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Abstract. Bottom-up approaches, which rely mainly on continuity prin-
ciples, are often insufficient to form accurate segments in natural images.
In order to improve performance, recent methods have begun to incor-
porate top-down cues, or object information, into segmentation. In this
paper, we propose an approach to utilizing category-based information in
segmentation, through a formulation as an image labelling problem. Our
approach exploits bottom-up image cues to create an over-segmented
representation of an image. The segments are then merged by assigning
labels that correspond to the object category. The model is trained on a
database of images, and is designed to be modular: it learns a number of
image contexts, which simplify training and extend the range of object
classes and image database size that the system can handle. The learn-
ing method estimates model parameters by maximizing a lower bound of
the data likelihood. We examine performance on three real-world image
databases, and compare our system to a standard classifier and other
conditional random field approaches, as well as a bottom-up segmenta-
tion method.

1 Introduction

Shortcomings in the standard bottom-up approach to image segmentation, to-
gether with evidence from studies of human vision [1], suggest that prior knowl-
edge about objects facilitates segmentation. Incorporating top-down information
faces several challenges: (1) the appearance of objects in a class varies greatly in
natural images; (2) shape also varies considerably, and is often corrupted by oc-
clusion; (3) if the number of classes is large, local features may be insufficient to
discriminate the class. The images in Figure 1 illustrate some of these difficulties.

In this paper we describe a segmentation scheme that integrates bottom-
up cues with information about multiple object categories. Bottom-up cues are
used to produce an over-segmentation that is assumed to be consistent with
object boundaries but breaks large objects into small pieces. The problem then
becomes how to group those segments into larger regions. We propose to use the
top-down category-based information to help merge those segments into object
components. We define this merging problem as an image labelling problem: the
alm is to assign labels to the segments so that the segments belonging to the



Fig. 1. Lighting and background effects create highly variable appearances of objects.
The animal shapes also vary considerably, due to viewpoint changes, articulation, and
occlusion, as shown in the hippo images. Discriminating classes based on local cues is
often hard, as can be seen by comparing local patches of the two images.

same object category have the same labels. The labels are assigned jointly to an
image, taking into account interactions between segments.

We adopt a learning approach to this labelling problem, learning the statistics
of the correspondence between image features and labels, as well as the interac-
tions between labels. We further decompose the problem by assigning images to
contexts, and again use learning to define the contexts, and to find features that
characterize the contexts. The resulting system produces a detailed segmenta-
tion of a test image into coherent regions, with a semantic label associated with
each region in the image. The key contribution of this work is a modular, adap-
tive segmentation method that holds the potential for scaling up to large image
databases and large numbers of object categories.

The rest of the paper is organized as follows. In Section 2 we describe related
schemes for extending bottom-up cues for image segmentation to include top-
down information. We then focus on the new combined approach in Section 3.
Section 4 describes the learning and labeling algorithms. We compare our model
with other approaches in Section 5.

2 Related Work

The primary methodological paradigm we employ is a discriminative learning
approach, developed on a database of labeled images. A number of discrim-
inative learning approaches have been developed utilizing labeled images for
segmentation and related tasks. For example, conditional random field meth-
ods, originally defined for jointly labeling one-dimensional structures such as
the parts-of-speech in a text string [2], have been extended to deal with two-
dimensional images (e.g., [3]). In the domain of segmentation, Ren and Malik [4]
propose a classification model using a number of low- and mid-level cues to de-
fine features of proposed segments, and training a classifier to discriminate good
segments (based on human segmented natural images) from random ones. Our



work aims to extend discriminative approaches to consider information about
many different object classes.

Several recent segmentation approaches combine top-down knowledge with
bottom-up information. These methods have generally focused on the figure-
ground task, attempting to precisely delineate the boundaries of a single object in
an image. One approach utilizes a deformable template to determine the bound-
ary suggested by bottom-up cues [5], while another represents object knowledge
as pairs of image fragments and their figure-ground labeling from a training set,
and then segments a test image by covering it with a set of fragments whose
appearances match the data and whose labeling is locally compatible [6]. These
methods are highly class specific, working for a particular object type. A recent
method extends the patch-based object knowledge to work with a wider variety
of objects [7]. The approach proposed in this paper can be seen as attempting
to incorporate more category-level rather than class-specific knowledge; the em-
phasis is on grouping image pixels into various categories across the whole image
rather than a precise specification of a single figure-ground boundary.

The core of our approach is an image labelling method, in which the objective
is formulated as classifying all pixels of an image using some vocabulary of labels.
Recent related methods employ class-specific detectors, and jointly make use of
information across objects to form a parse tree of an image [8], or to simultane-
ously detect multiple objects from a common context [9]. Methods that utilize
image caption information to learn associations between image features and key-
words are also relevant [10]. The training information provided by captions is
considerably weaker than the labeled pixels we utilize; one would expect this to
lead to less precision in the test image labels. Finally, the discriminative multi-
class learning method proposed in [11], which we compare to our method below,
utilizes a similar objective and training information. Their approach involved
numerous rounds of stochastic sampling for each training image, and required
the labeling to apply to individual pixels. The learning method proposed here
is considerably simpler, and operates at a higher level than individual pixels,
lending it the potential of scaling up to larger object databases and images.
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Fig. 2. An original image with 120x180 pixels becomes a 300 super-pixel image, where
each contiguous region with a delineated boundary is a super-pixel.



3 Model Architecture

3.1 Super-pixel representation of images

The segmentation process requires that an image is labelled at a pixel level so
that the segments fully cover the image. However, a label algorithm operating at
the pixel level will typically be highly redundant, due to the similarity between
neighboring pixels within each object category. A pixel level model will also be
sensitive to, and limited by the resolution of an image. Instead, we build our
model based on a higher level image representation than the pixel image, in
which a small patch of similar pixels are grouped together to form a larger unit,
a super-pizel [4]. Segmentation methods based on the bottom-up image cues
can be utilized to generate such an image representation by over-segmenting the
image into small but coherent regions. When the regions are small enough, their
boundaries are usually consistent with the boundaries between object categories,
and the potential error induced by such a decomposition will be relatively small.
In this paper, we use a variant of the Normalized Cut segmentation algorithm
[12], with a specific parameter setting to generate an over-segmentation of an
image into super-pixels of a roughly consistent size, and build our approach on
this superpixel representation.

The super-pixelization of an image can be viewed as a part of the bottom-up
process in our system, while the labelling model discussed in the next section
uses both top-down information and image cues to merge those super-pixels into
segments with semantic meanings. Figure 2 shows an instance of super-pixel
representation of image. Note that even if the size of a super-pixel is small, we
significantly reduce the number of units to be labelled, which allows a compact
model to be constructed without much sensitivity to the resolution of the image.

We also extract image features from the pixels grouped into super-pixels,
providing a better description of input images for labelling. The resulting image
descriptor of each super-pixel summarizes the statistics of the contained region
with respect to features such as texture, edges, and color.

3.2 A Mixture of Conditional Random Fields

Our probabilistic model assigns labels to the super-pixels for a given input image
by combining top-down category-based information with image cues. First, we
introduce some notation. Let X = {x;};cs be the input image, where S is a set
of sites associated with the super-pixels and x; is the image descriptor from the
1th super-pixel. Each super-pixel x; will be assigned a label 1; from a finite label
set L. The set of label variables {1;};cs for image X form a structural output L.

We further decompose the labelling problem by assigning each image to a
particular context; several recent approaches have demonstrated that the statis-
tics of an image can be used to categorize the scene context (e.g., [13]). Suppose
the images in a database can be grouped into several contexts. We denote the
context set for the images in a database as C, and ¢ as the context variable for



input image X. Our model defines a conditional distribution over the output L
given input X:
P(LIX) =Y Pu(LIX, ¢)Po(c|X) (1)
ceC

where Py;(L|X,¢) is a conditional random field (CRF) for the context ¢, and
P (¢|X) is a gating function which yields the probability distribution of context
given the information from image X. We refer to the model in Eqn. 1 as a
Mixture of Conditional Random Fields (MoCRF). With CRFs as its mixture
components, this model can be viewed as an extension of a mixture of experts
model [14] by predicting a structural output from data. Below we describe the
component CRF models in detail, followed by the gating function.

3.3 Context-dependent conditional random field

Given a context, the model captures the interactions between the labels of an
image using a conditional random field of the labels Py;(L|X,¢). The random
field is defined with respect to a graph G in which the label sites of neighboring
super-pixels on the image plane are connected. We denote the neighbors of site
i as N (7).

The context-dependent CRF has three types of feature functions in its dis-
tribution, encoding the top-down contextual constraint of the labelling at three
levels:

PM(L|X,C):Zicexp{z:fa(li,xi,c)—i-z > hil, 0+ fe(L o)}, (2)

i JEN(3)

where f,(1;,x;,c¢) is a feature function describing the compatibility of the local
image descriptor x; at super-pixel i to a particular label variable 1;; f3(1;,1;, ¢) ac-
counts for pairwise interactions between labels of neighboring sites; and f.(L, ¢)
is a feature function for the global statistics of the label field L under context c.
In our model, we implement those feature functions as follows:

(a). Local features f,(l;,x;,c). We utilize a classifier that independently
predicts the label of every super-pixel to build the local feature function. The
classifier provides a label distribution @;(1;|x;,c) given input x; and context c.
The local feature f,(1;,x;,c) has the following form:

fallisxi e,7%) = a® Y 6(l; = k)log 1(1; = k[xi, ¢,7°), (3)
kel

where d(x) = 1 if x is true and 0 otherwise, a¢ is a coefficient for modulating
the entropy of the classifier output for context ¢, and ¢ represents the classifier
parameters. The feature function describes the preference of different label con-
figurations given the input. In this paper, we use a multilayer perceptron (MLP)
as the classifier which takes color, edge magnitude and texture information from
the ith super-pixel’s descriptor as the input. Note that these feature functions



may be able to find local image features that uniquely characterize a particular
class, such as the combination of color, texture, and edges in a rhino’s horn.

(b). Pairwise features f;(1;,1;,c). The pairwise feature functions exploit
the local interactions between labels of neighboring super-pixels. We use a pair-
wise feature with a linear form in this model:

Folis 1y 0) =" 6l = k)6(l; = k') log ¥ (k, ), (4)

kelL kel

where ¥ is a |£] x |£| compatibility matrix between label 1; and 1;. The compat-
ibility matrix incorporates both the statistics of neighboring label configurations
and image descriptor information; it is defined as follows:

1— P2)exp(05 ) kE=F
Wic' k, k‘l — { ( i ck,k 5
i ) P}} exp(@,w,) k#£E (5)

where 0 ;. is a scalar parameter for the compatibility of label values k, k' in
context c¢. This formulation incorporates boundary information provided by a
separate boundary classifier [15]: P;} is the boundary probability between super-
pixel 7 and j, which modulates the label pair compatibility, implementing the
intuitive notion that the compatibility of labels of neighboring sites depends on
the presence of a boundary between them. For example, one would expect that
the likelihood of neighboring labels taking on the same value would decrease if
there is a boundary between them, while the compatibility of taking on different
values would decrease if no boundary exists. Therefore, fi(1;,1;,c) can be viewed
as a data-dependent feature function specifying the regional context of labels.

(c). Global features f.(L,c). The global feature function provide a coarse
level constraint for the label configuration of the random field. In our model,
the global features constrain the overall image label distribution to conform to
a typical, average label distribution that characterizes the relative proportion of
the various labels in a specific context. Assuming this average label distribution is
we = (us, .y ﬂfﬁ‘) for a given context ¢, we define a global feature that maximizes
the match between the actual label distribution and the distribution p¢:

fc(ch) :ﬁczzé(ll :k)logMZa (6)

i kel

where (¢ is the weighting coefficient. This feature function is equivalent to the
negative Kullback-Leibler divergence between the image label distribution and
the target distribution for the given context. Note that this feature provides a
global bias to the single node potential in the conditional random field.

3.4 Gating function Pg(c|X)

The gating function is specified by a context classifier which generates a distri-
bution of context ¢ given an input image. The inputs to the classifier are the
aggregate statistics of the image descriptors, including color, edge density and
texture information. We use a multilayer perceptron as the context classifier in
this model.
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Fig. 3. Graphical model representation. Left: The superpixel descriptors are input
to context-specific processing, with the gating function modulating the relevance of
each context to a given image. Right: The context-specific processing combines local
information based on super-pixel descriptor and specific label compatibility; pairwise
interactions between labels of neighboring sites, modulated by the boundary probabil-
ity; and global bias provided by the context-specific average label distribution.

3.5 Model summary
To summarize, our model has the following form:

Ps(c|X
PLIX)=)" 76'(2‘ ) exp{> 1 log¥51; + oy 1] log®; + 3°> 17 log u°}
€ ij i

(7)
where the label variable 1; is represented as a vector with |£| elements, in which
the kth element is 1 and the other elements are 0 when 1; = k. Figure 3 provides
an overview of the main components of the model. Note that the final label
distribution can readily be used to define a segmentation of the image into
coherent regions, where a segment corresponds to each contiguous group of pixels
that are assigned the same label.

(&) K2

4 Image Labeling and Parameter Estimation

4.1 Inference and learning criterion

Given a new image X, we predict its labelling based on the Maximum Posterior
Marginals (MPM) criterion:

I = arg glgg; P (L] X, ¢) Pa(e]X), (8)

where the marginal label distributions of each super-pixel, Pys(1;|X, ¢), are com-

puted by applying loopy belief propagation to every context-dependent CRF.
Given a set of labeled image data X = {(L™,X"™)}, we estimate the model’s

parameters based on the Conditional Maximum Likelihood criterion, that is,

O = argmgxznzlogP(L |X™), (9)



where © denotes all the parameters in the model. Treating the context variable
¢ as missing data, we could apply the EM algorithm to the learning problem.
However, due to the partition functions in the mixture components, the posterior
distribution ¢(c|L™, X™) is intractable. Instead, we define a new cost function
which is a lower-bound of the conditional data likelihood:

Q=Y Pu(c|X")log P (L"|X",c). (10)
Note that Q@ < >, log[>", Pg(c|X™) Py (L"|X™, ¢)] =, log P(L"|X"™).

4.2 A modular training approach

Given the cost function in Eqn. 10, we can compute its gradient and estimate all
the parameters using a gradient ascent method. However, training all parameters
together becomes difficult in practice when we have a large label set, and large
image database. In this work, we propose a modular approach to estimate the
parameters, such that many components are learned separately and are then
merged into the full system in a consistent way. This learning procedure may
not produce an optimal system ultimately, but the approach leads to a more
efficient learning process, capable of scaling up to large datasets.

The learning procedure is carried out as follows: (1). We cluster the training
data, where each training image is represented by its aggregate label distribu-
tion, and define each cluster as a context. The clustering divides the training data
into subsets, such that each image corresponds to a specific context. (2). Given
this division of training data, we can train the gating function that predicts
which context an image is in given its image features. (3). Within each subset,
we estimate the parameters {7°} of each context-dependent image classifier to
independently predict the label distribution given the super-pixel descriptors as
input. (4). Finally, we combine these components and jointly learn the remaining
parameters in the model (the coefficients {«¢, 3°} and the compatibility param-
eters 0¢) by maximizing the cost function in Eqn. 10.

More specifically, in step 1, the clustering method is based on a mixture
of unigram model for the labels: P,(L) = > _ [, Pu(li|c)Pu(c), which we learn
using the EM algorithm on the training data set. The conditional probability
P, (L;]c) acts as the cluster center, or the prototype label distribution in context
¢, and is thus used as p® in the global feature function. In step 2, given the
mixture of unigram model, we can compute the cluster responsibility of every
image. Those responsibilities are used as training targets for the gating function
Pg(¢|X). Step 3 can occur in parallel with step 2, as by sampling the responsi-
bilities, we can form the context-dependent subsets from the training data, and
learn the parameters «¢ of the local feature functions on the appropriate subsets.

Finally, in step 4, after parameters of the local and global feature functions as
well as the gating function have been learned, we merge them into the model and
optimize the remaining parameters with respect to the cost function. Note that
the context-dependent CRFs are log-linear models with parameters {0, a¢, 3¢},



which can be estimated by gradient ascent:

n nnT _ T
0° o Pa(clX™)> 0 Y 113" — (11 ) s 1o, (X)) (11)
n 4,jEN(7)
Aa® < Pg(e|X™) ZZ I?T _ lZT>PM(1i‘Xn’C))log@1(1i|x?,c) (12)
n nT _ N1T
¢ o Pg(c|X") ZZ (1 (1 >PM(1 X, p))log,u (13)

To avoid overfitting, we add a Gaussian prior on the parameters, which is equiv-
alent to weight decay during learning. As the CRFs are defined on loopy graphs
with intractable partition functions, the marginal distributions of the label vari-
ables in the gradient updates cannot be computed exactly. In this work, we
approximate them by applying the loopy belief propagation algorithm. An al-
ternative approach is to apply contrastive divergence [16] to each component
CRF. The empirical results show that both of these approaches obtain similar
and satisfactory performance in our model; below we report results using loopy
belief propagation.

5 Experimental Evaluation

5.1 Data sets

We applied our model to three different real data sets. In order to compare
our method with an alternative approach, we utilized the two datasets used
in our mCRF work [11], and used the same training and testing split as in
that work. The first dataset is the Sowerby database, including a set of color
images of outdoor scenes and their associated labels. The data set has a total
of 104 images with 7 labels: 'sky’, 'vegetation’, 'road marking’, 'road surface’,
"building’, ’street objects’ and ’cars’. 60 of these images are used for training and
the remaining 44 for testing. The second dataset is a 100-image subset of the
Corel image database, consisting of African and Arctic wildlife natural scenes. It
also has 7 classes: rhino/hippo’, 'polar bear’, 'vegetation’, ’sky’, ’water’, ’snow’
and ’ground’; and has a train/test split of 60/40.

To explore the scaling potential of our approach, we defined a third dataset
by expanding this Corel dataset to include 305 manually labelled images with
11 classes: 'rhino/hippo’, tiger’, "horse’,’polar bear’, "wolf/leopard’, 'vegetation’,
'sky’, 'water’, 'snow’, 'ground’ and ’fence’. The training set includes 229 ran-
domly selected images and the remaining 76 are used for testing. We call this
extended Corel data set CorelB, and refer to the smaller one as CorelA in the
following sections.

Again, for comparison purposes, we use the same set of basic image features as
n [11], including color, edge and texture information. For the color information,
we transform the RGB values into CIE Lab* color space, which is perceptually
uniform. The edge and texture are extracted by a set of filter-banks including a



difference-of-Gaussian filter at 3 different scales, and quadrature pairs of oriented
even- and odd-symmetric filters at 4 orientations (0; 7/4; 7/2; 37/4) and 3 scales.
We also include the vertical and horizontal position of each pixel. Thus each
pixel is represented by a 32 dimensional image feature vector. For super-pixels,
we compute the normalized histograms of those image features extracted from
the pixels in each super-pixel.

5.2 Model specification

We use the normalized cut segmentation algorithm to build the super-pixel rep-
resentation of the images, in which the segmentation algorithm is tuned to gen-
erate more than 300 segments for each image. Segments smaller than a minimum
size (6 pixels) are merged into the neighboring super-pixels. This yields approx-
imately 300 super-pixels per image on average. The boundary information is
extracted using the algorithm in [15]. To avoid underflow, we convert the raw
output of boundary probability into interval [0.1,0.9] by an affine transform.

The number of contexts in our experiments is specified based on the com-
plexity of data set. For Sowerby and CorelA data sets, we use 2 contexts in
clustering, and for CorelB, we use 4 contexts. The model selection issue is not
explored here, and is left to future work.

The gating function is a MLP with 25 hidden units. It takes the normalized
histograms of the image features in each image as input. We use 20 bins for each
image feature. To avoid overfitting, the MLP is trained with Gaussian priors
on weights. The local classifiers are also MLPs with 30 hidden units, using the
histograms of the image features in each super-pixel as input. They are trained
with cross-validation.

We compare our approach with a simple pixel-wise classifier and a CRF
model. These comparisons provide insight into the utility of the pairwise com-
patibilities (CRF vs. classifier) and the contexts (MoCRF vs. CRF). The pixel-
wise classifier is a MLP with one hidden layer, taking image features from a 3 x 3
window centered at each pixel and predicting the pixel’s label. The CRF uses
context-independent local feature and pairwise feature functions. The feature
functions have the same form as our model. The distribution of label configura-
tion L defined by the CRF has the following form:

1
Perr(LIX) = exp{)_1I'logW;;1; + a > 1] log ®;(L;|x;)} (14)

] i

where @7 is a local classifier trained separately on all the data and ¥;; is the
compatibility function including boundary information. We trained the CRF
model using the pseudo-likelihood algorithm, and tested its performance using
the same MPM criterion where the marginal distribution is calculated by the
loopy belief propagation algorithm.
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Fig. 4. The learned prototype label distribution for each of the three datasets: CorelA,
Sowerby, and CorelB, is shown, with its associated key. See text for discussion.

5.3 Results

We clustered the training images in each dataset as described above, yielding
2 clusters for the CorelA and Sowerby datasets, and 4 clusters for CorelB. In
Fig. 4, we visualize the typical label distributions of the contexts from all three
datasets. Note that these distributions usually have semantic meaning which
is easy to interpret. For instance, the contexts in CorelA dataset represent the
tropical and arctic environments, while the Sowerby dataset contexts are rural
and suburban areas. CorelB dataset has 'tropic’,’field’,’jungle’ and ’arctic’ as its
contexts. Given the context settings, we trained a context classifier as the gating
function for each dataset. To evaluate those context classifiers, we use the largest
cluster responsibility as the target context, and compute the accuracy of the
classifier output. Based on that metric, the context classifiers we trained achieve
82%, 92% and 85% accuracy on Sowerby, CorelA and CorelB, respectively.

The performance of MoCRF is first evaluated according to the label error
metric on the pixel level, i.e., the percentage of incorrectly labelled pixels. We
compared the performance of MoCRF to a simple pixel-wise classifier (P_Class),
the super-pixel classifier in MoCRF considered alone (S_Class), and the CRF
model over three datasets. We also include the performance of mCRF on the
Sowerby and CorelA datasets [11]. The correct classification rates on the test
sets of three datasets are shown in Figure 5A.

We can see that the super-pixel based classifiers alone provide a significant
improvement over the pixel-wise classifiers. Built on the the same bottom-up
cues, our model also has better performance over the super-pixel classifier and
the conventional CRF model. Furthermore, it provides a slighter better perfor-
mance than the mCRF model [11]. Note that our MoCRF model has a much
simpler structure than the mCRF model: for the Sowerby and CorelA datasets,
MoCRF has approximately 300 label variables, (equal to the number of super-
pixels), no hidden variables, and approximately 120 parameters for training ex-
cluding the classifiers; while mCRF has about 2 x 10* label variables, 10> hidden
variables and 10° free parameters. Learning is therefore quite slow in mCRF,
and the model has poor scaling properties. Thus, although we only match this



95 95

Il P_Class| Il Vean-Shift
oot | I S_Class 1 9ot/ [ s_Class
CRF [ICRF
g5l | I mCRF g5/ | Il MoCRF m

Il MoCRF

80r 80

751 75
701 70

65- 65

60 60

Corel A Corel B Sowerby Corel A Corel B Sowerby

Fig. 5. A (left): Classification rates; B (right): Segmentation accuracy for the models.

earlier model in terms of classification accuracy, our model can be applied to the
problems with a considerably larger set of labels and larger image sizes.

We compare the performance of the pixel-wise classifier, our model, and
Mean-Shift segmentation in Figure 5B. We tune the parameters of Mean-Shift
such that it generates the best results according to the manual labeling for a
small set of randomly chosen images. The performance is measured according to
a second metric used for evaluation, a segmentation metric which computes the
percentage of pixel pairs that are correctly segmented. To reduce the compu-
tational burden, we randomly sampled 10% pixels from each image to estimate
the accuracy. Again, we can see that our model obtains better results by adding
top-down category information, and multi-level contextual constraints.

We also show the outputs of these methods on some test images in Figure
6. The figure shows the approaches based solely on low-level cues can be fooled,
such that some single objects in the images are split. MoCRF works much better
on those images by integrating the super-pixel representation and mixture of
CRF framework. Note that the super-pixelization will cause some errors which
cannot be corrected by the top-down information. Also, the model cannot use
global spatial configuration to correct errors since no geometric information is
included in the global feature functions.

6 Discussion

In this paper we have presented a discriminative framework that integrates
bottom-up and top-down cues for image segmentation. We adopt a labelling
approach to provide some purchase on the segmentation problem. A chief con-
tribution of our model with respect to segmentation is the resulting extension of
top-down cues to include a considerably wider range of object classes than earlier
methods. The proposed framework is modular, in that images in a database are
classified as to their context, and separate processes are learned for the differ-
ent contexts. This modularity presents some promise of the system extending to
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Fig. 6. Some labeling results for the Corel (4 top rows) and Sowerby (2 bottom rows)
datasets, using the pixel-wise classifier, CRF, MoCRF, and Mean Shift segmentation.
The color keys for the labels are the same as Fig. 4.

large databases of images. While the top-down cues can be learned in a context-
specific manner, the system integrates these with bottom-up cues, which are
utilized in several ways: to define super-pixels in an image; to determine prob-
abilities of local boundaries between super-pixels, which are used to constrain
and guide labelling; and to enable context classification.

The results of applying our method to three different image datasets sug-
gest that this integrated approach may extend to a variety of image types and
databases. The labeling system consistently out-performs alternative approaches,
such as a standard classifier and a standard CRF. Its performance matches that
of an existing method, which operates at the pixel level and entails a consider-
ably more involved training procedure, one which is unlikely to scale to larger
images and image databases. Relative to a standard segmentation method, the
segmentations produced by our method are more accurate, even when the stan-
dard method is optimized for a given test image. A relatively weak component
in our model appears to be the gating function, as the images whose contexts



are incorrectly classified contain a disproportionate number of label errors. We
are currently evaluating other methods of summarizing the statistics of an image
in order to facilitate more accurate context classification. Finally, a limitation
of our model concerns its reliance on detailed training data. However, a growing
effort to label images (e.g., [17]) should lead to a rapid growth in the volume of
available labeled images.
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