

Mining Semantics-Preserving Attention for Group Activity Recognition

Yansong Tang¹, Zian Wang¹, Peiyang Li¹, Jiwen Lu¹, Ming Yang², Jie Zhou¹

¹Department of Automation, Tsinghua University, China ²Horizon Robotics Inc., China

Human Activity Analytics

- Wide real-world applications
- Different levels of human activities

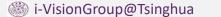
Sign Language Recognition

Gesture

[1]

Human-robot Interaction

Interaction


Sports Video Analysis Action

[2]

Sports Video Analysis

Group Activity

1

[1] Shu et al. ICRA2017

[2] Ibrahim et al. CVPR2016

Group Activity Recognition

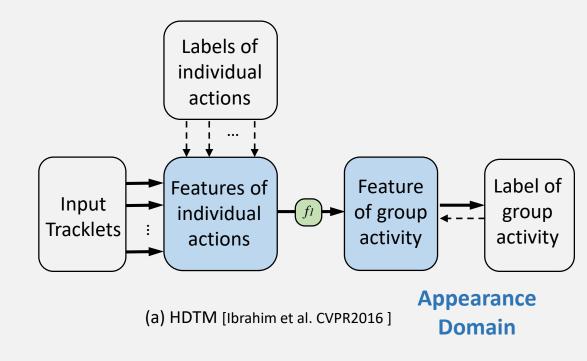
Input Video

Tracklets of different people

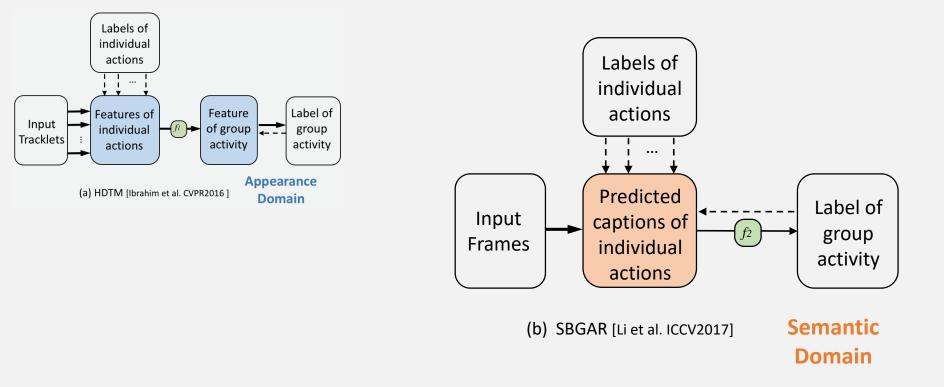
"What are the people doing in this video?"

"Where are the people?"

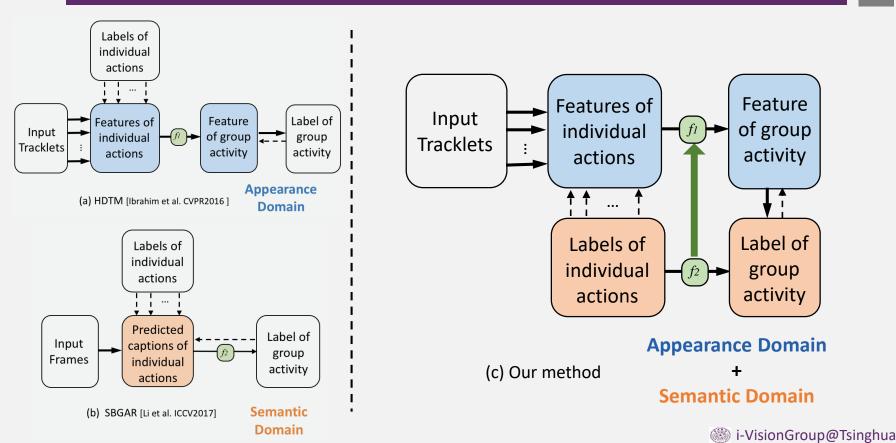
Tracklets of different people provided by [Choi et al. ECCV 2012]


"What is the action of each person?"

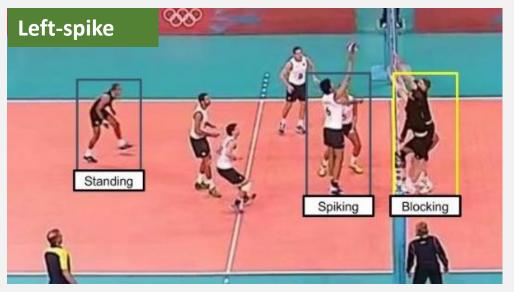
Labels are available during training, but not available at testing.


Problem setting in this work

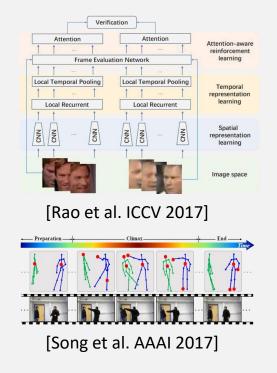
	Training	Testing
Video Frames	٧	٧
Tracklets	٧	V
Individual Action	٧	?
Group Activity	٧	?

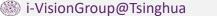

Related Works – Group Activity Recognition

Related Works – Group Activity Recognition

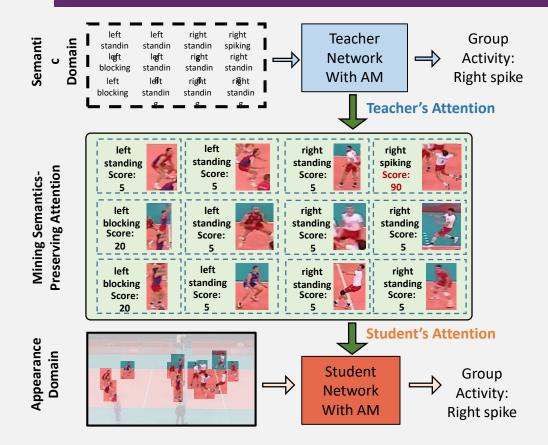


Related Works – Group Activity Recognition

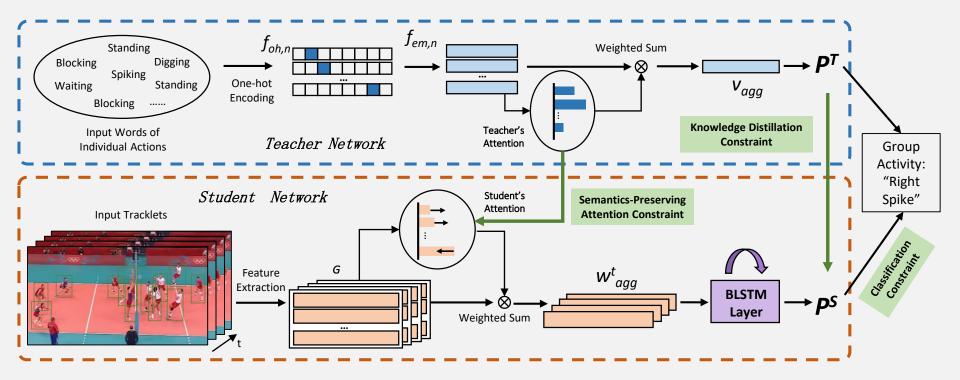



Related Works – Attention Model (AM)

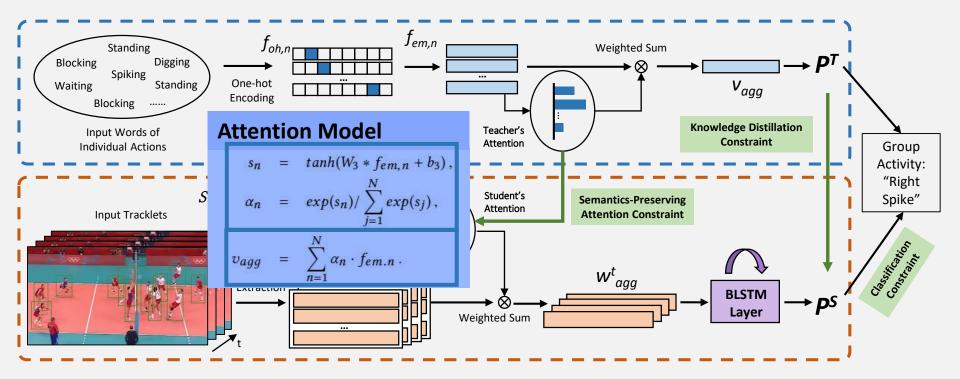
Attention model (AM): selecting the most informative parts from the global field.



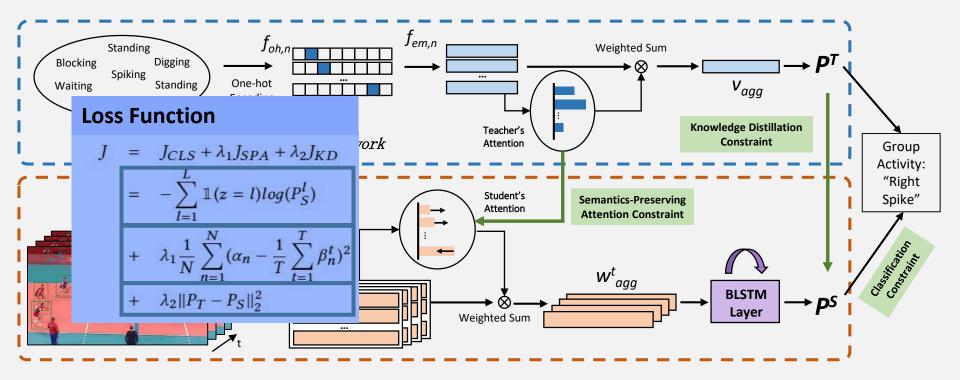
- The group activity is usually sensitive to a few key persons
- Other people may bring ambiguous information and mislead the recognition process



Related Works – Attention Model (AM)


Our Main Idea: **Employ the learned** attention information by a Teacher Network in the semantics domain, to guide a Student Network in the appearance domain.

Approach


Extract Features [Donahue et al. CVPR2015] Compute Optical Flow [Ilg et al. CVPR2017]

Approach

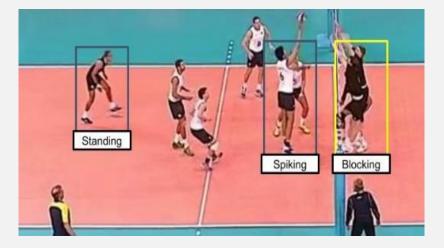
Extract Features [Donahue et al. CVPR2015] Compute Optical Flow [Ilg et al. CVPR2017]

Approach

Extract Features [Donahue et al. CVPR2015] Compute Optical Flow [Ilg et al. CVPR2017]

Datasets and Experiment Settings

Collective Activity (CA) dataset [1]



2420 video clips, 4 group activities, 6 individual actions

We follow the experimental setup in [3], to merge the class of "walking" and "crossing" as a new class of "moving".

[1]Choi et al. ICCVW2009 [2]Ibrahim et al. CVPR2016

Volleyball dataset [2]

4830 video clips, 8 group activities, 9 individual actions

[3]Wang et al. CVPR2017

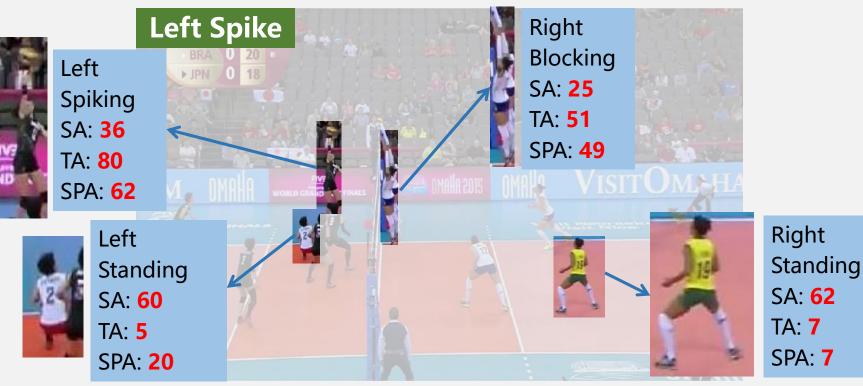
Experimental Results

Comparison of the group activity recognition accuracy on the volleyball dataset

Method	MPCA	Year
HDTM	82.9	CVPR'16
CERN-2	83.6	CVPR'17
stagNet	84.4	ECCV'18
Method	ΜΡϹΑ	Gain
Ours-SA	86.1	-
+OF	87.0	0.9
+SPA	89.5	2.5
+KD	90.0	0.5

Comparison of the group activity recognition accuracy on the CA dataset

Method	MPCA	Year
Cardinality Kernel	88.3	CVPR'15
CERN-2	88.3	CVPR'17
RMIC	89.4	CVPR'17
HDTM	89.6	CVPR'16
stagNet	91.3	ECCV'18
Method	MPCA	Gain
Ours-SA	91.5	-
+OF	94.3	2.8
+SPA	95.6	1.3
+KD	95.7	0.1


8

(+OF): combining optical flow SA: self-attention SPA: semantics-preserving attention KD: knowledge distillation loss i-VisionGroup@Tsinghua

Experimental Results

Experimental Results

SA (Student's Attention w/o SPA), TA (Teacher's Attention), SPA (Semantics-preserving attention) i-VisionGroup@Tsinghua

Analysis on Computational Time

Training Process (Based on Dataset)	Time(h)
Train Teacher Network	0.32
Train DCNN and LSTM(RGB)	11.50
Extract Features(RGB)	0.46
Train Attention Module and BLSTM	0.91
Extract Optical Flow	61.48
Train DCNN and LSTM(OF)	11.50
Extract Features(OF)	0.46
Train Attention Module and BLSTM(+OF)	1.00
Testing Process (Based on Single Frame)	Time(ms)
Extract Features(RGB)	8.01 × 12 (people)
Activity Recognition(10 Frames)	6.47
Extract Optical Flow	434.65
Extract Features(OF)	8.01 × 12 (people)
Activity Recognition(+OF) (10 Frames)	7.80

> Without utilizing optical flow:

Train SPTS: **13.19h** = 0.32+11.50+0.46+0.91

Train the Teacher Network: **0.32h**, **2.43%** of the entire training time

Testing (a video clip with 10 frames): **967.67ms** = $10 \times (8.01 \times 12) + 6.47 = 967.67ms$

Combining optical flow:

Train SPTS: **86.72h** = 0.32 + 61.48 + 2 × (11.5 + 0.46) + 1.00

Testing (a video clip with 10 frames): 6276.70ms = 10×(434.65+8.01×12×2)+7.80

Teacher Network (semantic domain):

Taking additional 2.43% computational time cost to train

Student Network (appearance domain):

Guided by semantics-preserving attention learned by the Teacher Network

Original efforts leveraging attention in multimedia clues, both semantic and vision clues, performing group activity recognition

Thanks and Questions?

Poster on P3-03

Yansong Tang 2018-10-24

tys15@mails.tsinghua.edu.cn