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Current framework for visual perception system.
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Use bounding box as intermediate representation
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Why bounding box?
eBounding box is convenient to annotate with little ambiguity.
eEasy feature extraction.

Limitations.
eCoarse object feature extraction.
eUnable to tackle irregular object, e.g. roads.

Better geometric/semantic aligned representation for recognition?
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RepPoints (representative points) for object detection
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RepPoints is a set of points connecting stages. It serves as: de
1) flexible geometric 2D representation SOTA
2) semantically aligned feature extraction.
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Background

Can we extend representative points to dense segmentation tasks?

Contour Foreground mask
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Foreground Mask Representation Contour Representation

S\

RCNN framework

1. Detect rectangular regions
2. Pixel-wise verification inside rectangular regions

Learning contour regression
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Use Dense RepPoints to represent contour and grid mask through sampling

contour boundary sample foreground mask grid sample
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Use Dense RepPoints to represent contour and grid mask through sampling
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contour boundary sample foreground mask grid sample
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Dense RepPoints: R = {(xiryi' ai)}
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point location foreground score
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A new sampling strategy, combines merits of both contour and grid mask.

contour grid mask boundary mask
(boundary sample) (grid sample) (distance transform sample)

efficient as contour, strong as grid mask
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Learning Dense RepPoints

Learning point set coordinates.
Learning per points foreground probability

Learning instance class from point set
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Learning point set coordinates.

1. Sample points from GT object annotation

sample few points

contour

sample more points
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grid mask grid point



ECCV'20

ONLINE

23-28 AUGUST 2020

Learning point set coordinates.

Learning point set coordinates.
1. Sample points from GT object annotation
i

&H&‘m - sample points
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boundary mask distance transform sampling

Sample more points near object boundary

efficient sample
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Learning point set coordinates.

2. Optimize the point set loss between predicted points and sampled points .
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Dense RepPoints Regression: Bounding Box Regression:

Rp = {(xp yp a}iz By, = (xp, yp, Wy, hy)
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Learning Dense RepPoints

Learning per points foreground probability

interpolated value
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We use position-sensitive map similar to R-FCN and TensorMask.
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Classifying the instance category from point set

grouped feature
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We use group pooling to reduce the computation to constant time.

predict m bird
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Infer segments from Dense RepPoints

Infer from contour sampling
Infer from grid points sampling

Infer from distance transform sampling
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Inference contour using concave hull

concave
hull
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Inference foreground mask from grid points

bilinear interpolation
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Inference foreground mask from boundary points

non-grid
interpolation
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Inference foreground mask from boundary points

)

triangulation

)

Barycentric
interpolation

» Predict as background

> Predict as foreground




ECCV'20

OINBINIE  Visualization

23-28 AUGUST 2020

Top: The learned points (225 points) is mainly distributed around the object boundary.
Bottom: The foreground masks generated by triangulation post-processing.
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Experiments

Ablation study

State-of-the-art comparison
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Ablation Study

Different representation of object segments

number of points| 9

26 | 81 [295 [ 709

Contour 19.7|23.9(26.0]25.2|24.1
Grid points 5.0 |17.6]29.7|31.6 |32.8
Boundary points|13.9|24.5|31.5|32.8|33.8

“boundary sampling” is efficient at both small and large number of points

Number of points

number of points| 81 |225|441 | 729
AP 31.5(32.8/33.3|33.8
AP@50 54.2|54.2|54.5|54.8
APQ75 32.7(34.4|35.2|35.9

Performance increase consistently with number of points, “densify” is important
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Instance segmentation performance

Method Backbone epochs jitter AP APsy AP;s APs APy APy
Mask R-CNN [18] ResNet-101 12 35.7 58.0 37.8 15.5 38.1 524
Mask R-CNN [18] ResNeXt-101 12 37.1 60.0 39.4 16.9 39.9 53.5
TensorMask [7]  ResNet-101 72 v 37.1 59.3 394 174 39.1 51.6
SOLO [42] ResNet-101 72 v  37.8 59.5 404 16.4 40.6 54.2
ExtremeNet [50] HG-104 100 v 189 - - 104 20.4 28.3
PolarMask [45]  ResNet-101 24 v 32.1 53.7 33.1 14.7 33.8 45.3
Ours ResNet-101 36 v 39.1 62.2 42.1 21.8 42.5 50.8

+1.3 improvement over state-of-the-art
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Object detection performance

Method Backbone epochs jitter AP APso AP7s APs APy APL
Faster R-CNN[27] ResNet-101 12 36.2 59.1 39.0 18.2 39.0 48.2
Mask R-CNN[18] ResNet-101 12 38.2 60.3 41.7 20.1 41.1 50.2
Mask R-CNN[18] ResNeXt-101 12 39.8 62.3 43.4 22.1 43.2 51.2
RetinaNet [28] ResNet-101 12 39.1 59.1 42.3 21.8 42.7 50.2
RepPoints[47] ResNet-101 12 41.0 62.9 44.3 23.6 44.1 51.7
ATSS[48| ResNeXt-101-DCN 24 v 477 66.5 51.9 29.7 50.8 59.4
CornerNet[25] HG-104 100 v 40.5 56.5 43.1 19.4 42.7 53.9
ExtremeNet[50] HG-104 100 v 40.1 55.3 43.2 20.3 43.2 53.1
CenterNet [49] HG-104 100 v 42,1 61.1 45.9 24.1 45.5 52.8
Ours ResNeXt-101+4DCN 36 v 48.9 69.2 53.4 30.5 51.9 61.2

+1.2 improvement over state-of-the-art
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e Unstructure data representation for 2D visual tasks, especially for high-definition media.
Structured data Unstructured data

O

* Box-free visual perception task, e.g. key-point estimation, video tracking, etc.



