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Abstract—In this paper, we investigate the problem of RGB-D
egocentric action recognition. Unlike conventional human action
videos which are passively recorded by static cameras, egocentric
videos are self-generated from wearable sensors, which are more
flexible and provide the close-ups with the visual attention of
the wearers when they act. Moreover, RGB-D videos contain
the spatial appearance and temporal information in the RGB
modality, and reflect the 3D structure of the scenes in the
depth modality. To adequately learn the nonlinear structure
of heterogeneous representations from different modalities and
exploit their complementary characteristics, we develop a multi-
stream deep neural networks (MDNN) method, which aims
to preserve the distinctive property for each modality and
simultaneously explore their sharable information in a unified
deep architecture. Specifically, we deploy a Cauchy estimator
to maximize the correlations of the sharable components, and
enforce the orthogonality constraints on the distinctive compo-
nents to guarantee their high independencies. Since the egocentric
action recognition is usually sensitive to hand poses, we extend
our MDNN by integrating with the hand cues to enhance the
recognition accuracy. Extensive experimental results on a newly
collected dataset and two additional benchmarks are presented
to demonstrate the effectiveness of our proposed methods for
RGB-D egocentric action recognition.

Index Terms—Egocentric action recognition, RGB-D videos,
multi-view learning, deep learning.

I. INTRODUCTION

W ITH the development of wearable cameras such as
GoPro and Google Glass, the number of egocentric

videos is growing dramatically in recent years. Different from
conventional human action videos which are passively record-
ed by static cameras, these videos are self-generated when
the wearers act and provide the close-ups with their visual
attention. Therefore, increasing works have been proposed to
analyze the egocentric videos from different aspects [1], e.g.,
frame sampling [2], video summarization [3], visual recogni-
tion [4]–[6], person re-identification [7] and gaze analysis [8].
Among these problems, action recognition in egocentric videos
presents significant importance for some real-world applica-
tions, e.g., healthcare [9], life logging [10], virtual reality [11]
and tele-rehabilitation [6].
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Fig. 1. Illustration of collecting RGB-D egocentric action videos. We
mounted an RGB-D sensor on a helmet to make an egocentric
equipment. The wearer was looking at his hand, plants and the bottle
while performing the “water plant” action, which was recorded by the
egocentric camera on his head. We present the captured RGB video
frames at the top row, while their counterparts of depth modality are
shown at the second row.

In recent years, efforts on the egocentric action recogni-
tion [5], [6], [12] have been devoted by employing convention-
al human action recognition techniques [13], [14] and extra
semantic cues (e.g., hand pose and gaze) in the egocentric
videos. Generally speaking, these works are mainly based on
RGB videos, which contain the spatial appearance and tempo-
ral information. As stated in [15], [16], the primary limitations
of RGB videos are the absence of 3D information and the
sensitivity to illumination variations, while an exclusive depth
modality is capable of covering these shortages. In fact, RGB-
D action recognition [16]–[19] has been widely studied in the
literature. However, limited research has been conducted to
investigate this problem in the egocentric paradigm. This is
mainly due to three reasons: 1) the difficulty of jointly uti-
lizing different modalities and exploiting their complementary
information for egocentric action recognition, 2) the inherent
challenges in the egocentric scenario, such as the cluttered
background and large movements of the wearable camera, and
3) the scarcity of the publicly available RGB-D egocentric
dataset for action recognition.

In this work, we propose a multi-stream deep neural net-
works (MDNN) method for RGB-D egocentric action recog-
nition, which aims to adequately learn the non-linear structure
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of heterogeneous representations from different modalities
and exploit their complementary characteristics. Specifically,
we utilize three deep convolutional neural networks to learn
the spatial appearance, temporal information and geometric
property for the RGB frames, optical flows and depth frames
(i.e., frames extracted from the video on depth modality)
accordingly. Moreover, our MDNN enforces two criteria on
learning features: 1) preserving the distinctive characteris-
tics for each modality via orthogonality constraints, and 2)
maximizing the correlations across different modalities by
deploying the Cauchy estimator [20]. To further improve the
recognition performance, we extend our MDNN by fusing with
the hand cues in the egocentric videos at classification score
level. In order to demonstrate the effectiveness of our pro-
posed methods, we present a new RGB-D egocentric dataset
called THU-READ, which contains 340K video frames of 40
different daily-life actions and 200M-pixel hand annotation.
Extensive experimental results on the THU-READ and two
additional benchmarks clearly show that our model achieves
superior performance in comparison with the state-of-the-arts
for RGB-D egocentric action recognition.

Our main contributions are summarized as follow:
1) We have developed a multi-stream deep neural networks

(MDNN) method for RGB-D egocentric action recog-
nition. Our MDNN exploits the shared properties and
distinctive characteristics for different modalities simul-
taneously, which are more adequate to learn the comple-
mentary properties of the spatial appearance, temporal
information and geometric structure of the scene.

2) We have collected a new dataset for RGB-D egocentric
action recognition, which is currently the largest dataset
for this emerging task. Extensive experimental results on
the proposed dataset and the other two benchmarks have
clearly shown that our MDNN achieved superior per-
formance compared with the state-of-the-arts. Moreover,
we have included the experiments on parameter analysis
and t-SNE visualization [21] to show the importance of
the sharable and distinctive characteristics of different
modalities.

3) We have provided over 200M-pixel hand annotation in
our dataset. Besides, we have strengthened our MDNN by
incorporating with hand cues in the egocentric videos and
conducted experiments to demonstrate its effectiveness.

The remainder of this paper is organized as follows: Section
II briefly reviews some related work. Section III introduces
the collected RGB-D egocentric action dataset. Section IV
describes the proposed MDNN for egocentric RGB-D action
recognition in details. Section V reports experimental presents
and analysis, and Section VI concludes the paper. It is to be
noted that a preliminary version of this work was initially
presented in [22]1.

1 Partial results in this paper have been published in our previous conference
paper [22]. As an extension, our MDNN with a new object function can better
exploit the complementary information of different modalities than the score
fusion approach in [22]. Moreover, we have conducted experiments on the
other two datasets and provided more in-depth analysis on the experimental
results. Besides, we have presented two standard evaluation protocols for our
proposed dataset and extend our MDNN by integrating with the hand cues to
enhance the recognition accuracy.

II. RELATED WORK

In this section, we briefly review three related topics: 1)
conventional action recognition, 2) multi-view learning, 3)
egocentric action analysis, and 4) optical flow.

A. Conventional Action Recognition

Conventional action recognition [13], [14], [23]–[31] aims
to classify the action category for a given RGB video. Over
the past two decades, extensive works have been proposed to
develop discriminative features to capture the appearance and
motion information of an action. These works can be roughly
divided into two categories: hand-crafted features and deeply-
learned features. The hand-crafted features generally describe
local visual patterns based on the spatio-temporal interest
points or trajectories, such as Space-Time Interest Points
(STIP) [23], Histogram of Gradient and Histogram of Op-
tical Flow (HOG/HOF) [24], Histogram of Motion Boundary
(MBH) [32], dense trajectory (DT) [33] and improved dense
trajectory (IDT) [13]. However, these methods require strong
prior knowledge by hand and may lack power to model the
non-linear relationship between the high dimensional videos
and action labels. To overcome these limitations, the deeply-
learned features have been proposed for action recognition by
designing various deep architectures, e.g., 2D ConvNet [14],
[34], 3D ConvNet [35], [36], recurrent neural network [37],
etc. Recently, Simonyan and Zisserman developed the two-
stream ConvNets [14], where the spatial stream captures the
appearance from the static RGB frames, and the temporal
stream learns the dynamics from the optical flows. This
architecture achieves high performance for action recognition,
however, it has not fully exploited the sharable and individual
information between the two streams. To address this issue,
we simultaneously explore their distinctive characteristics and
sharable properties. Besides, we capture the 3D structures of
the scenes from an extra depth modality and utilize the hand
cues in the egocentric videos to enhance the performance of
action recognition.

B. Multi-view Learning

Recent years have witnessed that multi-view learning has
attracted growing attention in the research fields of machine
learning and computer vision [49]–[59], which aims to jointly
learn an optimal combination on multi-view (multi-modal)
representations. For example, Yang et al. [60] proposed a
Multi-feature Learning via Hierarchical Regression (MLHR)
algorithm, which effectively mined the information in multiple
features of both labelled and unlabelled data for multimedia
analysis. Dong et al. [61] investigated the problem of few-
example object detection by a self-paced strategy. During
the learning process, they employed a multi-modal learning
method to embed multiple detection models to avoid local
minimums. Over the past few decades, a typical series of
methods such as canonical correlation analysis (CCA) [62],
[63] and its variants [50]–[52] are developed to explore a
shared latent subspace across different views to maximize
their correlation. However, these approaches may ignore the
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TABLE I
PUBLICLY RELEVANT EGOCENTRIC ACTION/ACTIVITY DATASETS

Dataset Subjects Clips Camera Mount Frames Classes Year Video Hand Annotation

CMU-MMAC [38] 39 175 RGB Head – 29 2009 ! #

UEC EgoAction [39] 1 2 RGB Head – 37 2011 ! #

GTEA [5] 4 28 RGB Head 31,253 71 2011 ! pixel-level annotation
Disney World [40] 18 113 RGB Head – 6 2012 ! #

GTEA gaze [12] 14 17 RGB Head 52,260 40 2012 ! #

GTEA gaze+ [12] 5 30 RGB Head – 44 2012 ! #

UCI ADL [6] 20 20 RGB Chest 93,293 18 2012 ! #

JPL-Interaction [41] 1 62 RGB Head – 7 2013 ! #

HUJI EgoSeg [42] 3 44 RGB Head – – 2014 ! #

WCVS [43] 4 918 RGB-D Head – 2/4/18* 2014 ! #

GUN-71 [44] 8 – RGB-D Chest 12,000 71 2015 # contact point and force annotation
MILADL [45] 20 122 RGB Head/Wrist – 23 2016 ! #

EgoHands [46] 4 48 RGB Head 130,000 4 2016 ! pixel-level annotation
Standford-ECM [47] 10 113 RGB Chest – 24 2017 ! #

FHAD [48] 6 1,175 RGB-D Shoulder 105,459 45 2018 ! hand pose annotation

THU-READ (Ours) 8 1,920 RGB-D Head 343,626 40 2017 ! pixel-level annotation

∗ WCVS dataset has 3-level categories, which will be described in Section V.B in detail.

view-specific characteristics, which encode some discrimina-
tive information of each view (e.g., color or texture property
of an RGB image) [64]. To address this issue, researchers
attempted to simultaneously exploit the sharable and individual
components of different views to strengthen their models,
which achieved competitive performance on various RGB-
D vision tasks, e.g., object recognition [65], person re-
identification [66], etc. Similarly, recent advances on RGB-D
action recognition [15], [16], [19], [67], [68] have also focused
on mining the complementary information between the RGB
and depth modalities to model actions in spatio-temporal
domain. For example, Hu et al. [16] extracted heterogeneous
hand-crafted features from the RGB-D sequences and explored
their shared-specific properties through iterative optimization.
Shahroudy et al. [15] fed multi-view features into a deep auto-
encoder network to factorize their shared-specific components.
Different from these works, we develop a unified deep archi-
tecture and directly leverage the RGB pixels, optical flows
and depth frames as the network inputs. Further more, unlike
recent RGBD-based methods [15], [66] which mainly adopted
l2 norm to measure the distance between different components,
we deploy a smooth Cauchy estimator [20], which is robust
to the outliers, to maximize the correlations across different
modalities. Moreover, we apply orthogonality constraints to
guarantee the high independency for each modality, so that its
distinctive characteristics can be well preserved.

C. Egocentric Action Analysis

With the development of wearable cameras such as GoPro
and Google Glass, more and more datasets have been proposed
in the egocentric research field to evaluate different approach-
es. Table I summarizes the comparison between some publicly
relevant egocentric action/activity datasets and our proposed
dataset. While the existing datasets present various challenges
for action recognition to some extent, they still have some

limitations in different aspects, e.g., scale, annotation or data
modality. In contrast, our THU-READ has the advantages of:
1) larger scale with much more video clips and video frames,
2) pixel-level hand annotation, which provide visual hints for
action recognition and hand-object interaction, and 3) videos
in RGB and depth modalities, which simultaneously present
the appearance information and 3D structure of the scenes
during the action process.

Egocentric video analysis is a rapidly growing field and
has been explored from different aspects, including action
detection, action anticipation, action classification and many
others [69]–[72]. Action detection, which aims to recognize
actions with temporal segmentation, is an emerging and chal-
lenging topic in recent years [73], [74]. For example, Damen
et al. [75] proposed a large-scale egocentric benchmark in
the kitchen environments, enabling the egocentric community
to apply and develop various data-driven learning approach-
es for this task. Huang et al. [76] presented a temporal
action proposals (TAPs) method to localize generic actions
in egocentric videos. For action anticipation, Bertasius et
al. [77] proposed a model consisting of a future convolutional
neural network and a goal verifier network, to generate the
basketball motion sequence from a single first-person image.
Rhinehart et al. [78] explored the tasks of the first-person
trajectory forecasting and human activities prediction based on
the online learning theory and inverse reinforcement learning
method. For action classification, Possas et al. [79] developed
a reinforcement learning framework, which minimized the
energy cost of wearable sensor while keeping the competitive
accuracy levels of egocentric activity recognition. Recently,
researchers have explored some particular semantic cues (e.g.,
hands, gaze, etc.) in the egocentric scenarios to study this
fundamental problem [5], [6], [12], [43], [44], [80]–[82]. For
example, Fathi et al. [5] proposed a hierarchical inference
architecture to explore the consistent relationship of object,
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hand and action. Singh et al. [81] extended the two-stream
architecture [14] with an EgoConvNet, which utilized the hand
mask, head motion and saliency map for action recognition.
For the RGB-D egocentric action recognition, Moghimi et
al. [43] analyzed the performance of different image-based
representations and leveraged depth information to help skin
segmentation. However, they ignored the temporal consistency
in the videos and left room for making use of depth infor-
mation. Garcia-Hernando et al. [48] collected a first-person
hand action benchmark with RGB-D videos, but they did not
explore how to jointly utilize these two modalities to enhance
the recognition performance. In comparison, we adequately
exploit the complementary properties of static appearance,
temporal consistency and depth information in the egocentric
videos, while the hand cues are further leveraged to boost the
recognition accuracy.

D. Optical Flow

Over the past decades, various methods have been proposed
to estimate optical flow since the pioneering work presented
by Horn and Schunck [83]. For example, Zach et al. [84]
employed a total variation L1 norm regularization (TVL1)
method to compute optical flow in real-time. Brox et al.
developed FlowNet and FlowNet 2.0 architectures [85], [86]
by deep convolutional networks, which achieved promising
performance for optical flow estimation. More recently, Hui
et al. [87] further adopted technologies of cascaded flow in-
ference and flow regularization, and presented a more efficient
network architecture named LiteFlowNet.

As for video analysis, numbers of tasks (e.g., action recog-
nition [14], video-based facial landmark detection [88] and
object segmentation [89]) have benefited from optical flow.
For example, Dong et al. [88] presented an unsupervised
supervision-by-registration approach for facial landmark de-
tection on both images and videos, which leveraged optical
flow to guarantee the coherency of detection results between
two adjacent frames. In this work, we aim to capture the
motion information in egocentric videos by optical flow. We
employed optical flow based on TVL1 algorithm [84], which
achieves a good trade-off between accuracy and efficiency.

III. RGB-D EGOCENTRIC ACTION DATASET

In this section, we will describe our proposed RGB-D
Egocentric Action Dataset (THU-READ). The motivation of
collecting this dataset is to simultaneously record egocentric
videos in RGB and depth modalities, which represent the
spatial appearance, temporal information and 3D structure of
the scenes. To our best knowledge, this is currently the largest
RGB-D video-based dataset for egocentric action recognition.

A. Data Collection

We collected our RGB-D egocentric action dataset by
a Primesense Carmine camera, which is a RGB-D sensor
released by Primesense2. This sensor has the capability of
simultaneously recording videos in RGB and depth modalities

2https://en.wikipedia.org/wiki/PrimeSense

at 30 fps. Resolutions of these two modalities are both 640 ×
480. Fig. 1 shows the equipment and method of data collection.
We mounted the RGB-D sensor on a helmet, which was placed
on the subject’s head. The device is about 1.23 lbs totally,
this weight is light and would not bring burden when the
subject performed the action. For the purpose of acquiring
egocentric action videos, we kept the camera in the same
direction with the subject’s eyesight so as to simulate the real
conditions. We encouraged the subjects to perform the actions
as naturally as possible, which brought greater challenges of
shifting backgrounds and various motion speeds to the task of
action recognition. For the depth modality, the sensor captured
the video frames ranging from 0.3m to 5m effectively in
practice, covering the space where the subjects performed the
actions from the first-person view during the process of data
collection. We collected our dataset in 5 different scenarios:
lab, bathroom, conference room, dormitory and restaurant. In
order to balance the data distribution, we asked 8 subjects (6
males and 2 females, heights ranging from 1.62 m to 1.85 m)
to repeat performing the action of each class for the same N
times (here we chose N to be 3). Finally, we obtained 1920
video clips, where

1920 = 8 (subjects)× 2 (modalities)× 40 (classes)× 3 (times)

B. Data Preprocessing and Annotation

Since the sensor is sensitive to illumination, a few depth
frames are especially dark compared to others and thus have to
be removed. Having removed an estimated 5% of depth frames
and their RGB counterparts, we have 343,626 valid frames in
total. The length of each action video instance varies from 34
to 859, depending on the natural lasting time of the action.
On average, there are 179 frames per instance.

As suggested in previous works [5], [81], [82], hands
provide important visual cues for understanding human action
and human-object interaction in egocentric videos. However,
pixel-level handmask annotation is limited [80] and valuable.
In order to make use of this semantic information, we provide
over 200 million labeled pixels annotation of our database. We
have already released our THU-READ and the hand annotation
at http://ivg.au.tsinghua.edu.cn/dataset/THU_READ.php.

IV. PROPOSED APPROACH

In this section, we describe the proposed multi-stream deep
neural networks (MDNN) and its extension with the hand cues
(MDNN + hand) in details.

A. MDNN

In order to learn discriminative and robust features for RGB-
D egocentric actions recognition, the basic idea of our MDNN
is to preserve the distinctive characteristics for each modality
and simultaneously explore their sharable information. Fig. 2
shows the pipeline of our proposed method, which mainly
consists of three steps: 1) feature extraction, 2) multi-view
learning, and 3) classification. We mainly describe the first
two steps as follow.

http://ivg.au.tsinghua.edu.cn/dataset/THU_READ.php
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Fig. 2. An overview of the proposed muti-stream deep convolutional neural networks (MDNN). The inputs to our MDNN consist of the RGB
frames, optical flows and depth frames extracted from the RGB-D egocentric videos. At the feature extraction stage, we utilize three deep
neural networks to learn the spatial appearance, temporal information and geometric property, and extract the features X1, X2 and X3 for
each modality accordingly. During the multi-view learning process, we carefully disentangle the learned features into four components as
f1(X1), f2(X2), f3(X3) and g(X), where f1(X1), f2(X2), f3(X3) preserve the distinctive characteristics for each modality and g(X) contains
their sharable information. We combine the four components by allocating different weights {α1, α2, α3, β}. Having obtained the fused
feature h(X), we pass it to the final classification layer to predict the action label (best viewed in the color pdf file).

1) Feature Extraction: Unlike recent approaches for RGB-
D action recognition [15], [16], which extracted hand-crafted
features around the major joints of human body, our MDNN
directly takes RGB frames, optical flows and depth frames as
the network inputs, because the 3D skeleton information is not
available in the egocentric videos. As shown in Fig. 2, we uti-
lize three streams, namely appearance stream, motion stream
and depth stream to capture the static appearance, temporal
information and 3D structure of a pair-wise RGB-D egocentric
video accordingly. To be specific, we first decompose the RGB
video into spatial and temporal components as RGB images
and optical flows, and simultaneously extract depth frames
from the depth video. We employ the TVL1 algorithm [84]
to calculate optical flow between two adjacent frames of the
RGB videos (except the last frame of a video) because of its
balance between accuracy and efficiency. We follow [90] to
discretize the optical flow into the interval from 0 to 255 by
a linear transformation. The inputs of our MDNN are frames
on the three modalities at the same time-stamp, which are
assigned with the action label corresponding to the original
video. We deploy three deep convolutional neural networks
to learn the deep features of the network inputs (please see
section V.A for details), then we develop a multi-view learning
method to fuse the features and obtain the class score at the
end of the network. Finally, we average the scores of all the
frames to predict the action category of the video. In this
way, we are capable to leverage the information of the entire

video adequately and ensure the temporal consistency of the
intermediate features extracted from different modalities.

2) Multi-view Learning: Since features extracted from dif-
ferent streams exhibit their own property, it is lack of physical
meaning to combine them directly with some typical fusion
methods (e.g., concatenation or element-wise sum). To address
this issue, we aim to transfer the heterogeneous features into
some new spaces, which bridge the modality gap so that they
can be compared. As features in different modalities reflect
the properties of a specific action from different aspects, they
are neither fully independent nor fully correlated. Therefore,
the spaces we seek should contain the sharable information
and distinctive characteristics of different modalities.

More formally, we denote the features extracted from each
single network as X = {Xi}Ki=1, where Xi represents the
features in the ith modality and K is the total number of
modalities. We define the fusion function as: X → h(X),

which combines the input features X into the output feature
h(X). In order to adequately explore the sharable information
and distinctive characteristics of different modalities, we intro-
duce two types of intermediate features g(X) and {f i(Xi)}Ki=1.
On one hand, g(X) contains the sharable information of
different modalities:

g(X) =
1

K

K∑
i=1

gi(Xi), (1)

where {gi(Xi)}Ki=1 are the sharable components. To better
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model the non-linear relationship between the features of Xi

and gi(Xi), we perform linear mapping followed by a non-
linear activated function:

gi(Xi) = σ(Ws
iXi + bs

i ), i = 1, 2, ...,K, (2)

where σ(.) denotes the non-linear function. We employ the
tanh function in our implementation. Ws

i and bs
i are the

corresponding weighted matrix and bias term.
On the other hand, f i(Xi) retains the discriminative char-

acteristics that exclusively exists in each modality. Similar to
gi(Xi), we obtain f i(Xi) by another non-linear transformation:

f i(Xi) = σ(Wd
i Xi + bd

i ), i = 1, 2, ...,K, (3)

Note that the intermediate features g(X) and {f i(Xi)}Ki=1

may not be equally important for action recognition. Thus, we
integrate them to obtain the target feature h(X) by allocating
different weights as follow:

h(X) =
K∑
i=1

αi f i(Xi) + β g(X), (4)

subject to
K∑
i=1

αi + β = 1,

0 6 α1, α2, ..., αK , β 6 1,

where {αi}Ki=1 and β are the soft assignment weights corre-
sponding to the intermediate features {f i(Xi)}Ki=1 and g(X)
respectively. Having obtained the fused feature h(X), we feed
it into a fully-connected layer followed by a softmax function
to predict the action label. We will conduct experiments to
analyze the hyper-parameters {αi}Ki=1 and β in later experi-
ments.

3) Objective Function: We formulate our MDNN as the
following optimization problem:

min
θ

J = Jcls + λ1Js + λ2Jd (5)

= −
L∑

l=1

1(y = l)log(sl)

+ λ1
∑

1≤i<j≤K

Φs(gi(Xi), gj(Xj))

+ λ2[
∑

1≤i<j≤K

Φd(f i(Xi), f j(Xj))

+

K∑
i=1

Φd(f i(Xi), gi(Xi))].

Here θ denotes the parameters of the entire network, λ1 and
λ2 are two hyper-parameters to balance the effects of different
terms to make a good trade-off. The physical interpretations
of the Jcls, Js and Jd are respectively explained as below.

The first term Jcls represents classification loss for action
recognition. We calculate the categorical cross-entropy loss,
where 1 is the indicator function which equals 1 when the
prediction y = l is true and 0 otherwise. Here y and l denote
the predicted label and ground-truth label, L is the number of
the total action categories and the softmax output sl represents
the corresponding class probability.

The second term Js aims to exploit the sharable informa-
tions of different modalities. To achieve this goal, we employ
the Cauchy estimator [20] ρ0(x) = log(1+(x/a)2) to measure
the correlations between the sharable components {gi(Xi)}Ki=1

and minimize it during the optimization. Here, a is a hyper-
parameter and Js is derived as follow:

Φs(gi(Xi), gj(Xj)) = log(1 +
‖gi(Xi)− gj(Xj)‖2

a2
). (6)

Typically, it is more straightforward to calculate the L1 or
L2 distance to estimate the correlations between the sharable
components {gi(Xi)}Ki=1. However, the illumination variation
and camera movement usually cause some outliers in the
egocentric videos and neither L1 nor L2 distance is robust
to the outliers [49]. To further illustrate this, we consider
the influence function Ψ(x) of an estimator ρ(x), which
is mathematically defined as Ψ(x) = ∂ρ(x)/∂x. For the
absolute value estimator (i.e., L1 distance) ρ1(x) = |x|,
its influence function has no cut-off, while the least-squares
estimator (i.e., L2 distance) ρ2(x) = x2/2 has the influence
function Ψ2(x) = x, which increases linearly with x. In
comparison, the influenced function of Cauchy estimator is
Ψ0(x) = 2x/(a2 + x2), which has the upper bound 1/a for
x > 0 and more smooth, therefore it is more robust to the
outliers [49]. In practice, we set the hyper-parameter a to be 1.
We also conduct the experiments to demonstrate the advantage
of Cauchy estimator compared with the L1 and L2 distance
in the later section.

The third term Jd in equation (5) attempts to preserve the
distinctive characteristics for each modality. Towards this goal,
we enforce the orthogonality constraints on {gi(Xi)}Ki=1 and
{f i(Xi)}Ki=1 as follow:

Φd(f i(Xi), f j(Xj)) = |f i(Xi)� f j(Xj)|, (7)
Φd(f i(Xi), gi(Xi)) = |f i(Xi)� gi(Xi)|,

where � is the element-wise Hadamard product. Through
the orthogonality constraints, the distinctive components
{f i(Xi)}Ki=1 are enforced to be independent to each other.
Also, f i(Xi) is regularized to be irrelevant to its corresponding
sharable component gi(Xi). Therefore we are able to guarantee
the specifics for different modalities by minimizing Jd.

To optimize (5), we employ the standard back-propagation
method for learning all the parameters θ of our MDNN. The
gradient ∂J/∂θ is calculated by the deep learning toolbox [91]
automatically. We summarize the pipeline of our MDNN in
Algorithm 1.

B. MDNN+hand

While the proposed MDNN learns to fuse the data in
different modalities for action recognition, it directly leverages
the global information of the video frames and optical flows as
the network inputs. In this part, we aim to further exploit some
local information which contains important semantic hints in
the egocentric videos to improve the performance of action
recognition. More specifically, we focus on the hand cues,
because 1) human often pay attention to their hands when they
act, so that the hands usually appear in the egocentric videos,
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Algorithm 1: MDNN
Input: Training videos: {VRGB ,Vdepth}, lable l,

Parameters: Γ (iterative number), η (learning rate)
and ε (convergence error).

Output: the weights of MDNN θ.
// Data-preprocessing:
Extract VRGB to RGB frames and optical flows.
Extract Vdepth to depth frames.
// MDNN training:
Initialize θ.
Perform forward propagation.
Calculate the initial J0 by (5).
for t← 1, 2, ..., Γ do

// Update θ by back propagation:
θ ← θ − η ∂J/∂θ
Perform forward propagation.
Compute the objective function Jt using (5).
If |Jt − Jt−1| < ε, go to Return.

end
Return: The network parameters θ of MDNN.

and 2) hands are the principal parts of egocentric actions and
the recognition accuracy is usually sensitive to hand poses.
In order to leverage the hand hints, we extent our MDNN to
MDNN+hand by integrating with a carefully designed hand-
module.

Fig. 3 shows an overview of our MDNN+hand. Concretely,
the hand-module takes the RGB frames as input. Firstly, it
segments hands in these video frames and outputs the binary
handmasks Ms by a fully convolutional networks (FCN)
model [92]. Since there are at most two hands appearing in the
cameras, we only retain the largest two connected components
in these binary images. Sequentially, we utilize the segmenta-
tion masks Ms to black out the cluttered background of the
corresponding RGB frames. The obtained results B are fed into
another CNN architecture. We calculate the sum of per-pixel
two-class softmax loss [92] for the FCN and the categorical
cross-entropy loss for the CNN. In order to integrate the hand-
module with the MDNN, we combine their softmax scores
through a weighted fusion strategy:

s = γsh + sM , (8)

where γ is a balanced hyper-parameter and the index of the
max element in s indicates the final action label.

V. EXPERIMENTS AND ANALYSIS

In this section, we conducted experiments on three e-
gocentric RGB+D datasets for action recognition, including
the proposed THU-READ, Wearable Computer Vision Sys-
tems dataset (WCVS) [43] and Grasp Understanding dataset
(GUN71) [44]. The experimental results and analysis are
described in details as follows.

A. Implementation Details

We implemented our MDNN model on the Keras tool-
box [91] and trained the networks with 2 Nvidia Tesla

Fig. 3. Flowchart of the MDNN+hand. We segment the hands in the
egocentric videos by the FCN model and utilize the handmask Ms to black out
the non-hand regions. We feed the obtained results B into a CNN model and
combine the classification scores of hand-module and MDNN by weighted
fusion to predict the final action label.

K80 GPUs. For feature extraction, we adopted VGG-16 net-
work3 [93] pretrained on ImageNet [94]. Then we removed
its last prediction layer, which was actually a fully-connected
layer activated by a softmax function. We fed the input frames
into the network and obtained the features {Xi}Ki=1 of the
fc7 layers. We set the dimensions of the intermediate features
{f i(Xi)}Ki=1 and g(X) to be 512. The weighted matrices W in
multi-view learning stage were initialized by glorot uniform
method [95]:

W(m) ∼ U[−
√

6√
p(m) + p(m+1)

,

√
6√

p(m) + p(m+1)
], (9)

where p(m) was the size of the mth layer and the bias terms
b were initialized to be zeros. We normalized Js and Jd in all
experiments and used λ1 = λ2 = 1. We employed stochastic
gradient descent (SGD) method to optimize the parameters of
whole network and assigned the value of initial learning rate
and batchsize to 0.001 and 4, respectively.

For the hand-module, we applied FCN-8s model [92] to
segment hands in RGB video frames. We adapted its last
layer from a 21-dimensional output to a 2-dimensional output,
as the the hand segmentation problem could be considered
as a pixelwise binary classification problem between hand
and background. The parameters of the FCN-8s model were
initialized as those of the trained VGG-16 network [93] where
the FCN-8s and VGG-16 net structures matched, and as
random values for the rest. We finetuned the model on 1,391
pixel-wise labeled images, including 652 images from our
THU-READ and 743 images from the EDSH dataset [96]. To
fuse the hand-module with our MDNN, we empirically set the
hyper-parameter γ in equation (8) to be 0.13, 0.39 and 0.15 on
the THU-READ, WCVS and GUN-71 dataset, as hand cues
played different importance in different datasets respectively.

3Configurations of the VGG16 Network: [block1_conv1, block1_conv2,
block1_pool, block2_conv1, block2_conv2, block2_pool, block3_conv1,
block3_conv2, block3_conv3, block3_pool, block4_conv1, block4_conv2,
block4_conv3, block4_pool, block5_conv1, block5_conv2, block5_conv3,
block5_pool, flatten, fc6, fc7, prediction], the ReLU activation function is
not shown for brevity.
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B. Datasets and Experimental Setup
1) THU-READ: We have described our THU-READ in

Section III. In our previous work [22], we randomly sampled
about 30% video clips for model training and used the other
clips for testing. In order to provide a standard experimental
setting, we formally defined two evaluation protocols in this
work, including cross-group (CG) and cross-subject (CS)
settings. In the CG setting, considering each subject performed
each action for 3 times, we divided the videos samples into
3 groups, where a group was for training and the rest for
testing. In the CS setting, we separated the 8 subjects into
4 splits and used samples from 3 splits for training and the
other for testing. We calculated the recognition accuracy on all
groups and splits, and their average results on the two settings
respectively.

2) WCVS: Wearable Computer Vision Systems (WCVS)
dataset [43] provides RGB-D egocentric video samples per-
formed by 4 different subjects in 2 different scenarios. This
dataset was organized into 3 levels of granularity. Level I
contained two classes as manipulation and non-manipulation
actions. At level II, the manipulation actions were divided into
4 categories and the non-manipulation actions were splited into
other 6 classes. At the level III, the manipulation actions of
level II were divided into finer categories, but the frequency
of them was too low to train a classifier [43]. Therefore,
we evaluated our methods on the manipulation actions of
the level II [43]. Although there were only 4 action classes
in this setting, the dataset presented great challenges due to
the large intra-class variations caused by multiple users and
scenarios. As suggested in [43], we conducted experiments
on different methods with the leave-one-subject-out cross-
validation scheme.

3) GUN-71: Grasp Understanding (GUN-71) dataset [44]
is a challenging image-based dataset for egocentric hand-
action understanding. We chose this image-based database due
to the scarcity of the video-based egocentric RGB-D datasets
for action recognition. The GUN-71 included roughly 12000
labeled RGB-D images captured from a chest-mounted RGB-
D camera, which covered 71 everyday grasps. This dataset
was performed by 8 different subjects. Following [44], we
adopted the leave-one-out cross-validation protocol to evaluate
our method and reported the average accuracy as the final
result.

4) Compared methods: We mainly compared our approach-
es with two types of existing methods: hand-crafted features
based methods and deep learning based methods. For the hand-
crafted features based methods, we evaluated IDT [13] features
on the first two video-based datasets, due to its better perfor-
mance compared with the other exsiting hand-crafted spatio-
temporal descriptors [33], [98]. We obtained the HOG [97],
HOF [24] and MBH [32] features, which were extracted based
on the trajectories of IDT, as well as their combination on
both RGB and depth videos. Then, we employed the higher-
dimensional encodings methods [99], with gmmSize set to
256 to generate good performance. We tested several encoding
methods and finally chose the Fisher Vector (FV) [100] due to
its higher performance than other encoding algorithms in [99].
For deep learning based methods, we presented the recognition

performance on each single stream trained separately with
the cross-entropy loss function. We also tested three multi-
view learning methods, including score fusion, feature fusion
and deep canonical correlation analysis (DCCA) method [51].
Here, score fusion denotes averaging the softmax classification
scores of each single stream [22] and feature fusion represents
averaging the multi-modal features of the last fully connected
layers. For the GUN-71 dataset, we reported the performance
of HOG descriptors, and evaluated deep learning methods
based on the appearance and depth streams only, as there
was no temporal information in this image-based dataset to
be utilized.

C. Evaluation on the THU-READ

1) Results of Existing Methods: We first conducted ex-
periments on various methods to build a benchmark for our
proposed THU-READ. Table II tabulates the comparisons of
classification accuracy for action recognition. For the hand-
crafted feature based methods, the RGB and depth modalities
both contribute important information for egocentric action
recognition. The combined features [13] on RGB videos
achieve more promising performances than those on depth
videos, e.g., they are respectively 6.36% and 4.06% higher on
the CS and CG settings. Besides, we notice that the accuracy of
different methods on CG setting are much higher than those
on CS setting, this phenomenon is also found on the other
models. It may be the reason that the actions performed by
the same actor have higher similarity than those performed
by different actors. For the deep learning based approaches,
we first evaluated each single stream. From Table II we see
that, the appearance stream achieves the value of 41.90% (CS)
and 83.14% (CG), which is best of three the single streams.
The performances of the motion stream are 37.19% (CS) and
72.81% (CG), while the depth stream achieves 34.06% (CS)
and 78.38% (CG) respectively. This is similar to the results on
hand-crafted feature based methods, which indicates the virtual
importance of the RGB modality. We also adopted three multi-
view learning methods to combine the three streams, including
score fusion, feature fusion and DCCA method [51] described
in Section V.B. We discover that combining three streams is
capable to improve the performance of each single stream,
which demonstrates their complementary property. Moreover,
DCCA achieves better performances than the other two fusion
methods, because it explicitly maximized the correlation of
three modalities, so that their complementary properties are
adequately leveraged.

2) Results of MDNN and MDNN+hand: We conducted
experiments on our proposed methods. As described in the
caption of Table II, MDNN1 and MDNN2 denotes adopting
different hyper-parameters αi(i = 1, 2, 3) and β. From the re-
sults we observe that, our proposed MDNN achieves promising
performance compared with the existing approaches. More-
over, the MDNN+hand improves the performance in the most
cases, which demonstrates the advantage of introducing the
hand cues for helping egocentric action recognition. How-
ever, in some situations, the accuracy improvements are not
significant when integrating with hand cues. This is mainly



9

TABLE II
COMPARISONS OF THE ACTION RECOGNITION ACCURACY (%) ON THE PROPOSED THU-READ DATASET. THE MDNN1 AND MDNN2

DENOTE ADOPTING DIFFERENT HYPER-PARAMETERS: MDNN1 FOR αi = β = 1/4(i = 1, 2, 3), MDNN2 FOR
αi = 1/6(i = 1, 2, 3), β = 1/2. THE HAND-CRAFTED FEATURES ARE BASED ON IDT [13].

Methods CS1 CS2 CS3 CS4 Average CG1 CG2 CG3 Average

HOG-RGB [97] 38.75 42.08 32.50 43.75 39.93 82.81 84.69 81.56 83.02
HOF-RGB [24] 37.08 44.58 45.00 45.00 46.27 73.75 76.09 73.28 74.37
MBH-RGB [32] 52.92 57.92 52.08 57.50 55.11 77.19 81.41 80.00 79.53
Combine-RGB [13] 53.33 56.25 52.50 62.50 56.15 86.09 88.75 87.03 87.29
HOG-Depth [97] 49.58 45.83 44.17 43.75 45.83 80.47 86.41 81.25 82.71
HOF-Depth [24] 42.92 44.17 46.25 42.50 43.96 73.91 78.59 70.94 84.48
MBH-Depth [32] 47.92 43.75 41.25 39.58 43.13 72.97 78.91 72.97 74.95
Combine-Depth [13] 51.25 49.17 50.00 48.75 49.79 82.19 86.09 81.41 83.23

Appearance Stream [93] 35.42 44.17 43.44 44.58 41.90 82.66 86.88 80.47 83.14
Depth Stream [93] 29.58 40.42 34.17 32.08 34.06 77.03 82.34 75.78 78.38
Motion Stream [93] 37.50 40.42 38.33 32.50 37.19 70.31 77.50 70.63 72.81

Depth Stream + Motion Stream 45.00 45.83 45.83 47.50 46.04 82.34 87.34 83.28 84.32
Appearance Stream + Motion Stream 50.83 59.58 49.17 60.83 55.10 89.53 90.00 87.34 88.96
Appearance Stream + Depth Stream 45.83 58.33 50.42 56.25 52.71 85.16 89.06 87.03 87.08

Score Fusion [22] 38.75 51.67 48.75 47.50 46.67 84.38 88.12 83.19 85.47
Feature Fusion 49.17 56.67 54.17 57.92 54.48 90.00 89.38 87.50 88.96
DCCA [51] 56.67 60.00 51.67 57.92 56.57 90.31 91.87 89.53 90.59
MMUDL [66] 53.33 61.25 52.50 62.08 57.29 90.00 92.03 88.91 90.31
DSSCA [15] 55.42 62.08 52.50 65.83 58.96 88.91 90.31 86.25 88.49

MDNN1 62.92 63.33 57.92 63.75 61.98 90.00 91.72 89.84 90.52
MDNN2 56.25 63.75 57.08 65.42 60.63 92.19 92.34 90.16 91.56
MDNN1 + hand 64.58 63.33 60.00 64.58 62.92 90.78 92.03 90.00 90.94
MDNN2 + hand 57.50 67.50 57.08 67.92 62.50 92.19 92.66 90.31 91.72

Fig. 4. The confusion matrices of the MDNN2 + hand method on THU-
READ. The result of group3 on CG setting is shown on the left and that
of split4 on CS setting is presented on the right. The ground truth and the
predicted labels are displayed on the vertical and horizontal axis respectively
(best viewed in the pdf file).

because the failed segmentation may make bad influence
on the recognition tasks. In the supplementary material, we
further show some typical examples of the ground-truth hand
annotation and the segmentation results, including some suc-
cessful examples and some failed samples for visualization.
In the future, it is an interesting work to employ some high-
performance segmentation methods, like Mask R-CNN [101],
to obtain hand masks with higher quality and further improve
the recognition accuracy.

Fig. 4 shows the recognition confusion matrix obtained by
MDNN2+hand on group3 (CG) and split4 (CS). For group3
(CG), most actions are classified correctly except several ac-
tions like “push button” and “thumb”. More specifically, “push
button” is sometimes confused with the action “plug” (hand

both interacted with the plug board for these two actions) and
“thumb” is sometimes misclassified to “tear paper” (the action
backgrounds are sometimes similar in our dataset). Compared
with group3 (CG), the action recognition results on split4 (CS)
are relatively low and several actions are often misclassified,
such as “open drawer”, “wave hand” and so on. This is mainly
because the actions performed by different subjects have larger
intra-class variance, which also shows the challenge of our
proposed dataset on the CS setting.

3) Ablation Studies: In order to verify the importance
of each single modality, we have conducted the ablation
experiments. When we employ our proposed MDNN to fuse
two streams, we empirically set β = 1/2 and α1 = α2 = 1/4
and the reason is explained in the later “Parameter Analysis”
section. As shown in Table II, once we combine two streams
together, the accuracy consistently increases based on the
single streams. And finally the MDNN, which utilizes data on
three modalities, achieves the higher results than employing
two streams. This phenomenon has demonstrated the impor-
tance of each modality for action recognition, and shown the
effectiveness of our method to explore the complementary
information of different modalities.

4) Comparison with Existing Multi-view Learning Methods:
As shown in Table II, the proposed MDNN outperforms the
methods of score fusion and feature fusion. Compared with
DCCA method [51], our MDNN obtains comparable results
on the CG setting and is superior on the CS setting. This
is because DCCA only utilizes the sharable information of
different modalities, while the MDNN further preserves their
distinctive characteristics. Thus, more information is retained
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Fig. 5. The curves corresponding to Table III. For both Cross-Subject
setting (left) and Cross-Group setting (right), the action recognition accuracy
reaches peak when the sharable information and distinctive characteristics are
simultaneously explored.

TABLE III
THE RELATIONSHIP BETWEEN DIFFERENT PARAMETERS AND THE

ACTION RECOGNITION ACCURACY (%) ON THE THU-READ.
MDNNsoftmax DENOTES EMPLOYING THE SOFTMAX LAYER TO

CONSTRAIN
∑3

i=1 αi + β = 1.

αi(i = 1, 2, 3) β Cross-Subject Cross-Group

1/3 0 56.15 89.64
1/4 1/4 61.98 90.52
1/6 1/2 60.63 91.56
1/20 17/20 59.69 91.25

0 1 58.13 90.00

MDNNsoftmax 56.56 89.84

to enhance the recognition performance.
In recent years, numbers of RGBD-based methods have

been proposed to exploit the sharable and individual com-
ponents of different modalities, which mainly adopted l2
norm to measure the distance between different components.
Different from these works, we utilized the Cauchy estima-
tor [20] to measure the correlations between the sharable
components, and employed the orthogonality constraint to
preserver the distinctive characteristics of different modalities.
We have conducted experiments to compare with state-of-the-
art RGBD-based methods DSSCA [15] and MMUDL [66]
4. From Table II observer that, our MDNN have generally
outperforms the state-of-the-art RGBD-based methods on the
THU-READ dataset, which demonstrates the robustness of our
fusion scheme.

5) Parameter Analysis: There are several important pa-
rameters in this work. In equation (4), the parameter β
denotes the importance of the sharable information, while the
αi(i = 1, 2, 3) represents the contributions of each distinctive
component. We conducted several experiments to analyze how
these parameters influenced the performance of the recogni-
tion. Table III and Fig. 5 show the performances on the CG and
CS settings by allocating different values to the parameters,
which satisfy Σ3

i=1αi + β = 1 and 0 6 α1, α2, α3, β 6 1.
For simplicity, we set α1 = α2 = α3. We notice that, when β
is close to 0, the accuracy is relatively low since the sharable
component of the three modalities plays less significance role.

4See the supplementary materiel for the implementation details.

Fig. 6. Visualization of feature maps extracted from each single stream.
We display the results of four groups. For each group, the input video frames
are shown on the left, while their Conv1 feature maps are presented on the
right. The results on the top, middle and bottom are corresponding to the
modalities of RGB, optical flow and depth, respectively.

When β increases, the recognition accuracy will reach the
peak. However, when β approaches to 1, the performance
will go down due to the vanishing of the distinctive compo-
nents. This phenomenon demonstrates the importance of both
sharable information and distinctive characteristics.

Moreover, we have further conducted experiments by using
a softmax layer to constrain

∑3
i=1 αi + β = 1. 5 As shown

in Table III, we observe that using the softmax layer performs
worse than the hand-designed strategies MDNN1 (αi = β =
1/4, i = 1, 2, 3) and MDNN2 (αi = 1/6, β = 1/2, i = 1, 2, 3).
It may be the reason that, the fc layers before the softmax layer
brought more parameters to train, thus more training data are
needed to obtain the better results.

In the later experiments, we chose the parameter settings
as β = 1/2, and αi = αj(i 6= j) (the parameter settings for
MDNN2). This is because in the Table II, on the cross-subject
scenario, MDNN2 performs better than MDNN1 on CS2 and
CS4, and the results are opposite when it comes to CS1 and
CS3. On the cross-group scenario, the results of MDNN2 are
consistently higher than those of MDNN1.

6) Visualization: We also performed some feature visu-
alization to qualitatively evaluate our proposed method. We
extracted the feature maps from the Conv1 layer of each single
stream. Fig. 6 shows the visualization results, from which we
observe that each stream is capable to capture some distinctive
characteristics of its corresponding modality. To be specific,
while the RGB features mainly carry the color and textural
information, the feature maps of optical flows encode some
motion patterns, especially the movement of hand and its
interacted object. Moreover, the depth features reflect the 3D
structures of the scene according to the distances of different

5 We first sent the intermediate features f1(X1), f2(X2), f3(X3) and
g(X) into four fc layers as: si = tanh(Wif i(Xi) + bi), i = 1, 2, 3, s4 =
tanh(W4g(X) + b4). Then we fed si(i = 1, 2, 3, 4) into a softmax layer to
obtain αi(i = 1, 2, 3) and β as: [α1, α2, α3, β] = softmax([s1, s2, s3, s4]).
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Fig. 7. The t-SNE visualizations [21] of 7 classes randomly selected from
the THU-READ. The left figure shows the intermediate features g(X) with
sharable information, while the right figure presents the final fused features
h(X) learned by the MDNN (best viewed in the color pdf file).

objects to the wearable camera.
Also, we employed t-SNE methods [21] to compare the

intermediate features g(X) with the sharable information and
the final fused features h(X). Fig. 7 presents the visualiza-
tion results of 7 classes randomly selected from the THU-
READ. Compared with the intermediate features, the final
fused features perform better to enlarge the margin among the
inter-class samples and reduce the intra-class distance, which
demonstrates the discriminative power of our MDNN.

D. Evaluation on the WCVS Dataset

1) Results of Existing Methods: Table IV tabulates our
experimental results and some exsiting results reported in [43].
For the hand-crafted based features, the IDT features achieves
the highest recognition accuracy, e.g., 59.26% on RGB modal-
ity and 52.79% on depth modality. For the deep learning
methods, the appearance stream performs better than the CNN-
RGB and CNN(MULTIWINDOW)-RGB [43]. This is mainly
because the appearance stream was implemented by the VGG-
16 network [93], which has deeper architecture to model
the non-linear information for action recognition than the
DeCAF model [102] used in [43]. For the three multi-view
learning methods, we find that the feature fusion method and
DCCA [51] method improve the recognition accuracy of the
appearance stream (i.e. the best single stream) by 1.80% and
0.09% respectively, while the score fusion approach degrades
the performance by 1.04%. This is due to the reason that score
fusion is lack of physical meaning and may cause the negative
effect sometimes.

2) Results of MDNN and MDNN+hand: We evaluated
our proposed methods on the WCVS dataset with the same
parameter setting of MDNN2 in the THU-READ as α1 =
α2 = α3 = 1/6 and β = 1/2. Table IV shows that, our MDNN
model attains the performance of 65.67% and MDNN+hand
brings 1.37% improvement, which achieves favourable perfor-
mance compared with other methods for action recognition.
This demonstrates the advantages of our fusion strategy.

3) Analysis on Different Estimators: To investigate the
robustness of the Cauchy estimator in equation (6), we further
conducted experiments on other two estimators. Table V

TABLE IV
COMPARISONS OF THE ACTION RECOGNITION ACCURACY (%) ON

THE WCVS DATASET.

Methods Cross-Subject Accuracy

SKIN_HIST-RGB-D [43] 27.00
GIST-RGB [43] 35.00
SIFT-RGB [43] 44.00
HOG-RGB [97] 52.14
HOF-RGB [24] 48.50
MBH-RGB [32] 54.36
Combine-RGB [13] 59.26
HOG-Depth [97] 50.61
HOF-Depth [24] 41.25
MBH-Depth [32] 44.46
Combine-Depth [13] 52.79

CNN-RGB [43] 52.00
CNN(MULTIWINDOW)-RGB [43] 57.00
Appearance Stream [93] 60.36
Depth Stream [93] 58.47
Motion Stream [93] 37.34
Score Fusion [22] 59.32
Feature Fusion 62.16
DCCA [51] 60.45

MDNN 65.67
MDNN + hand 67.04

TABLE V
COMPARISION OF ACTION RECOGNITION ACCURACY (%) ON

DIFFERENT ESTIMATORS ON THE WCVS DATASET.

Estimators Cross-Subject Accuracy

L1 Distance Estimator 63.60
L2 Distance Estimator 62.88

Cauchy Estimator 65.67

tabulates the comparison results, which shows that the Cauchy
estimator achieves the recognition accuracy of 65.67%, sur-
passing the L1 and L2 distance estimators by 2.07% and
2.79% respectively. This indicates that the Cauchy estimator
is more robust to the outliers than the other two estimators for
modelling the correlation of different modalities.

E. Evaluation on the GUN-71 Dataset

1) Results and Analysis: We also conducted experiments on
the GUN-71 dataset. As GUN-71 is an image-based dataset,
the MDNN only consists of the appearance stream and depth
stream. Similar to the two previous datasets, we set β = 1/2
and α1 = α2 = 1/4. As shown in the Table VI, our MDNN
and MDNN+hand achieve the recognition results of and
33.89% and 34.04% respectively, consistently outperforming
the other existing methods. Fig. 8 displays the visualization
of the best results in [44] and our proposed approach, which
presents the significant improvement over the previous work.

2) Comparison with Existing Multi-view Learning Methods:
We tested the three fusion approaches on this dataset. The
recognition results of score fusion, feature fusion and DCCA
are 26.24, 29.36 and 32.56 respectively. The accuracies of the
first two methods are relatively poor, this is mainly because
the performance of the depth stream (15.60%) is much lower



12

Fig. 8. Visualizations of best results reported in [44] (upper row) and our
MDNN+hand approach (lower row). The recognition accuracies of the 71 hand
actions are shown on the left, while the corresponding confusion matrices are
presented on the right.

TABLE VI
COMPARISONS OF THE ACTION RECOGNITION ACCURACY (%) ON

THE GUN-71 DATASET.

Methods Cross-Subject Accuracy

Deep-RGB [44] 11.31
Best from [44] 17.97

Appearance Stream [103] 26.00
Depth Stream [103] 15.60
Score Fusion [22] 26.24
Feature Fusion 29.36
DCCA [51] 32.56

MDNN 33.89
MDNN+hand 34.04

than that of the appearance stream (26.00%). Since the score
fusion method roughly averages the classification probabilities
of the two streams and the DCCA method aims to maximize
the correlation between the two modalities, they may retain
the negative property of the depth stream and harm the fusion
results. In comparison, our proposed MDNN further preserves
the distinctive properties for different modalities, which can
be regarded as a compensation when the sharable information
does not perform well. Therefore, the MDNN is capable to
bring 1.33% improvement over the feature fusion method and
avoid the problem mentioned above.

F. Analysis

In previous sections, we have shown the effectiveness of
the fusion strategy of our MDNN compared with other multi-
view learning methods. In this section, we have conducted
experiments on more state of the art methods, including
TSN [90], SeDyn [104] and EgoTDD [81]. These methods
were originally designed for the color videos, in order to
evaluate them on the depth modality, we processed the depth
frames in the same way as the RGB frames. Table VII
displays the experimental results on the cross-subject settings

TABLE VII
COMPARISONS OF ACTION RECOGNITION ACCURACY (%) WITH THE

STATE-OF-THE-ARTS ON THE CROSS-SUBJECT SETTING OF THU-READ
AND WCVS DATASET.

Method THU-READ WCVS

EgoTDD-RGB [81] 62.81 57.02
EgoTDD-Depth [81] 54.58 55.04
SeDyn-RGB [104] 66.67 58.42
SeDyn-Depth [104] 47.50 55.06
TSN-RGB [90] 73.85 66.02
TSN-Flow [90] 62.39 59.48
TSN-Depth [90] 65.00 59.32
TSN-Flow+RGB (score fusion) [90] 78.23 67.05
TSN-Flow+RGB+Depth(score fusion) [90] 81.67 70.09

MDNN + TSN 83.54 71.83

of THU-READ and WCVS dataset. We observe that the TSN-
RGB [90] achieves 73.85% and 66.02% recognition accuracies
on the THU-READ and WCVS dataset, which performs best
among the methods based on single modality. In particular,
this model combined a sparse temporal sampling strategy
and video-level supervision to model the long-range temporal
structure. It also utilized several engineering techniques (e.g.,
partial batch normalization and data augmentation) to generate
good performance. It is remarkable that these techniques
should be orthogonal to our method. This is because our
MDNN, which is equipped with simple baseline models for
the single streams, mainly focuses on exploring the comple-
mentary information of different modalities and fusing them
more effectively. To demonstrate this, we further conducted
experiments by replacing the score fusion strategy in TSN
model with the multi-view learning method in our MDNN (see
supplementary material for details). As shown in Table VII,
MDNN+TSN achieves the accuracy of 83.54% and 71.83%
on the THU-READ and WCVS dataset, outperforming all
the single modalities and the score fusion strategy of TSN.
This corroborates the advantages of our proposed method, and
further illustrates that it can be easily adopted during the fusion
strategy of the other state-of-the-arts.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the problem of RGB-
D egocentric action recognition. We have collected a dataset
called THU-READ with over 340K video frames and 200M-
pixel hand annotation, which is the currently largest RGB-D
egocentric action dataset. In order to adequately exploit the
complementary information of the static appearance, temporal
information and depth property, we have proposed a multi-
stream deep neural networks (MDNN) method, which aims to
simultaneously mine the sharable information and distinctive
characteristic of different modalities. Moreover, we have ex-
tended our MDNN by integrating with the hand cues to further
enhance the recognition accuracy. The experiments achieved
superior performance in comparison with the state-of-the-art
methods on our proposed THU-READ and additional two
datasets. In the future, we will extend our THU-READ to
a larger dataset with more participants and more challenges.
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Moreover, it is interesting to explore the self-adapted methods
to decide the importance of each modality and mine the
semantic cues more adequately for human-object interaction
task on our dataset.
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