# Learning to Navigate for Fine-grained Classification

Ze Yang, Peking University

#### Problem

• Fine-grained classification aims at differentiating categories that are very similar. For instance, the subordinate classes of a common superior class. The subordinate classes are similar in appearance.



# Lazuli Bunting



#### **Indigo Bunting**

#### Examples

• Determine plant species, breed of dogs, identification of dishes.





### Examples

• Clothing recognition and retrieval











• Product recognition, smart retail



# Key points to fine-grained classification

- Categories are different, but share a common part structure.
- The key point to fine-grained classification lies in accurately identifying informative regions in the image.



# Our works

Learning to Navigate for fine-grained classification ECCV 2018

#### Motivations

 Intrinsic consistency between informativeness of the regions and their probability being ground-truth class



For informative regions, they will be assigned high probability being ground-truth class. But for uninformative regions that cannot help to differentiate classes, the classifier will not know their class and assigns them low probability being ground-truth class.

#### Overview

- Navigator: navigates the model to focus on informative regions.
- Teacher: evaluates the regions and provides feedback.
- Scrutinizer: scrutinizes those regions to make predictions.



# Methodology

• Train the Navigator to propose informative regions.



Navigator network is a RPN to compute the informativeness of all regions. We choose top-M (here M=3) informative regions with informativeness {I1, I2, I3}. Then the Teacher network compute their confidences being GT class {C1, C2, C3}. We use ranking loss to optimize Navigator network to make {I1, I2, I3} and {C1, C2, C3} having the same order (function f is non-decreasing).

Ranking loss:  $\sum_{(i,s):C_i < C_s} f(I_s - I_i)$ 

where the function f is a non-increasing function that encourages  $I_s > I_i$  if  $C_s > C_i$ 

# Methodology

• The Scrutinizer makes predictions.



Navigator network proposes the top-K (here K=3) informative regions. Then the Scrutinizer network uses these regions and full image to make predictions.

We use cross entropy loss to optimize the Teacher and the Scrutinizer.

# Methodology

• Algorithm overview.

Algorithm 1: NTS-Net algorithm **Input:** full image X, hyper-parameters K, M,  $\lambda$ ,  $\mu$ , assume  $K \leq M$ **Output:** predict probability *P* **1** for t = 1, T do Take full image = X $\mathbf{2}$ Generate anchors  $\{R'_1, R'_2, \ldots, R'_A\}$ 3  $\{I'_1, \ldots, I'_A\} := \mathcal{I}(\{R'_1, \ldots, R'_A\})$  $\mathbf{4}$  ${I_i}_{i=1}^A, {R_i}_{i=1}^A := \text{NMS}({I'_i}_{i=1}^A, {R'_i}_{i=1}^A)$ 5 Select top  $M: \{I_i\}_{i=1}^M, \{R_i\}_{i=1}^M$ 6  $\{C_1, \ldots, C_K\} := \mathcal{C}(\{R_1, \ldots, R_K\})$ 7  $P = \mathcal{S}(X, R_1, R_2, \cdots, R_K)$ 8 Calculate  $L_{total} = L_{\mathcal{I}} + \lambda \cdot L_{\mathcal{S}} + \mu \cdot L_{\mathcal{C}}$ 9  $BP(L_{total})$  get gradient w.r.t.  $W_{\mathcal{I}}, W_{\mathcal{C}}, W_{\mathcal{S}}$ 10Update  $\mathbf{W}_{\mathcal{I}}, \mathbf{W}_{\mathcal{C}}, \mathbf{W}_{\mathcal{S}}$  using SGD  $\mathbf{11}$ 12 end

#### Experiments

• Quantitative results.

| Method                             | top-1 accuracy |
|------------------------------------|----------------|
| MG-CNN [43]                        | 81.7%          |
| Bilinear-CNN [28]                  | 84.1%          |
| ST-CNN [19]                        | 84.1%          |
| FCAN $[32]$                        | 84.3%          |
| ResNet-50 (implemented in $[26]$ ) | 84.5%          |
| PDFR [47]                          | 84.5%          |
| RA-CNN [12]                        | 85.3%          |
| HIHCA [5]                          | 85.3%          |
| Boost-CNN [36]                     | 85.6%          |
| DT-RAM [26]                        | 86.0%          |
| MA-CNN [49]                        | 86.5%          |
| Our NTS-Net $(K = 2)$              | 87.3%          |
| Our NTS-Net $(K = 4)$              | 87.5%          |

Experimental results in CUB-200-2011. The table shows the comparison between our results and previous best results in CUB-200-2011. We use M=6 casually, which means top-6 informative regions are used to train the Navigator. We also study the role of hyper-parameter K, *i.e.* how many part regions have been used for fine-grained classification.

### Experiments

• Quantitative results.

| Method                | top-1 on FGVC Aircraft | top-1 on Stanford Cars |
|-----------------------|------------------------|------------------------|
| FV-CNN [15]           | 81.5%                  | -                      |
| FCAN [32]             | -                      | 89.1%                  |
| Bilinear-CNN [28]     | 84.1%                  | 91.3%                  |
| RA-CNN [12]           | 88.2%                  | 92.5%                  |
| HIHCA [5]             | 88.3%                  | 91.7%                  |
| Boost-CNN [36]        | 88.5%                  | 92.1%                  |
| MA-CNN [49]           | 89.9%                  | 92.8%                  |
| DT-RAM [26]           | -                      | 93.1%                  |
| Our NTS-Net $(K = 2)$ | 90.8%                  | 93.7%                  |
| Our NTS-Net $(K = 4)$ | <b>91</b> .4%          | <b>93</b> . <b>9</b> % |

Experimental results in FGVA Aircraft and Stanford Cars datasets.

#### Experiments

• Qualitative results.



The most informative regions proposed by Navigator network. We can see that the most informative regions are consistent with the human perception

- Birds: head, wings and main body
- Cars: headlamps and grilles
- Airplanes: wings and heads

Especially in the blue box picture where the color of the bird and the background is quite similar.

