ICCV 2019 Seoul, Korea

Motivations

Given a set of view image of 3D object $\mathcal{X}~=~\{\mathbf{X}_1,\mathbf{X}_2,\cdots,\mathbf{X}_N\}$ we want to predict the category of the object.

Problems:

The object usually have some regions that are occluded, reflective, incomplete or totally invisible from one particular viewpoint. We need to **combine the information** from different viewpoints to understand the object.

A simple view pooling operation cannot aggregate the information from corresponding regions.

region-to-region relationships and *view-to-view* relationships

Learning Relationships for Multi-View 3D Object Recognition

Ze Yang

yangze@pku.edu.cn

Reinforcing (region)

The region features of the *i-th* view:

 $\mathbf{R}_i = \{\mathbf{r}_{i1}, \mathbf{r}_{i2}, \cdots, \mathbf{r}_{iL^2}\}, \ \mathbf{r}_{ij} \in \mathbb{R}^{D_r}$

Matching score between \mathbf{r}_{ij} and \mathbf{r}_{mn} :

 $M_{ij,mn} = \mathcal{M}(\mathbf{r}_{ij},\mathbf{r}_{mn})$

Normalize the *matching score*:

$$\hat{M}_{ij,mn} = \frac{e^{\frac{M_{ij,mn}}{\sqrt{D_e}}}}{\sum\limits_{m=1}^{N}\sum\limits_{n=1}^{L^2} e^{\frac{M_{ij,mn}}{\sqrt{D_e}}}}$$

The reinforced region feature $\mathbf{r}^*_{i\,i}$ are calculated based on the matching score:

$$\mathbf{r}_{ij}^* = \mathbf{r}_{ij} + f\left(\sum_{m=1}^N \sum_{n=1}^{L^2} \hat{M}_{ij,mn} \cdot g(\mathbf{r}_{mn})\right)$$

Integrating (view)

Model the pair-wise relationships between views to determine the importance score of each view:

$$I_i = \sum_{j=1}^N \mathcal{R}(\mathbf{f}_i^*, \mathbf{f}_j^*)$$

Normalizing the importance score using ReLU (can be seen as first order approximation of SoftMax) to stabilize training.

$$\hat{I}_i = \frac{\text{ReLU}(I_i)}{\sum_{j=1}^{N} \text{ReLU}(I_j)}$$

Then the 3D object feature is calculated as the convex combination of the view feature.

$$\mathbf{f} = \sum_{i=1}^{N} \hat{I}_i \cdot \mathbf{f}_i^*$$

Liwei Wang

wanglw@cis.pku.edu.cn

- inside view

$$\hat{M}_{ij,mn} = \frac{e^{\frac{M_{ij,mn}}{\sqrt{D_e}}}}{N \cdot \sum_{m=1}^{L^2} e^{\frac{M_{ij,mn}}{\sqrt{D_e}}}}$$

Quantitative results:

Methods	Number of Views			w/ Integrating	Places of a single	Average Instance	
	3 views	6 views	12 views	block	Reinforcing block	Accuracy	
MVCNN [39]	913	92.0	91.5	\checkmark	conv2	93.9	
1000000000000000000000000000000000000	97.1	92.0	92.2	✓	conv3	93.7	
	92.1	92.2	$\frac{92.2}{02.4}$	√	conv4	94.0	
MHBN [47]	93.8	94.1	93.4	\checkmark	conv5	94.3	
Ours	93.5	94.1	94.3	×	conv5	93.8	

Ablation on view numbers

Mathada	Input Modelity	ModelNet40		ModelNet10		Retrieval on
wiethous	mput Wodanty	Inst Acc	Class Acc	Inst Acc	Class Acc	ModelNet40
SPH [19]	Handcraft	-	68.2	-	-	33.3
LFD [9]	Handcraft	-	75.5	-	-	40.9
3D ShapeNets [46]	Volume	-	77.3	-	83.5	49.2
VoxNet [27]	let [27] Volume		83.0	-	92.0	-
Subvolume Net [31]	et [31] Volume		86.0	-	-	-
Voxception-ResNet [4]	on-ResNet [4] Volume		-	93.6	-	-
PointNet [30]	Points	89.2	86.2	-	_	-
PointNet++ [32]	ntNet++ [32] Points w/ Normal		-	-	-	-
Kd-Networks [20]	tworks [20] Points		88.5	94.0	93.5	-
MVCNN [39]	12 Views	92.1	89.9	-	-	80.2
MVCNN-MultiRes [31]	Multi-resolution Views	93.8	91.4	-	-	-
Pairwise Network [17]	12 Views w/ Depth	-	91.1	-	93.2	-
RCPCNN [43]	12 Views w/ Depth, Normal	93.8	-	-	-	-
GVCNN [10]	8 Views	93.1	-	-	-	84.5
	12 Views	92.6	-	-	-	85.7
MHRN [47]	6 Views	94.1	92.2	94.9	94.9	_
	12 Views	93.4	-	-	-	_
Ours	Ours 12 Views		92.3	95.3	95.1	86.7

Comparisons with state-of-the-art

Qualitative results:

Experiments

Ablation on reinforcing block

