ℓ bad events. So
there are at most |V |∆ℓ bad events in S. And for each bad event, we need
log |V | bits for v, log 2∆ bits for j, and log

(
∆
ℓ

)
bits for p, so in total we

need log |V | + log 2∆ + log
(
∆
ℓ

)
to represent a single event. The while-loop

in the FIX procedure will iterate at most |V |∆ℓ times. So the total amount
of bits required to write all the Fix B(v, j, p)’s through the execution of the
algorithm is independent of the number of steps the algorithm have.

2. Representation of Fix B(w, σ(ui), q) at every step. This is the main thing
we are going to discuss. Please see below.

3. We use a constant number of bits to encode each RETURN.
4. At time t, the state-of-the-world, i.e., the current colouring of the graph σt.

This takes |V | log 2∆ bits.

Here is our representation of Fix B(w, σ(ui), q):

4 Ziyang Jin

1. We use a number i (1 ≤ i ≤ ℓ(∆ − 1) + 1) to represent the vertex w,
which is the ith neighbour in the distance-two neighborhood of the previous
vertex v where RECOLOUR was called on. When we call RECOLOUR, it recolours
u1, ..., uℓ. Recolouring any ui could potentially cause ui’s neighbour to have
a bad event. In addition to the common neighbour v, each ui can have at
most ∆ − 1 other neighbours. So in total there are at most ℓ(∆ − 1) + 1
B(w, σ(ui), q)’s that can happen. The +1 is for bad event on vertex v itself.

2. We use a number p to represent the pth combination of w’s neighbours, where
1 ≤ p ≤

(
∆
ℓ−1

)
. When we recolour u1, ..., uℓ, it may cause some neighbour w

of some ui to have a bad event. In addition to known neighbour ui, we need
to choose ℓ− 1 other neighbours out of at most ∆ neighbours of w to fix the
pattern of the same colour neighbours.

3. We use a number j to represent the same colour that u1, ..., uℓ all have, where
1 ≤ j ≤ 2∆ since we have 2∆ colours.

Claim. We are able to recover the colouring of the graph at every step from our
representation.

Proof. First, we go through the log from the beginning to the end. It will tell us
the sequence of vertices v1, v2, ..., vt where we call RECOLOUR on.

Then, we go through the log reversely from the end to the beginning. We
have σt, the state of the world at step t. And then we look at vt, and the log Fix
B(vt, c, p) where c is the colour and p is the pattern of the ℓ neighbours lying
around vt. By assigning c back to u1, ..., uℓ, we get σt−1.

Keep doing this, we will recover σt−2, σt−3, ..., σ1, which will tell us all the
random bits used in the algorithm. ⊓⊔

Now we need to show that our representation is eventually shorter than the
string of random bits. We win if our representation saves some bits at every step.
Specifically, what grows with the number of steps is our representation of Fix
B(w, σ(ui), q). If we use fewer bits than ℓ log 2∆, then we save some bits at every
step. Eventually, we will pay off the overhead (the Fix B(v, j, p)’s and σt) and
end up with a shorter representation than the random bits.

Compare with the random bits used at every step Every time RECOLOUR
is called, our representation for B(w, σ(ui), q) takes:

log(ℓ(∆− 1) + 1) + log

(
∆

ℓ− 1

)
+ log 2∆+O(1)

bits. Now we try to compare it with ℓ log 2∆, the random bits used at every step.
Note that:

log(ℓ(∆− 1) + 1) + log

(
∆

ℓ− 1

)
+ log 2∆+O(1)

≤ log ℓ+ log∆+ (ℓ− 1) log
e∆

ℓ− 1
+ log∆+O(1)

≤ (ℓ+ 1) log∆+ log ℓ− (ℓ− 1) log(ℓ− 1) + ℓ log e+O(1)

≤ (ℓ+ 1) log∆− ℓ log(ℓ− 1) + ℓ log e+ 2 log ℓ+O(1)

(1)

Entropy Compression on Frugal Colouring 5

Is it shorter than the random bits generated every step ℓ log∆?

ℓ log∆− [(ℓ+ 1) log∆− ℓ log(ℓ− 1) + ℓ log e+ 2 log ℓ+O(1)]

=− log∆+ ℓ log(ℓ− 1)− (log e)ℓ−O(log ℓ)

= ℓ log(ℓ− 1)− log∆−O(ℓ)

(2)

So it comes down to whether ℓ log(ℓ− 1)− log∆ > 0 and ℓ log(ℓ− 1)− log∆ =
O(log∆). Take ℓ = 10 ln∆

ln ln∆ , we have

ℓ log(ℓ− 1) =
10 ln∆

ln ln∆
log(

10 ln∆

ln ln∆
− 1) = 10 log∆+O(

ln∆ log ln ln∆

ln ln∆
)

Actually, we can bring ℓ down to as low as (1 + ϵ) log∆
log log∆ for any ϵ > 0 and it

would still let us save about ϵ log∆ bits at every step.
Therefore, when ∆ is big enough, ℓ log(ℓ − 1) − log∆ − O(ℓ) ≥ 1. Our rep-

resentation roughly saves O(log∆) bits every time. Thus, we succeed with the
entropy compression. The randomized recolouring algorithm will terminate with
high probability since it is impossible to represent a string of random bits using
a shorter representation.

3 A different recolouring algorithm

In the previous section, our recolouring algorithm is mainly recolouring only the
same-colour vertices in the neighborhood. In this section, we propose a different
recolouring algorithm — we recolour the entire neighborhood (including the
“good" vertices), and we will see if we can still get a shorter representation.

For any vertex v ∈ V , a bad colouring is a colouring where there are ≥ ℓ
vertices in the neighborhood of v that have the same colour.

Let B(v) be the bad event that vertex v has ≥ ℓ neighbours with the same
colour, and let σ(Nv) be the colouring on the neighborhood of v.

For every vertex v ∈ V , let d(v) be the degree of v. Let the neighborhood of
v be u1, ..., ud(v).

Here is our recolouring algorithm:

FIX(G):
Let S be the set of all B(v)’s

in the initial colouring
While there exists any B(v) ∈ S:

Write down "Fix v, σ(Nv)" to the log
RECOLOUR(B(v))

RECOLOUR(B(v)):
For i from 1 to d(v)

Recolour ui with a uniformly random colour in Lui

Let the new colour assignment be σ(ui)

6 Ziyang Jin

While there exists any bad event B(w) in v or the
distance -two neighbours of v:

Write down "Fix w, σ(Nw)" to the log
RECOLOUR(B(w))

Write down "Return" to the log

We call it a step every time we call RECOLOUR.

Benchmark Every step, we need at least d(v) log∆ (or d(w) log∆ if we call
from RECOLOUR) bits from the random number generator (since |Lui

| ≥ ∆ for
1 ≤ i ≤ d(v)).

Our Representation The key point is to represent σ(Nw) efficiently.

1. To represent Fix v, σ(Nv), we need log |V | bits to index the vertex v, and
we need d(v) log 2∆ bits to represent σ(Nv) (we could find a more efficient
representation but there is no need). There are at most |V | such events in
the initial colouring, therefore, the total amount of the bits used throughout
the entire run of the algorithm is at most

∑
v∈V (log |V |+d(v) log 2∆), which

is independent of the number of steps t. This is the overhead the we need to
pay off if we are able to save the bits at every step.

2. To represent Fix w, σ(Nw), there are at most d(v)(∆ − 1) + 1 new events
caused by the recolouring procedure, so we can use an index 1 ≤ i ≤ d(v)(∆−
1)+1 to locate the neighbour w, which takes log(d(v)(∆−1)+1) bits. We also
need to represent σ(Nw) efficiently. This is the core representation where we
want to save some bits as it grows with the number of steps t. We could use
log 2∆ bits to represent the colour that is repeated more than ℓ times and
the colour must appear on some neighbour ui of v. We could use log

(
∆
ℓ−1

)
bits to fix the pattern of neighbours with the same colour, and in the end
we could use at most log(2∆)d(w)−ℓ = (d(w)− ℓ) log 2∆ bits to represent the
remaining colours. So in total, we will use log 2∆+log

(
∆
ℓ−1

)
+(d(w)−ℓ) log 2∆

to represent σ(Nw).
3. We need O(1) number of bits to represent each Return.

3.1 Analysis

We win if the number of bits we use to represent Fix w, σ(Nw) is fewer than
d(w) log∆.

Length of our representation:

log(d(v)(∆− 1) + 1) + log 2∆+ log

(
∆

ℓ− 1

)
+ (d(w)− ℓ) log 2∆+O(1)

Entropy Compression on Frugal Colouring 7

log(d(v)(∆− 1) + 1) + log∆+ log

(
∆

ℓ− 1

)
+ (d(w)− ℓ) log 2∆+O(1)

≤ log d(v) + 2 log∆+ (ℓ− 1) log
e∆

ℓ− 1
− ℓ log 2∆+ d(w) + d(w) log∆+O(1)

(3)

To make this smaller than d(w) log∆, we need

log d(v) + 2 log∆+ (ℓ− 1) log
e∆

ℓ− 1
− ℓ log 2∆+ d(w) +O(1) < 0

log d(v) + 2 log∆+ (ℓ− 1) log
e∆

ℓ− 1
− ℓ log 2∆+ d(w) +O(1)

≤ (3− ℓ) log∆− ℓ+ (ℓ− 1)(log e+ log∆− log(ℓ− 1)) +O(1) + d(w)

≤ 2 log∆− ℓ log(ℓ− 1) +O(ℓ) + d(w)

(4)

If we put d(w) apart, it comes down to whether ℓ log(ℓ − 1) is greater than
2 log∆. Based on a similar calculation, if we take ℓ = (2 + ϵ) log∆

log log∆ , then
2 log∆− ℓ log(ℓ− 1) +O(ℓ) < 0. However, since we have d(w) and d(w) can be
as big as ∆, we will not get a compression.

In terms of the graph, recolouring the whole neighborhood would potentially
cause many more bad events than just recolouring the vertices violating the
property. Doing this will dilute the chance we move to a flawless colouring.

Another takeaway is that the recolouring algorithm we choose will affect the
number of bits we can compress. So picking a good recolouring algorithm is
as important as coming up with a creative way to represent the history of the
algorithm.

4 Theorem by Achlioptas and Iliopoulos

In 2014, Achlioptas and Iliopoulos [3] came up with a new framework to rep-
resent entropy compression based on random walk on directed graphs. Instead
of coming up with ad-hoc representations of the algorithm’s history, they give
a theorem that can be directly applied once we set up the problem using their
framework.

4.1 Terminology

Ω is a set of objects. σ ∈ Ω is a single object.
F is a collection of subsets of Ω. Each subset f ∈ F (f ⊆ Ω) is called a flaw.
f is present in σ if f ∋ σ. An object σ ∈ Ω is flawless if no flaw is present in σ.

For example, given a CNF formula. Each object σ is an assignment of boolean
variables x1, ..., xn, so |Ω| = 2n. Let c1, ..., cm be the clauses. For each clause ci,
we can define a flaw fi = {σi1 , ..., σik} consisting of assignments that make ci
false. For example, n = 5, and ci = (x1 ∨ x2 ∨ x3), then

8 Ziyang Jin

fi = {(F, F, F, F, F), (F, F, F, F, T), (F, F, F, T, F), (F, F, F, T, T)}. A satisfying
assignment for the entire CNF formula is equivalent to a flawless object σ.

D is a directed graph. We call elements σ ∈ Ω as states.
A state transformation σ → τ (τ ∈ Ω) is taken to address a flaw f ∋ σ.
For each σ ∈ Ω, let U(σ) := {f ∈ F : σ ∈ f}, i.e., U(σ) is the set of flaws present
in σ.
For each σ ∈ Ω and f ∈ U(σ), we require a set A(f, σ) ∈ Ω that must contain at
least one element other than σ which we refer to as the set of possible actions of
addressing flaw f in state σ. To address flaw f in state σ we uniformly random
select an element τ ∈ A(f, σ) and walk to state τ . Note that it is possible we
select τ = σ. We require A(f, σ) contains at least one element other than σ.

We represent the set of all possible state transformations as a multi-digraph
D on Ω. For each state σ, for each flaw f ∈ U(σ), for each state τ ∈ A(f, σ), we
place an arc σ

f−→ τ .
The graph D we construct needs to have the following property:

Definition 1 (Atomicity). D is atomic if for every flaw f and state τ there
is at most one arc incoming to τ labelled by f .

If D is atomic, then the random walk on D can be reconstructed from its final
state and the sequence of labels on the arcs traversed. We will have atomicity if
the following two conditions are satisfied:
1. Each constraint/flaw forbids exactly one joint value assignment to its under-
lying variables.
2. Each state transition modified only the variables of the violated constrain-
t/flaw that it addresses.

For example, given a 3CNF formula with 5 variables, suppose ci = (x1∨x2∨
x3), then the flaw fi = {(F, F, F, F, F), (F, F, F, F, T), (F, F, F, T, F), (F, F, F, T, T)}.
It forbids exactly one joint value assignment x1 = F, x2 = F, x3 = F . Suppose
σ = (F, F, F, F, F), in order to satisfy condition 2, the state transitions can only
move to states where x4 = F, x5 = F , i.e., it can only change the truth value of
the first three variables.

Definition 2 (Potential Causality). For each arc σ
f−→ τ in D and each flaw

g present in τ we say that f causes g if g = f or σ /∈ g. If D contains any arc
in which f causes g we say that f potentially causes g.

Definition 3 (Potential Causality Digraph). The digraph C = C(Ω,F,D)
of the potential causality relation, i.e., the digraph on F where f → g iff F
potentially causes g, is called the potential causality digraph. The neighborhood
of a flaw f is Γ (f) = {g : f → g exists in C}.

We can assume that C is strongly connected, implying |Γ (f)| ≥ 1 for every
f ∈ F .

We assign an arbitrary ordering π of F , and in each flawed state σ we address
the greatest flaw according to π in a subset of U(σ).

Entropy Compression on Frugal Colouring 9

Definition 4 (Amenability). The amenability of a flaw f is

Af := min
σ∈f

|A(f, σ)|

Theorem 2. If for every flaw f ∈ F ,∑
g∈Γ (f)

1

Ag
<

1

e

then for any ordering π of F and any σ1 ∈ Ω, the uniform random walk on
Dπ starting at σ1 reaches a sink within (log2 |Ω| + |U(σ1)| + s)/δ steps with
probability at least 1− 2−s, where δ = 1−maxf∈F

∑
g∈Γ (f)

e
Ag

.

4.2 Adapt this to the theorem

Let Ω be the set of all colourings. Let σ be a colouring of the graph. Let f be a
flaw represented by B(v, j, p) where v is the index of the vertex in the graph, j
is the colour (1 ≤ j ≤ 2∆), and p is the pattern of ℓ neighbours of v having the
same colour j. Let F be the set of all flaws.

Here is our order π of flaws. We first order by v (index of the vertex), then
by j, then by p.

For any flaw f (or g), we would like to compute Af (or Ag). Since we need our
graph D to be atomic, we can only recolour the ℓ neighbours that have the same
colour (the second condition). Suppose each neighbour ui has Lui

colours, note
that since we have 2∆ colours and every vertex can have at most ∆ neighbours,
so |Lui | ≥ ∆, thus we would have

∀f ∈ F, Af ≥ ∆ℓ

For any flaw f , we would like to know Γ (f). Note that our graph D needs to
be atomic, so we can only recolour the vertices that have the same colour j, so
we will recolour ℓ neighbours of v, and each neighbour will have at most ∆− 1
neighbours other than v. So

Γ (f) = ((∆− 1)ℓ+ 1) · 2∆ ·
(

∆

ℓ− 1

)
Therefore

∑
g∈Γ (f)

1

Ag
=

((∆− 1)ℓ+ 1) · 2∆ ·
(

∆
ℓ−1

)
Af

≤
((∆− 1)ℓ+ 1) · 2∆ ·

(
∆
ℓ−1

)
∆ℓ

In order to have
((∆− 1)ℓ+ 1) · 2∆ ·

(
∆
ℓ−1

)
∆ℓ

<
1

e

We can take ℓ = (1 + ϵ) ln∆
ln ln∆ .

10 Ziyang Jin

References

1. Michael Molloy. Entropy Compression and the Lovász Local Lemma. YouTube,
uploaded by Combinatorics & Optimization University of Waterloo, 24 Aug 2017
https://www.youtube.com/watch?v=GVb0AT0cOSw

2. Michael Molloy and Bruce Reed. 2009. Asymptotically optimal frugal colouring. In
Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms
(SODA ’09). Society for Industrial and Applied Mathematics, USA, 106–114.

3. Dimitris Achlioptas and Fotis Iliopoulos. Random Walks That Find Perfect Ob-
jects and the Lovasz Local Lemma. 2014 IEEE 55th Annual Symposium on Foun-
dations of Computer Science, Philadelphia, PA, USA, 2014, pp. 494-503, doi:
10.1109/FOCS.2014.59.

