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The codes obtained from the responses of large populations of neurons
are known as population codes. Several studies have shown that the
amount of information conveyed by such codes, and the format of this
information, is highly dependent on the pattern of correlations. How-
ever, very little is known about the impact of response correlations (as
found in actual cortical circuits) on neural coding. To address this prob-
lem, we investigated the properties of population codes obtained from
motion energy filters, which provide one of the best models for motion
selectivity in early visual areas. It is therefore likely that the correla-
tions that arise among energy filters also arise among motion-selective
neurons. We adopted an ideal observer approach to analyze filter re-
sponses to three sets of images: noisy sine gratings, random dots kine-
matograms, and images of natural scenes. We report that in our model,
the structure of the population code varies with the type of image. We
also show that for all sets of images, correlations convey a large frac-
tion of the information: 40% to 90% of the total information. Moreover,
ignoring those correlations when decoding leads to considerable infor-
mation loss—from 50% to 93%, depending on the image type. Finally
we show that it is important to consider a large population of motion
energy filters in order to see the impact of correlations. Study of pairs of
neurons, as is often done experimentally, can underestimate the effect of
correlations.
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1 Introduction

One of the main goals of systems neuroscience is to understand how
information about the external world is encoded and subsequently pro-
cessed by neural circuits. Two important results have emerged from
electrophysiological recordings. First, cortical cells have variable responses
to repeated presentations of a stimulus (Schreiner, Essick, & Whitsel, 1978;
Tolhurst, Movshon, & Thompson, 1981). Second, cortical codes involve
large numbers of neurons, the resulting codes being known as population
codes (O’Keefe & Dostrovsky, 1971; Georgopoulos, Schwartz, & Kettner,
1986; Paradiso, 1988).

Several schemes have been proposed for decoding population codes
(Pouget, Dayan, & Zemel, 2003). Those algorithms can recover the value
of the encoded variable with high accuracy provided the neuronal noise is
independent. Cortical neurons however, are not independent; in particular,
their spike counts are often correlated (e.g., Zohary, Shadlen, & Newsome,
1994; Lee, Port, Kruse, & Georgopoulos, 1998).

A number of theoretical studies have investigated the impact of these
correlations (von der Malsburg, 1981; Vogels, 1990; Oram, Foldiak, Perrett,
& Sengpiel, 1998; Abbott & Dayan, 1999; Yoon & Sompolinsky, 1999; Wu,
Nakahara, & Amari, 2001; Wu, Amari, & Nakahara, 2002; Schneidman,
Bialek, & Berry, 2003). Most of those studies addressed this issue from the
encoding perspective, asking whether correlations can increase the coding
capacity of population codes. Surprisingly, this question does not have a
simple answer: correlations can increase information (synergistic codes) or
decrease information (redundant), depending on the pattern of correlations
(Abbott & Dayan, 1999; Yoon & Sompolinsky, 1999). The implications of
those studies for the neural codes in cortex remain unclear because they
are not based on the pattern of correlations in vivo but rather on arbitrary
correlations patterns that are set by hand (often chosen for their analytical
tractability). The authors had no choice: the pattern of correlations in vivo
is not known yet. A few measurements are available for small cell sets (2–
10 cells; Zohary et al., 1994; Lee et al., 1998; Maynard et al., 1999; Averbeck
& Lee, 2003; Kohn & Smith, 2005), but those are insufficient to extrapolate
the entire correlation pattern.

Here we adopt a different approach. We construct a model of how popu-
lation responses arise from stimuli and then study the resulting correlation
patterns and their consequences. More specifically, we investigate the syn-
ergy and redundancy of a population code composed of motion energy fil-
ters (MEFs) responding to various types of images. We chose MEFs because
they are one of the best available models of motion-selective V1 neurons
(Basole, White, & Fitzpatrick, 2003), and they have been utilized as building
blocks for modeling motion-sensitive MT cells (Simoncelli & Heeger, 1998).
In this data set, the variability comes from the multiplicity of images that
can instantiate the same motion, and the correlations between units arise
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from stimulus-driven factors, such as the collection of motions present in
a random dot kinematogram. Therefore, unlike previous studies, we focus
on correlations due to the stimulus, and we ignore any contributions from
internal noise; hence, we use the term external noise. The advantage of this
approach is that we are studying correlations that are guaranteed to emerge
in cortical circuits (to the extent that MEFs provide a good model of cor-
tical responses). Any estimate of motion direction will be affected by the
response variability due to the fact that the same motion can be instantiated
by a wide variety of images. In the rest of this letter, we call this variabil-
ity noise, since it carries no information about the direction of motion. It is
important to keep in mind that this “noise” is in fact carrying information
about other image features such as luminance or texture.

In addition to considering the impact of correlations in model units on
encoding, we consider their impact from the point of view of decoding. The
decoding perspective evaluates if a downstream population needs to know
correlations to recover the coded information (Wu et al., 2001). Depending
on the covariance matrix considered, strategies ignoring correlations can
be close to optimal or not (Wu et al., 2001). Hence our second goal is to
evaluate the importance of taking correlations into account in recovering
information from population responses.

2 Methods

2.1 Motion Energy Filters. Motion energy filters (MEF; Watson &
Ahumada, 1985; Adelson & Bergen, 1985) are built from subunits with
separable spatial and temporal receptive fields, as is the case for many V1
simple cells (Robson, 1966; Tolhurst & Movshon, 1975; Field & Tolhurst,
1986; DeAngelis, Ohzawa, & Freeman, 1995; De Valois, Cottaris, Mahon,
Elfar, & Wilson, 2000).

2.1.1 Spatial Subfield. Spatial subfields are composed by 2D Gabor func-
tions:

G(ωs, θ, φs, x, y) = 1
2πσ 2 exp

(
− x2 + y2

2σ 2

)

× cos[ωs(x cos θ + y sin θ ) + φs], (2.1)

where ωs = 2π fs , is the spatial pulsation (ωs = 2π fs where fs is the spa-
tial frequency), and θ and φs are the orientation and phase of the spatial
receptive field. The parameter σ is set by (cf. Watson & Ahumada, 1985)

σ = 3
√

ln 2
π fs

. (2.2)

Note that the Gabor functions are centered at the same spatial location
(0,0) degrees.
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2.1.2 Temporal Subfield. The causal temporal subfield is composed of an
alpha function multiplied by a cosine:

T(ωt, φt, t) =



(−t)xet/τ

(xτ )xe−x
cos(ωtt + φt) if t < 0

0 if t ≥ 0
, (2.3)

where ωt is the temporal pulsation (ωt = 2π ft where ft is the temporal
frequency), φt is the temporal phase, and x and τ are constants set to fit the
experimentally determined response profile of V1 cells (x = 5, τ = 0.1/ ft)
(DeAngelis et al., 1995).

2.1.3 Model of V1 Simple Cells. The response of the simple cells, Rs, is
obtained by convolving the image with the spatiotemporal receptive field
of the cells:

Rs(ωs, θ, φs, ωt, φt, t) =
∫ t

−∞
T(ωt, φt, τ − t)dτ

∫∫
�

× G(ωs, θ, φs, x, y)I (x, y, τ )dxdy, (2.4)

where I (x, y, t) is the spatiotemporal image, and G(.) and T(.) are the spatial
and temporal subfields of the simple cell as defined in equations 2.1 and
2.3.

2.1.4 Model of V1 Complex Cell: Motion Energy. The responses of the sim-
ple cells Rs depend on the phase of the stimulus. In order to obtain pure
motion energy filters, equivalent to V1 complex cells, we have to combine
units in phase quadrature in space and time. Slight numerical adjustments
are necessary to obtain quadrature pairs with unbiased responses (i.e., units
with no response when the stimulus contrast is 0). Specifically, the param-
eters σ and φt are adjusted such that the following relationship is verified
when I (x, y, t) is constant:

{
Rs(ωs, θ, φs, ωt, φt, t) = 0
Rs(ωs, θ, φs, ωt, φt + π/2, t) = 0,

with φs ∈ {0, π/2}.
Pure motion energy (i.e., space-time quadrature) is obtained through the

following additional step (cf. Adelson & Bergen, 1985):

Rc(ωs, θ, ωt, t) =
[

Rs(ωs, θ, 0, ωt, 0, t) − Rs

(
ωs, θ,

π

2
, ωt,

π

2
, t

)]2

+
[

Rs

(
ωs, θ, 0, ωt,

π

2
, t

)
+ Rs

(
ωs, θ,

π

2
, ωt, 0, t

)]2
. (2.5)
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2.2 Model Units’ Distribution and Spatiotemporal Arrangement.
MEFs are distributed in polar coordinates on logarithmic scales, such that
the whole range of spatial [0.5,3 cycles/deg] and temporal [2,6 cycles/s]
frequencies is covered uniformly by five filters for each of the five chosen
preferred motion speed sensitivities. In other words, units’ receptive fields
are aligned in Fourier coordinates along straight lines in (ωs , ωt) space
corresponding to constant speeds (see Figure 1A; Simoncelli & Heeger,
1998).

Five preferred speeds are chosen on a logarithmic scale to cover uni-
formly the Fourier space {2, 2.82, 4, 5.66, 8 deg/s} (see Figure 1A, 5 lines).
Then finally, for all speeds, five preferred motion direction are chosen evenly
{−32, −16, 0, 16, 32 deg} (see Figure 1B), leading to a total of 5 × 5 × 5 = 125
units covering uniformly a portion of the (ωx , ωy, ωt) space close to the one
spanned by V1 cells (Foster, Gaska, Nagler, & Pollen, 1985). This results
in 25 preferred motions (5 directions × 5 speeds) evenly distributed in the
(Vx ,Vy) velocity space (see Figure 1C).

2.3 Image Types. All images are circular, with a diameter of 9.56 degrees
of visual angle, the pixel size is 1/25 degree, and the contrast interval is
[1 2], with 1 corresponding to the background level.

2.3.1 Noisy Sinusoidal Grating. This type of image is composed by a sine
wave of fixed spatial frequency (0.97 cycles/s), whose orientation is per-
pendicular to the direction of motion, with a constant speed of 4 degrees per
sec (see Figure 2A). The image is then corrupted by space-time independent
noise. At each time step, the value of each pixel is perturbed by the addi-
tion of a noise term, drawn independently for each pixel from a gaussian
distribution with zero mean and standard deviation, σ ∈ [0.05 100]:

I (x, y, t) = cos(ω[x cos α + y sin α − vt]) + n(0, σ ), (2.6)

where ω is the spatial pulsation, α the motion direction, v the speed, and n
the noise term. After the addition of noise, I is renormalized so that contrast
values stay within the [1 2] interval.

2.3.2 Random Dots Kinematograms. Random dots kinematograms (see
Figure 2B) consist of 11 to 2963 dots (density range: 0.156–41.6 dot/deg2)
whose initial position is drawn from a 2D uniform distribution. Individual
dots are small gaussians (σ = 1/20◦) chosen so that their Fourier gain above
10 cycles per degree is less than 1% of their maximal gain. In simulations, all
dots move in the same direction with the same speed (4◦/s: 100% coherence).
In this type of image, the variability from trial to trial is due to the variations
in dot density and the relative dot positions (Barlow & Tripathy, 1997).
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Figure 1: MEF distribution. (A) Distribution of the units in spatial-temporal
frequency space. For a given preferred speed, a straight line in spatiotemporal
Fourier space, five units were exponentially spaced along the range of spatial
[0.5, 3 c/◦] and temporal [1, 6 c/s] frequencies. Moreover, five preferred speeds
were chosen between 2◦/s and 8◦/s. The ellipses show the spatiotemporal region
where each unit responds within 95% of its maximal power. (B) Distributions
of units in three-dimensional frequency space. For each of the five preferred
orientations, that is, a direction in the (x,y)-spatial frequency plane, 25 units
are distributed according to the arrangement described in A. This results in
coverage of the 3D frequency space with five preferred directions, five preferred
speeds, and five preferred spatial-temporal frequencies. (C) Preferred velocities
of the units represented in velocity space. Also shown (asterisks) are the two
velocities used to train the local optimal estimator, which we used to compute
Fisher information.

2.3.3 Natural Images. We used 500 pictures of natural outdoor scenes (see
Figure 2C) from the van Hateren databank (van Hateren & van der Schaaf,
1998). These large pictures consist of 1536 × 1024 pixels, each pixel cover-
ing approximately 1 minute of arc. For each trial, a picture and the initial
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Figure 2: Image types. (A,B,C) Examples of the three different types of images
used in this study. (A) Single sinusoidal grating plus spatiotemporal indepen-
dent gaussian random noise. (B) Random dot pattern with all dots moving in
the same direction with the same speed; the source of variability comes from
the random distribution of the dots. (C) Natural scenes: the variability in this
case is due to the fact that different images are used to instantiate the same
motion. (D,E,F) Spatiotemporal Fourier power spectra of the images in A,B,C,
respectively. The crosses indicate the preferred spatial and temporal frequencies
of the MEFs.

position of our image patch were chosen randomly. Each patch was then
convolved with a 2D gaussian to obtain a pixel resolution of 1/25 degree and
motion was simulated by translating the patch at the appropriate velocity.

2.4 Data Analysis and Fisher Information. Each data set comprises
1000 trials of responses of the 125 MEF to two directions of motion [0 8.1◦]
and one speed (4◦/s), for one of the three types of images. To obtain data
during the steady state, the total duration of each trial is set to three times
the longest temporal period (lowest temporal frequency unit). Responses
are averaged over a 300 ms exposure to the steady state. The sampling rate
is 78 frames per sec.

2.4.1 Estimating Fisher Information. Our approach to estimating Fisher
information is similar to that of Series, Latham, and Pouget (2004). First, we
divide our data in three sets for the two motion directions: a training set
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Figure 3: Information measures. We quantified information in terms of the
smallest change in motion direction that can be detected based on the MEF
population response. We decoded the activities of the MEFs using a local opti-
mal linear estimator parameterized by a set of weights WLOLE (see equation 2.7;
black weights). This linear estimate was then used to obtain a lower bound on
Fisher information called ILOLE. To evaluate the synergy or redundancy of the
population code, artificially decorrelated data sets were generated by shuffling
the responses of individual units across trials, and a new set of weights Wshuffled
was computed (light gray), leading to a second measure of Fisher information,
Ishuffled. To assess the cost of ignoring correlations, we computed Fisher infor-
mation using the weights optimized for the decorrelated data (Wshuffled) and
applying them to the original data set, yielding Idiag (dash-dotted line). This is
equivalent to decoding the population assuming that the MEFs are independent.

(400 trials), a validation set (200 trials), and a test set (400 trials) used for
optimization, early stopping, and generalization, respectively.

Second, the total information (ILOLE, see Figure 3: black inset) contained
in the MEF population is estimated by training a locally optimal linear
estimator (LOLE) of the direction of motion on the training data set. The
LOLE is equivalent to a linear perceptron of the form

θ̂ = WX, (2.7)

where W is a 125 weight vector, and X the matrix responses of filter re-
sponses to which the mean responses have been subtracted (125 rows ×
[500 × 2]columns). The weights W are optimized by conjugate gradient de-
scent to estimate the two neighboring directions of motion [0◦, 8.1◦]. The
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validation set is used to monitor the generalization performance and stop
the optimization when the performance starts decreasing on this set. This
early-stopping procedure avoids overfitting.

Third, after training, the mean {E(θ̂i )}i=1,2 and the variance {V(θ̂i )}i=1,2

of the estimates for the two directions of motion are computed on the test
set. The lower-bound estimate of Fisher information is obtained with

ILOLE = 1
�θ2

(E(θ̂2) − E(θ̂1))2

[V(θ̂2) + V(θ̂1)]\2
, (2.8)

where �θ = 8.1◦ is the angular difference between the two directions of
motion.

This particular method for estimating Fisher information provides only a
lower bound, which ignores any information that could be obtained through
nonlinear decoders. However, as mentioned in section 4 (“Lower Bound on
Fisher Information”), this bound appears to be quite tight because various
nonlinear methods failed to obtain information beyond what we observed
with the LOLE.

2.4.2 Ishuffled and Idiag. In order to evaluate the information conveyed by
correlations within the population code, we generate artificially decorre-
lated data sets by shuffling the responses of individual units across different
trials in the same motion direction. Shuffling is performed by circular per-
mutations on the rows of matrix X chosen in random order. The first chosen
row is left intact, the second is shifted by 2 values, the next by 4, and so on
(see Figure 3, light gray inset). Analyses confirmed that on each data set, this
shuffling indeed reduced the correlation to near zero. Once the correlations
are removed, we train a LOLE on the shuffled data set with the same cross-
validation technique as described above and compute another estimate of
Fisher information (Ishuffled; see Figure 3, light gray inset) using equation 2.8.

To assess the impact of correlations from a decoding point of view, we
compute Idiag, the Fisher information recovered when ignoring correla-
tions (“diag” refers to the fact that the decoder assumes a diagonal covari-
ance matrix). This quantity is obtained by using the weights optimized for
the decorrelated (shuffled) data and applying them to the original data set
(see equation 2.7), but replacing W with Wshuffled (see Figure 3, dash-dotted
line). The motion direction estimates are then used to compute Idiag (see
equation 2.8). Note that because Wshuffled is not optimized for the original
data set, Idiag ≤ ILOLE.

2.5 Normalizations. In the case of random dot kinematograms and
natural images, the contrast can greatly vary from one image to the next. To
determine whether these contrast variations contribute to our results, we
retrained the LOLE on population responses that have been normalized.
We tried several different types of normalization, with two basic forms:
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Norm 1: Normalization by maximum activity:

ai,p 	→ ai,p

max
k

(ak,p)
, (2.9)

where ai,p is the response of unit i in trial p. This normalization ensures
that all units have their activities between 0 and 1.
Norm 2: Divisive normalization:

ai,p 	→ a2
i,p

c1 + c2

n∑
k=1

a2
k,p

. (2.10)

We used two different sets of values for the parameters c1 and c2: c1 = 0.01
and c2 = 0.25, as used by Simoncelli and Heeger (1998) to model complex
cells and c1 = 0.1 and c2 = 0.002, as in Deneve, Latham, and Pouget (1999).

3 Results

We used a population of 125 motion energy filters (MEF; Watson &
Ahumada, 1985; Adelson & Bergen, 1985) spanning uniformly a large por-
tion of the 3D Fourier space (ωx , ωy, ωt) (see section 2 and Figure 1), their
receptive fields spatially overlapping.

These deterministic MEFs were presented with three sets of moving im-
ages, which displayed diverse types of image noise, or intrinsic variability
(see Figure 2). The first set of images consisted of a single sinusoidal grat-
ing, corrupted with random gaussian space-time independent pixel noise
(see Figure 2A). The level of noise was controlled through the standard
deviation of the random gaussian contrast perturbations. The second set of
images contained random dots patterns that varied in their spatial config-
uration across trials (a type of variability known as correspondence noise;
Barlow & Tripathy, 1997). The level of variability was varied by changing
the number (or density) of dots (see Figure 2B) as is done in psychophysical
experiments (Watamaniuk, 1993; Barlow & Tripathy, 1997). The last set of
images was natural images (see Figure 2C). In this case, the image variabil-
ity was caused by choosing different images moving in the same direction.
Contrary to the other sets, the level of noise could not be parametrically
varied in the last set.

The responses of the MEF population to the constant velocity moving
images were used to discriminate between two directions of motion dif-
fering by a small angle δθ , where δθ was set to 4 degrees. Unless specified
otherwise, the estimate of the direction of motion was obtained with a
local optimal linear estimator (LOLE), and a lower bound on the Fisher
information of this estimator was computed as described by equation 2.8.

The main goal of this work was to evaluate the role of correlations of
motion energy filters in response to natural images and images that are
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commonly used in psychophysics experiments. Note that all correlations
are stimulus induced in these model units, since we did not add any noise
to the responses. To the extent that MEFs provide a good model of motion-
selective neurons, the same correlations must arise in the cortex.

3.1 Distribution of the Pairwise Correlations Coefficients Between
MEF Filters. Figure 4 shows the distribution of the pairwise correlations
coefficients between MEF filters. Interestingly, the pairwise correlations are
very similar to what has been reported in vivo for the same type of stimuli
(Zohary et al., 1994; Bair, Zohary, & Newsome, 2001). For random dots, the
correlations tend to be mostly positive and small (see Figure 4A). Moreover,
the amplitude of the correlations decreases as a function of the difference
in preferred directions (see Figure 4B). Cell pairs with small differences in
preferred directions (less than 30 degrees) are positively correlated, while
cells with large differences in preferred directions (more than 30 degrees)
show very little correlation. The same trend has been reported in MT by
Zohary and colleagues.

Sinusoidal gratings induce a similar pattern of correlations as for ran-
dom dots (see Figure 4C) but not natural images. With natural images,
correlations tend to be stronger, with an average value of 0.38 compared to
0.12 for random dots, and 0.05 for sinusoidal gratings. We are not aware
of any measurement of correlations in MT in response to natural images. It
would therefore be interesting to test experimentally whether correlations
are indeed stronger when using natural images.

3.2 Total Information as a Function of Image Variability Level. First,
we checked that the performance of the MEF population parallels that of
human observers in similar conditions. The variation of the total informa-
tion in the system as a function of the magnitude of image variability is
presented in Figure 5, for the sinusoidal grating plus pixel noise (see Fig-
ures 5A and 5C) and random dots pattern images (see Figures 5B and 5D)
for which the level of noise was under parametric control. As expected, and
similar to psychophysical data (Eckstein, Whiting, & Thomas, 1996a, 1996b),
Fisher information (see Figure 5A) as well as the performance of classifica-
tion (see Figure 5C) dropped with increasing (pixel) noise level. Note that
a 75% correct classification was obtained when the standard deviation of
the pixel noise was above 60, thus more than 60 times the peak-to-peak
contrast of the grating. Hence, this system is very robust to pixel noise.
Fisher information as well as correct classification increased as a function
of the number of dots in the image, as has been observed psychophysically
(Barlow & Tripathy, 1997; Watamaniuk, 1993). Note that with only 11dots in
the image (dot density = 0.156 dots/deg2) the percentage of correct classi-
fication is above 80% (see Figure 5D) and that Fisher information saturates
at about 520 when the number of dots is above 700 (density∼10 dots/deg2;
see Figure 5C) but correct classification never reaches 100%.
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Figure 4: Pairwise correlations for the different types of images. (A) Distribution
of pairwise correlations obtained with random dots (DOTS; %Correct = 97%,
nDots = 371). m = 0.12 ± 0.19, med = 0.06 (mean, standard deviation, median).
(B) Mean correlation (and standard deviation) as a function of difference in pre-
ferred direction between two MEFs. (C,D) Distribution of pairwise correlations
for noisy sinusoidal grating images (SINE; %Correct = 98%, σnoise = 30) m =
0.05 ± 0.14, med = 0.01, and for natural images (NATURAL) m = 0.38 ± 0.22,
med = 0.33.

3.3 Ishuffled: The Impact of Correlations on Encoding. To determine
whether MEF population codes are redundant (correlations encode infor-
mation about the motion direction beyond individual responses) or syner-
gistic (correlations decrease the amount of information), we compared the
Fisher information computed on the original data set (ILOLE) to the informa-
tion computed on an artificially decorrelated data set in which individual
responses have been shuffled across trials (Ishuffled; Nirenberg & Latham,
1998, 2003; Panzeri, Golledge, Zheng, Tovée, & Young, 2001; Series et al.,
2004; see Figure 6). In a synergistic code, Ishuffled should be less than ILOLE
(ILOLE − Ishuffled > 0), and conversely for a redundant code.
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Figure 5: Fisher information and discrimination performance as a function of
noise level. (A) Fisher information (ILOLE) as a function of the standard deviation
of the pixel noise for sinusoidal gratings (see Figure 2A). (B) Fisher information
(ILOLE) as a function of the number of dots in the random dots kinematograms
(see Figure 2B). (C,D) Percentage of correct classification as a function of the
standard deviation of the pixel noise (C) and the number of dots (D). Note that
for the random dot patterns (B,D), the variability in the image decreases as the
number of dots increases.

Note that the terms synergy and redundancy have been defined in different
ways over the years (Barlow, 2001; Averbeck, Latham, & Pouget, 2006).
According to a recent definition proposed by Schneidman et al. (2003), a
population code with N neurons is said to be synergistic (resp. redundant) if
I − ∑N

i=1 Ii , where I is the total Shannon information and Ii is the Shannon
information for neuron i , is positive (resp. negative). We generalized this
notion to Fisher information by simply noting that

∑
i Ii = Ishuffled in the

case of Fisher information, in which case the relevant quantity for synergy
and redundancy is indeed ILOLE − Ishuffled.

For sinusoidal gratings with a noise level corresponding to a perfor-
mance of 98% correct, we found that Ishuffled is 26% greater than IL OL E (see
Figure 6A, SINE), indicating that the code is redundant in this case. By
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Figure 6: Evaluation of synergy or redundancy of the MEF population code.
(A) ILOLE and Ishuffled for population responses obtained with noisy sinusoidal
gratings (SINE) for an intermediate level of noise (%Correct = 98%, σnoise = 30),
with random dot kinematograms (DOTS; %Correct = 97%, nDots = 371 or
DotDensity = 5.2 dots/deg2), and with natural images (NATURAL). (B) Per-
centage of Ishuffled relative to ILOLE as a function of noise level for the three
different image types. Average percentage (squares) and standard deviations
(bars) are given. Note that the standard deviation is 0 for natural images: only
one level of noise was available since the variability of the stimuli was deter-
mined only by the image data set. The code was found to be redundant for sinu-
soidal gratings (Ishuffled > ILOLE) and synergistic for random dot kinematograms
and natural images (Ishuffled < ILOLE).

contrast, for random dots with a dot density allowing 97% correct classi-
fication, Ishuffled was found to be 72% below ILOLE (see Figure 6A, DOTS).
In other words, the MEF codes are synergistic for random dots. A similar
situation was observed for natural images, although the decrease in Ishuffled
relative to ILOLE was only 11% (see Figure 6A, NATURAL).

The general trend, a redundant code for sinusoidal gratings and a syner-
gistic code for random dots and natural images, is conserved for all levels
of variability (see Figure 6B, %Ishuffled/ILOLE = 133 ± 19% and 31 ± 7% for
grating and random dots, respectively). Therefore, the same population of
MEFs presented with different types of noisy images can have encoding
characteristics exhibiting either synergy or redundancy.

The synergy (Ishuffled < ILOLE) observed for random dots and natural im-
ages could simply be due to large contrast variability from one image to the
next (see Figure 7). Indeed, the natural images varied greatly in contrast,
and with random dots, the actual number of dots appearing in the receptive
field of the MEFs can vary significantly from trial to trial (see Figure 7A).
This shared variability can be removed easily from the population response
by taking differences between neurons, in the same way noise is reduced in
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Figure 7: Cross-trial variability and shuffling. Activity of 25 units during four
trials of random dots image motion, each trial being represented by a single
line, for the original data (A) and shuffled data (B). On average, units tend
to be either strongly or weakly active during a given trial (A). This common
variability across trials disappears after shuffling (B).

a differential amplifier. Once the data are shuffled, however (see Figure 7B),
this shared variability can no longer be removed, which could explain the
decrease in information after shuffling.

If shared variability due to overall image contrast underlies synergy,
it should be possible to normalize the activity of the MEFs to increase
Ishuffled (hence, reducing the synergy), while keeping ILOLE almost identical.
This is indeed what we found for natural images. When we used divisive
normalization (normalization 2 in section 2), the code went from synergistic
to redundant (Ishuffled equal to 95% of IL OL E, before normalization, 120%
after) with only a minor change in IL OL E,(ILOLE,NORM2 = 27, compared to
ILOLE = 29 without normalization).
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For random dot kinematograms, we also found a reduction in synergy
(Ishuffled went from 33% of IL OL E, to 85% after divisive normalization). How-
ever, this decrease in synergy was accompanied by a substantial decrease
of ILOLE (ILOLE,NORM2 = 93 ± 53 compared to ILOLE = 406 ± 172). We also
tried other forms of normalization (e.g., normalization 1 in section 2), but
they failed to reduce synergy. This indicates that the synergy for random
dot kinematograms is not simply the result of variability in contrast across
images but could be related to the variability in other stimulus parameters,
such as the local dot density.

3.4 Idiag: The Impact of Correlations on Decoding. Ishuffled measures
the impact of correlation from a encoding perspective. To measure the im-
pact of correlations from the point of view of decoding, one can measure
the information recovered when decoding the patterns of activity under
the assumption that the MEF units are independent (Wu et al., 2001; Pola,
Thiele, Hoffmann, & Panzeri, 2003; Nirenberg & Latham, 2003). Idiag, the in-
formation recovered when the covariance matrix is assumed to be diagonal
(see section 2), is guaranteed to be less than or equal to the true information
(due to the independence assumption). In the case of sinusoidal gratings,
with a noise level corresponding to a performance of 98% correct, the ratio
Idiag/ILOLE was found to be equal to 50% (see Figure 8A, SINE). For random
dot patterns, at a performance level of 97% correct (see Figure 8A, DOTS),
this ratio is down to 12%. For natural images, the ratio is even lower, down
to 7% (see Figure 8A, NATURAL). Accordingly, when ignoring correlations,
classification performance drops from 98% to 92% for sinusoidal grating,
from 97% to 72% for random dots and from 83% to 54% for natural images.

These small ratios of Idiag/ILOLE are observed for all levels of image
variability (see Figure 8B: %Idiag/ILOLE = 54 ± 13% and 14 ± 5% for noisy
grating and random dots, respectively).

Hence, it is clear that correlations in MEF population codes have a signif-
icant impact on decoding performance for sine grating stimuli and a very
large impact on the other two stimulus sets.

3.5 Population Code Properties and Image Variability.

3.5.1 Fourier Spectra of Images. One simple observation that may explain
the different behavior of the MEF population across the three image types is
that the Fourier spectra of the different types of images differ substantially.
The spectrum of a noisy sinusoidal grating is very localized (see Figure 2D);
the spectrum of a random dot stimulus is roughly constant in the spatiotem-
poral frequency range spanned by the model neurons (see Figure 2E); and
the spectrum of natural images follows the classical 1/f power function
(see Figure 2F; van Hateren & van der Schaaf, 1998), hence, displaying a
maximal power for low spatial and temporal frequencies (ωs , ωt).
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Figure 8: Impact of correlations from a decoding perspective. (A) IL OL E and
Idiag for population responses obtained with sinusoidal grating plus noise
(SINE) for an intermediate level of noise (%Correct = 98%, σnoise = 30.0), with
random dots (DOTS; %Correct = 97%, number of dots = 371), and with natural
images (NATURAL). (B) Percentage of Idiag relative to ILOLE as a function of
noise level for the three different image types. Average percentage (squares)
and standard deviations (bars) are given. Note that the ratio Idiag/IL OL E is guar-
anteed to be less than 100% because Idiag is obtained with weights that are not
optimized for the normal data set (see Figure 3). Moreover, the standard de-
viation is 0 for natural images: only one level of noise was available since the
variability of the stimuli was determined only by the image data set. For all
images, ignoring correlations led to large information losses.

In order to test this hypothesis, we generated two new sets of images. The
first consisted of a sum of noisy drifting gratings, with the spatiotemporal
frequencies selected such that the resulting Fourier spectrum of the image
was indistinguishable from that of random dots. The second new type of
image consisted of a single natural image corrupted with pixel noise. For
both images, the standard deviation of the gaussian noise was chosen so
that the Fisher information (ILOLE) was within 98.0 ± 1.2% correct for all
images (σ = 3 and σ = 1.6 for the sum of noisy sine gratings and the single
noisy natural image, respectively). The comparison of ILOLE, on one hand,
and Ishuffled and Idiag, on the other hand, for the single grating plus noise and
the two new image types is shown in Figure 9 (SINE, sum of SINES and
NATURAL+noise, respectively). Overall, despite the fact that the Fourier
spectra of these images are similar to the three depicted in Figures 2D to 2F,
the relations between the different information measures are qualitatively
similar to that of the single noisy grating (see Figure 9). Hence, the observed
differences in statistical properties cannot be explained solely by differences
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Figure 9: Influence of image Fourier spectra on information. Comparison of
ILOLE versus Ishuffled and Idiag for sinusoidal gratings plus pixel noise (SINE); a
combination of sinusoidal gratings plus pixel noise, adjusted so that the image
Fourier spectrum is similar to the random dots images (sum of SINES); and a
single natural image plus pixel noise (NATURAL+noise; in this case, the image
spectrum is identical to natural image spectra). Note that noise levels used to
obtain similar levels of information (ILOLE) differ substantially (SINE: σnoise = 30,
sum of SINES: σnoise = 3, NATURAL+noise: σnoise = 1.6).

in Fourier spectra. More relevant to information is the structure of the image
variability, which is not captured by the spectra.

3.5.2 Responses of Motion Energy Filters. The response distributions of
motion energy filters across trials for a given motion direction are not gaus-
sian, thus violating the standard assumption of multivariate gaussian noise
found in most papers dealing with correlations (Abbott & Dayan, 1999; Yoon
& Sompolinsky, 1999; Wu, Amari, & Nakahara, 2004). To quantify these de-
viations, we measured the skewness (indication of asymmetry) and kurtosis
(indication of peakiness) of the distributions. When the motion direction is
0 degree (movement to the right), units stimulated with noisy sinusoidal
grating have an average skewness of 1.56 (SD = 0.33) and a mean kurtosis
of 3.82 (SD = 1.81) when both of these values should be 0 for gaussian dis-
tributions. This indicates that response distributions, which look similar to
gamma distributions, are not symmetric and are more peaky than gaussian
distributions. Both tendencies are increased when the motion energy filters
are stimulated by random dots (skewness (m ± SD): 2.12 ± 0.32 and kurto-
sis (m ± SD): 6.90 ± 3.63) and by natural images (skewness = 10.94 ± 4.12
and kurtosis = 182.02 ± 125.81). These data reflect the observation that for
random dots, and even more so for natural images, response distributions



164 F. Klam, R. Zemel, and A. Pouget

tend to peak near 0 because for a sizable proportion of trials, a particular
unit is often poorly stimulated.

To further analyze the statistics of MEF responses, we computed the
variance-mean relations. In log-log plot, the variance of response was in-
deed a linear function of the mean, with slopes of 2.16, 2.04, and 2.03 for
responses obtained with noisy gratings, random dots, and natural images,
respectively. These relations do not significantly differ between conditions
and are in the range of those reported in the literature (Softy & Koch,
1993: 1.25 in areas V1,MT; Lee et al., 1998: 1.1–1.17 in parietal cortex, M1;
Snowden, Treue, & Andersen, 1992: 0.7–1.8 in V1).

A final step to characterize the responses across the different stimulation
conditions, given that we used a motion direction discrimination task, is to
examine the units’ responses to the direction of motion. The tuning curves
are plotted in Figure 10, for the noisy gratings (for %correct = 98%, see
Figure 10A), the random dots (for %correct = 97%, see Figure 10B), and
the natural images (see Figure 10C), with the units arranged according to
their preferred velocity (rows) and preferred spatial (-temporal) frequency
(column). Two main observations emerge from the tuning curves. First,
the shapes of the directional tuning curves change with image types. As
expected from the motion energy characteristics, a narrow gaussian tuning
arises in response to sinusoidal grating plus pixel noise images, and the
peak response is aligned with the unit’s preferred direction of motion (see
Figure 10A). With random dots, the tuning curves become bimodal, both
peaks being at exactly 90 degrees away from the unit’s preferred direction
(see Figure 10B). Such bimodal responses have been observed in V1 cells
(Snowden et al., 1992; Skottun, Zhang, & Grosof, 1994; Basole et al., 2003),
confirming that motion energy filters provide a good model of motion-
selective V1 neurons. The shapes of tuning curves to natural images are
similar to those obtained with random dots images, although somewhat
noisier because motion direction responses also depend on the contrast
power in each orientation in the natural images. The second important
observation is that the maximally active units are not the same for all types of
images, although the speed and direction of motion are identical. For noisy
sine gratings, the most active unit has a preferred speed of 4 degrees per sec
and a spatial frequency of 0.87 c per degree, those parameters corresponding
closely to the grating stimulus (see Figure 10A). In contrast, the most active
unit for both random dots and natural images is the lowest speed (2◦/s)
and lowest spatial frequency (0.5 c/◦; see Figures 10B and 10C for random
dots and natural images, respectively). More generally, active units have
preferred speeds below those of the stimulus and low spatial frequencies.
Hence, depending on the type of images, the same image motion activates
different units in the population. Moreover, the shape of the tuning curves
change radically.

This result makes a specific prediction: that natural images and
random dots moving at the same physical speed as a sinusoidal grating
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Figure 10: Motion direction tuning curves of the MEF population. (A,B,C) Tun-
ing of MEFs to sinusoidal grating plus noise, to random dots, and to natural
images, respectively. Each inset shows the response of a given unit to the di-
rection of motion. Units are arranged as a function of their preferred spatial
frequency (x-axis) and their preferred velocity (y-axis; the bottom row corre-
sponds to the units depicted along the steepest line in Figure 1A, and the top
row those lying on the flattest line). Mean responses (thick black lines) and
standard deviations (dotted gray lines) for n = 100 trials in A and B and n = 200
trials in C.

should be perceived as being slower. To our knowledge, this has never been
tested.

3.5.3 Discrimination with Subsets of Motion Energy Filters. The tuning
curves to motion direction seem to indicate that different subsets of units in
the population might support the motion discrimination task for different
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Figure 11: Subset of the most efficient units for discrimination. (A,B,C) Percent-
age of total information (grayscale) recovered by each subsets of model neu-
rons (Isub/ILOLE) with identical preferred speed (y-axis) and spatial frequency
(x-axis), for sinusoidal grating plus noise (A), random dots kinematograms (B),
and natural images (C). The star symbol indicates which subset yields the most
information. (D,E,F) Cumulative percentage of the total information (ILOLE)
yielded by summing the information obtained individually on each subsets,
when including 1 to 25 subsets, for sinusoidal grating plus noise (D), random
dots kinematograms (E), and natural images (F).

images. To test that hypothesis, we grouped the units according to their pre-
ferred speed and spatial frequency, across all spatial orientations, and then
evaluated the discrimination performance by computing Fisher information
while including only members of a given subset at the time (Isub). Figure 11
shows the information of each subpopulation compared to the total infor-
mation ILOLE. For noisy gratings (see Figure 11A), the subset yielding the
most information includes units whose preferred speed (4◦/s) and spatial
frequency (0.87 c/◦) are closest to the grating stimulus. Using only those
25 units recovers about 60% of ILOLE. The situation is significantly differ-
ent when using random dots or natural images (see Figures 11B and 11C).
The subsets yielding most information now include low (2◦/s) preferred
speed and intermediate (1.9 c/◦) spatial frequency units, but the informa-
tion based on those subgroups is only a few percent of ILOLE (Isub-max = 3.3%,
and Isub-max = 5.8% for random dots and natural images, respectively),
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suggesting that the size of the subgroups we considered is too small in
those cases for accurate motion discrimination. Those tendencies are con-
firmed by the cumulative percentages of Isub/ILOLE, including 1 to 25 of the
subgroups (see Figures 11D to 11F). For noisy gratings (see Figure 11D), the
sum of the information obtained with each subset is about twice as large
as the information obtained on the whole population, whereas it is only
24% and 54% for, respectively, random dots and natural images (see Fig-
ures 11E and 11F). Note that taking subgroups separately (i.e., selecting a
reduced number of covariances) is somewhat related to shuffling data (i.e.,
making all off-diagonal covariances zero), and similarly as the cumulative
Isub , Ishuffled is greater than ILOLE for noisy gratings and lower otherwise (see
Figure 6).

In summary, for a given motion direction, not only do different subsets
of units support most efficiently the discrimination task depending on the
type of images, but for image variabilities exhibited by random dots or
natural images, discrimination is relatively poor when considering only
subsets of the whole population.

3.6 Information in Cells Pairs Versus Whole Population. Most ex-
perimental studies report that ignoring correlations when decoding does
not lead to a substantial loss of information (Nirenberg, Carcieri, Jacobs,
& Latham, 2001; Pola et al., 2003; Averbeck & Lee, 2003). In contrast with
those reports, our results show that decoding the population activity pat-
tern under the assumption that neurons are independent leads to dramatic
loss of information. At first sight, it would appear that our results are
incompatible with those experimental findings since we report a large in-
formation loss with MEFs when ignoring correlations (Idiag versus ILOLE; see
Figure 8). However, experiments typically consider pairs of neurons, while
we studied a large population of motion energy filters. It is possible that
correlations have little impact on the information in pairs of neurons, while
having a large impact of the information conveyed by the entire popula-
tion. To determine whether this is the case, we computed ILOLE and Idiag in
all pairs of motion energy filters for sine grating stimuli with σnoise = 30.
Following Nirenberg et al. (2001), we plot in Figure 12 the percentage
of information recovered when the pairs are assumed to be independent
(1 − [ILOLE − Idiag]/ILOLE).

Despite the fact that Idiag is only 12% of ILOLE for the entire population, we
found that for most cell pairs, Idiag is 90% or more of IL OL E . In other words,
most cell pairs fail to reflect the large impact of correlations. There are a few
pairs for which the Idiag is less than 90% of ILOLE, but such pairs represent
less than 3% of the 7750 pairs in our data. It is therefore possible that the
failure to find a large impact of correlations on population codes is due to
the small size of the population being tested. We suspect that this is not an
issue for the study of Nirenberg et al. (2001) because they used a very large
number of cells pairs, but other studies could be subject to this problem.
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Figure 12: Underestimation of information in cell pairs. Ratio Idiag/ILOLE for
pairs of MEFs expressed in percentage as a function of the correlation between
the two members of the pair. Each point corresponds to one pair. A total of 7750
pairs is shown; 97% of the cells pairs show a ratio of Idiag/ILOLE above 90%,
even though this ratio is 12% for the entire population. Therefore, the impact of
correlations on cell pairs can greatly underestimate the impact at the population
level.

4 Discussion

This work investigated the role of statistical dependencies among neurons
in a population code, offering a novel perspective by studying the responses
of a population of motion energy filters, in which the response variability
is due to the image itself rather than a form of variability chosen for its
suitability for subsequent analytical study. We evaluated the role of correla-
tions in population responses on a range of image types, including natural
images and images commonly used in psychophysics experiments.

4.1 Encoding with Correlations: Redundancy or Synergy?. We as-
sessed the impact of correlations from an encoding point of view by compar-
ing the discrimination ability of true population responses to those obtained
by shuffling the individual unit responses across trials. We found that de-
pending on the type of image, the same population of motion energy filters
can exhibit either redundancy (ILOLE < Ishuffled when using images made
of a sine grating with pixel noise) or strong synergy (ILOLE > Ishuffled with
random dots displays or natural images).

Our finding of strong synergy with random dot kinematograms stands
in contrast to the report of Zohary et al. (1994) that neural responses in MT
are primarily redundant. It is important to note, however, that Zohary et al.
did not measure the correlation patterns for a large number of cells. They
instead extrapolated the correlations for the population from pairwise mea-
surements. As we saw in section 3.6, trying to infer the impact of correlations
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on a population of neurons from pairwise correlations can be highly inac-
curate, particularly when the values of only a few pairwise correlations
are known. Therefore, it is too early to tell whether recordings in area MT
are consistent or inconsistent with our results; only multielectrode record-
ings will answer this question. It is conceivable that in the Zohary et al.
experiment, the internal noise swamps the image-induced variability that
we considered here. Therefore, to test our predictions, future experiments
will have to use large amounts of external noise—as is done, for instance,
in perceptual learning experiments (Dosher & Lu, 1998)—to ensure that the
internal variability is dominated by image-induced variability.

4.2 Decoding Assuming Independence. We studied the impact of cor-
relations from a decoding perspective by comparing the discrimination
ability of a system trained on the actual, correlated population responses to
one trained on uncorrelated responses (the shuffled data set). This is a more
biologically relevant comparison, as both systems are evaluated based on
true population responses, which always contain correlations, to a common
stimulus. Here the results were consistent across image types: in all cases,
decoding MEF population codes assuming that the responses are indepen-
dent leads to considerable loss of information (Idiag � ILOLE). We controlled
that our results did not depend on the fact that all visual receptive fields
are superimposed: using only partially overlapping units, all the above re-
sults remained unchanged (not shown). Thus, for MEF population codes,
decoding assuming independence is a bad strategy in terms of recovered
information.

This result seems inconsistent with a number of experimental studies
on neuron pairs that report that decoding while ignoring correlations does
not lead to significant loss of information (Nirenberg et al., 2001; Pola et al.,
2003; Averbeck & Lee, 2003). As we have pointed out, however, large in-
formation loss at the population level can be very difficult to detect in cell
pairs. In our study, we found the majority of cell pairs failed to reflect the
large impact of correlations.

One difference between our study and previous studies is that we used
Fisher information, while those studies typically relied on Shannon infor-
mation (Nirenberg et al., 2001; Pola et al., 2003; Schneidman et al., 2003).
Although we have no reason to believe at this stage that correlations have a
different impact on these two information measures, we cannot definitively
rule out this possibility.

4.3 Limitations of Our Study. Lateral interactions in neural circuits
could possibly modify correlations so as to lessen the impact of ignoring
correlations. Since we did not model lateral interactions, we could not in-
clude this factor. Additionally, we considered only noise induced by the
images, while the variability in neural populations is likely due to a com-
bination of image-induced variability and variability generated within the
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nervous system. If the latter source of variability is substantial and if the cor-
relations for the internal noise introduce redundancies, the resulting code
might be more redundant than we predict.

4.4 Lower Bound on Fisher Information. Our results are based on a
lower bound of Fisher information obtained with a local optimal linear es-
timator (LOLE). This is an appealingly simple estimator that nonetheless
takes into account the full set of population responses. It also has the advan-
tage of being biologically plausible (Deneve et al., 1999; Latham, Deneve,
& Pouget, 2003). However, if the derived lower bound is not tight, it is con-
ceivable that our conclusions apply to this bound but not to the actual Fisher
information. To test for this possibility, we attempted to get a better bound
on Fisher information by applying a nonlinear classification algorithm, a
support vector machine (SVM; Suykens, van Gestel, De Bradanter, De Moor,
& Vandewalle, 2002). We found that the SVM did not significantly outper-
form the LOLE on any of the image types. This result provides evidence that
our bound is reasonably tight since the SVM is considered to be one of the
best classification techniques currently available. It also shows that a locally
linear estimator can go a long way toward recovering all the information in
a population with correlations. This is an important finding because Shamir
and Sompolinsky (2004) have argued that for biologically realistic correla-
tions, a nonlinear decoder might be required to recover Fisher information.
This does seem to be the case for our data sets.

Still, despite this encouraging result, we cannot rule out the possibility
that our bound is not tight since there might still be other nonlinear estima-
tors that could extract all the Fisher information. The only way to ensure
that we have a tight bound would be to estimate Fisher information di-
rectly. Unfortunately, this is intractable because we would have to estimate
the probability distribution over the MEF responses, a distribution defined
over a 125-dimensional space (corresponding to the number of motion en-
ergy filters). Directly estimating a probability distribution in such a large
space would require an astronomical number of data.

This is a general problem faced by the nervous system, as an unre-
alistic number of data would be needed to estimate the statistics of 125
neural responses. Note that information-theoretic quantities such as multi-
information have been used recently to estimate (marginal, not condi-
tional) correlations beyond pairs, for groups of as many as 10 neurons
(Schneidman, Berry, Segev, & Bialek, 2006), but estimating these quantities
for the large population studied here is quite difficult. Therefore, even if it
is the case that Fisher information does not behave exactly in the same
way as what we reported for our lower bound, one would have to won-
der whether this is truly relevant for the nervous system. In that respect,
the bound we have obtained with the LOLE is a sensible choice because
it has been shown to be recoverable with a biologically plausible architec-
ture (Deneve et al., 1999; Pouget, Zhang, Deneve, & Latham, 1998), and the
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LOLE can be trained with a biologically plausible learning rule (i.e., the
delta rule, Bishop, 1995).

4.5 Signal or Noise Correlations?. Studies dealing with correlations
often distinguish between noise and signal correlations. Noise correlations
refer to correlations between neurons in response to the same stimulus
over many trials. By contrast, signal correlations are the correlations due to
changes in the stimulus from trial to trial. Recent experimental work has
demonstrated the important effect that stimulus changes have on neuronal
correlations (Kohn & Smith, 2005). Most theoretical studies of the impact of
correlations in population codes have considered noise correlations.

One might argue that the correlations we have studied are not consistent
with these earlier studies. Indeed, what we call the “stimulus” is not the
image itself but the direction of motion in the image. Therefore, our claim
that the stimulus was kept constant across a set of images meant that all
images in this set contain the same motion, but the images themselves dif-
fered from trial to trial. This does not conform to the strict definition of noise
correlations, which typically refer to correlations observed in response to
repeated presentations of the same image with the same motion. In our case,
this would actually result in no variability, and therefore no correlations,
since we used a deterministic model.

Therefore, we are not studying “noise” correlations, as defined in previ-
ous work. Instead, our approach focuses on one component of noise corre-
lations: those due to image-driven factors that are not directly relevant to
the “stimulus” (i.e., motion), such as the dots moving in random directions,
the texture in the image, luminance, or other visual features unrelated to
motion. We focus on these correlations because any system trying to in-
fer the direction of motion in sets of images has to deal with the fact that
the same motion can be instantiated with completely different images. As
we have seen, this variability induces complex correlations, which have a
strong impact on the neural codes.

A few experimental studies have measured correlations with a stimulus
set in which the random detail of the dot patterns varied within trials while
the direction of motion is kept constant (Zohary et al., 1994; Bair et al., 2001).
Both of these studies have concluded that image-induced variability has
little impact on the correlation patterns in the brain, suggesting that internal
variability might dominate in the nervous system. There are, however,
several problems with this conclusion. First, as we pointed out earlier,
inferring the impact of correlations on the whole population from a few
pairwise measurements can lead to very large errors. Hence, what would
appear as minor changes in pairwise correlations could in fact have a large
impact on the overall population. Moreover, the best way to study the
impact of image-induced correlations is to select a stimulus set in which
the performance of the subject is known to be limited by image noise, as is
done in perceptual learning studies. It is not know whether this was the case
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for the stimuli used by Zohary et al. (1994) and Bair et al. (2001). Therefore,
neurophysiology experiments are needed to explore this issue further.

Finally, it is important to stress that all of our conclusions apply to locally
linear decoders of direction of motion. Whether they generalize to other
variables is unclear. We chose to focus on direction alone because there are
situations, such as catching a ball, in which we need to know the motion of
objects but not other factors such as contrast. However, it is possible that our
conclusions would have changed had we considered decoders that extract
multiple features in parallel, such as direction of motion, spatial frequency,
and contrast. Moreover, even when catching a ball, our nervous system does
not need to estimate motion directly. Instead, it needs to compute a motor
command, that is, a complex nonlinear function of motion. Correlations
may have a different impact depending on the function being computed.
This question would be worth investigating further since recent work has
shown that the optimality of a code depends on the computation performed
(Salinas, 2006).
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