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Abstract

This paper presents a method for automatically detect-
ing and recognising unusual events on stairs from video
data. The motivation is to provide a tool for biomedical re-
searchers to rapidly find and analyse the events of interest
within large quantities of video data. Our system identi-
fies potential sequences containing anomalies, and reduces
the amount of data that needs to be searched by a human.
We apply adaptive background subtraction to segment the
person using the stairs, followed by affine flow computa-
tion over the segmented region. A hidden Markov model
(HMM) is then used to analyse the temporal progression of
the affine features. A single HMM is trained on sequences of
normal stair use, and a threshold is used to detect unusual
events in new data. We also introduce a temporal segmen-
tation method using a conditional random field (CRF). We
demonstrate our system on a data set with three persons.

1 Introduction

Stairs have long been the subject of study for architects
and designers [19], who attempt to build more ergonomic
and safe stairs for different public and private situations.
Increasingly, stairs have become a subject of interest for
biomedical researchers, who realise that, even with perfect
design, stairs are inherently difficult for humans to navi-
gate, and their use will always lead to accidents. The el-
derly are particularly susceptible to accidents on stairs, as
a result of reduced mobility and increased negative impact.
This is of special concern to the growing population of el-
ders who wish to age in their homes. Thus, biomedical re-
searchers study the ways in which adverse events happen
on stairs, and to identify and possibly predict the causes of
these events.

One of the biggest hurdles involved in such research is
the gathering of real stair data. Aside from the ethical dif-
ficulties of recording stair usage in public or private spaces,
there is a technical difficulty imposed by the rarity of ad-

Figure 1. Stairs and overhead camera

verse events. It is estimated that in public staircases, a slip,
stumble, trip, or other loss of balance not resulting in a fall
occurs once in 2, 222 stair uses, while minor accidents such
as falls occur only once in 63, 000 stair uses [1]. The labour
intensive process of manually identifying unusual events in
stair video data can be avoided with an automated system
as we propose herein.

We assume that we have access to a database of stair
events on a particular set of stairs, where each stair event
consists of a single person entering the stairwell and de-
scending the stairs. Stair events are of two types, normal
and anomalous. In a normal stair event, the person descends
the stairs with no problems, correctly placing their feet on
steps without any loss of balance. An anomalous event is
one in which the person misses a step at some point in the
stair event. A person can miss a step either by completely
overstepping, or by catching their heel on the nosing of a
step and slipping off onto the next lower step (a slip). These
are some of the most common small anomalous events on
stairs [19]. We assume that our database will consist largely
of normal stair events, with a small number of anomalous
events, and we wish to train a system on this data that can
classify a video of a new stair event as either a normal event
or an anomalous event. The primary goal of our system is
to filter a large database, removing a large fraction of stair
events which are sure not to contain anomalies. The remain-
ing data could be forwarded to a more complex processing
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Figure 2. Overview of system. A person’s silhouette in a video of a stair event is extracted using
adaptive background subtraction. Affine optical flow is computed over this region resulting in a 6D
feature vector for each frame. A temporal segmentation of the stair event results in a set of se-
quences, each of which are analysed by computing the likelihood of the sequence given a trained
hidden Markov model (HMM) and comparing to a threshold Lmax. Only if all sequences have likeli-
hoods below threshold is the event declared normal, otherwise, it is flagged as anomalous.

stage, to further reduce the number of sequences, and fi-
nally to a human for final analysis. Therefore, while our
system must not miss any anomalous events, we can afford
a reasonable amount of false positive anomalous events. We
assume that only a single person is descending the stairs at a
time, a limitation that could be overcome with multiple tar-
get tracking. We only look at descents, as these are higher
risk for adverse events, and are of most interest to biomedi-
cal researchers and stairwell designers.

Our system operates in five stages as shown in Figure 2.
First, the region of interest (containing the person descend-
ing the stairs) is located in each frame using an adaptive
background subtraction method. Second, optical flow [3]
is computed over the foreground region, and projected to
the affine basis. The resulting feature vector forms a time
series over each stair descent. Third, the stair event is
temporally segmented into sequences, each sequence corre-
sponding to the person descending a single step. In this pa-
per, we compare a manual segmentation with an automatic
segmentation from a conditional random field (CRF) [13]
model of the stair events. Fourth, we analyse the tempo-
ral time series over each sequence using a hidden Markov
model [17]. Fifth, we classify each sequence by comparing
to a learned threshold, Lmax, giving a classification (as nor-
mal or anomalous) for each sequence. A possible final step,
as shown in Figure 2, is to label events as anomalous if any
contained sequence is anomalous.

We test our system on a database of events collected from
three persons descending an experimental set of stairs in
our laboratory, shown in Figure 1. For each test subject,
we gathered normal stair events and events where the per-
son either slipped or overstepped. We trained and tested
our system on different combinations of subjects’ data, and
looked either at the classifications of sequences, or of en-
tire events. As described in Section 4, our current results,
averaged over subjects, are a 1% miss rate and a 22% false

positive rate for a system trained and tested on a single per-
son, and a 6% miss rate and a 35% false positive rate on a
system trained on two people and tested on a third.

2 Previous Work

There is much work on detecting anomalous behavior
in video in the context of visual surveillance [7] or user
modeling [5, 14]. However, these approaches use coarse
features such as positions and velocities of persons within
a scene and attempt to characterise trajectories. A larger
body of computer vision research has looked into modeling
the motion of the human body in fine detail. Periodic mo-
tion of walking figures is analysed in [6] by computing self-
similarity of a segmented image region with itself over mul-
tiple time scales. The Fourier transform of the resulting cor-
relations gives indications of the periodicity of the motion.
Human gaits were used for person identification in [15] by
analysing the spatial moments of the optical flow across an
image where a person is moving. The patterns of the relative
phases of these moments were then compared across multi-
ple individuals. Similar features could also be applied in the
work we describe here. The motion history (MHI) [4] is a
descriptor of temporally localised image changes. However,
these works do not attempt to recognise anomalous events
and do not look at motion on stairs.

Our work uses mid-level optical flow features, analysing
the motion of a single person’s body performing a task, and
looks at anomalous events on stairs in particular. Relatively
little work has been done on characterising human motion
on stairs. Notable exceptions are work done on motion
capture data of persons ascending and descending stairs,
in which recovered joint angles are mapped to a subspace
which can be used for synthesis. However, this work does
not use video and does not attempt recognition of unusual
events. Human gaits on staircases were analysed in [2] by



fitting a skeletal model to the view-based human form, and
then modeling the joint angles as a dynamical system. This
was used to classify gaits such as walking, running, and de-
scending stairs, but no work was done on recognising un-
usual events within each of these motion types. An interest-
ing study in [11] used a camera mounted above a side-by-
side public stairway and escalator to implement a prompting
device that would encourage people to use the stairs if they
were about to use the escalator. Background subtraction
was used to determine if people were using the escalator or
the stairs, and the work also addressed some issues of mul-
tiple persons on the stairs. However, there is no recognition
of unusual events.

3 Stair Event Classification

3.1 Background Subtraction

We use a simple adaptive background subtraction tech-
nique where we threshold the absolute difference between
a new image at time t, It(x, y), and a ’reference image’,
A(x, y), containing only the background. This technique is
very sensitive to changing background conditions, and so
the reference image is updated after each frame by taking a
weighted average of all previous images in a sequence, with
a learning rate of αb:

At(x, y) = (1− αb) ∗At−1(x, y) + αb ∗ It(x, y).

In our experiments, we used αb = 0.8 for the first 100
frames, then 0.0005 afterwards.

This technique suffers from a number of factors, the most
significant of which are shadows and specularities. A num-
ber of methods exist which attempt to deal with these issues.
These include using difference in depth from stereo infor-
mation to segment the background [12], multi-component
systems [20], and formulating probabilistic models of back-
ground pixels which are then segmented using mixtures of
Gaussians [9, 21]. We opted instead, due to its simplicity
and good results, for a method where we perform a second
round of background subtraction on the result of the initial
background subtraction, but in the hue channel of the HSV
color space. We found that this removed the majority of
shadow pixels because the hue is less sensitive to changes in
brightness than the RGB color space. Finally, we removed
remaining noise by convolving with a gaussian kernel and
finding the largest connected component. Figure 3 shows
examples of the background subtraction.

3.2 Optical Flow Features

We use optical flow as our primary identification fea-
ture as it is independent of the overall lighting and color

(a) (b) (c) (d)

Figure 3. Four examples of background sub-
traction (a) Subject 2 (b)-(d) Subject 3

conditions. Optical flow is the motion v = {vx, vy} at a
pixel between subsequent frames of video and is computed
by finding solutions to the brightness constancy constraint,
ft = ∇f ·v = fxvx+fyvy , where ft, fx, fy are the tempo-
ral, horizontal spatial and vertical spatial image derivatives.
We use the robust dense optical flow method of [3], which
finds locally consistent solutions to the brightness constancy
equation using a robust error norm. This method is fairly
insensitive to outliers (e.g. due to violations of brightness
constancy), and produces smooth flow fields due to the reg-
ularising effect of enforcing local consistency.

To reduce the dimensionality of the optical flow, we look
at the overall distribution of flow vectors at varying levels
of spatial frequency across a region of interest defined by
the background subtraction. In this paper, we use only the
affine component of the flow field, which is a description
of the flow as a planar spatial function with six parameters,
z = {a, b, c, d, e, f} as follows:

vx = ax+ by + c vy = dx+ ey + f

In fact, for the results we present in Section 4, we only
use the lowest order (means): c and f . It was found that, for
the level of detail we were pursuing, this simplest represen-
tation was sufficient.

3.3 Temporal Segmentation

The full stair events are temporally segmented into step
sequences, such that each sequence contains the motion of
one foot from the time it begins to leave one step until it
lands firmly on another. The temporal segmentation is done
separately from the HMM-based event recognition, and is
either manual (by one of the authors) or automatic using a
conditional random field (CRF) [13], as we now describe.

The training data for the CRF method consists of the set
of labels for each frame, Y = {y1, . . . , yT |yi ∈ Y}, and the



observations, Z = {z1, . . . , zT }. In our case, the labels are
binary and correspond to which foot is currently in motion,
so Y = {left, right}. A CRF models the joint distribution
of the labels conditioned on the observations as a log-linear
combination of feature functions. The most common model
for sequential data is a linear chain model, in which the fea-
ture functions relate adjacent pairs of labels and the obser-
vations, and are homogeneous (weights are shared across
the sequence). We define our features to be

fi,j(yt, yt−1|Z) = δ(yt = i, yt−1 = j)θi,j · zt
for all i, j ∈ {left, right}, where θi,j is a learned weight-
ing coefficient. In addition, we have a set of similar features
fi(yt|Z) that are used for the first element of a sequence.
The joint probability of a sequence is thus

P (Y |Z) = Ω exp{
X

i

fi(y1|Z)
TX

t=2

X

i,j

fi,j(yt, yt−1|Z)}

where Ω is the normalization constant, which, along with
the singleton and pairwise marginals, can be computed effi-
ciently using belief propagation. We use a limited memory
quasi-Newton algorithm to train the CRFs in a penalized
(weight decay) maximum likelihood framework.

This CRF model is trained on stair events with man-
ual temporal segmentations. We augment each observation
with all observations in a window of five around it (chosen
using 3-fold cross-validation) and normalize the observa-
tions to have zero mean and unit standard deviation. This
prevents abnormally large observation values from domi-
nating the features and negatively impacting training. At
test time, the transformation from the training data is ap-
plied to the testing data and Viterbi decoding is used to ob-
tain a labeling.

3.4 Event Classification

Once we have extracted our low dimensional (affine) fea-
tures from the optical flow over the foreground region in
each frame and have temporally segmented a stair event
into a number of step sequences, we wish to classify the
step sequences as being either normal or anomalous. To
do so, we use a hidden Markov model, or HMM. Hidden
Markov models have enjoyed great popularity in computer
vision based event recognition due to their flexibility and
generality (see e.g. [18, 8]). This computer vision work
grew from successes from using HMMs in speech recog-
nition [17]. A hidden Markov model is a probabilistic tem-
poral model {S,Z, T,B}, where S is a finite set of states, Z
is a continuous observation space, T : S → S is a transition
function giving the probability of transitioning from state s
at time t to state s′ at time t + 1, T (s, s′) = Pr(s′|s), and
B : S → Z is an observation function giving the probabil-
ity of observing observation feature vector z given state s:

B(s, z) = Pr(z|s). The observation function for a contin-
uous space is parameterised using a Gaussian:

B(s, z) = N (z;µ,Σ),

where µ,Σ are the mean and covariance matrix of the Gaus-
sian component model.

We train the HMM using the expectation maximization
algorithm, as implemented in the BNT toolbox [16]. We
used 8 hidden states and diagonal covariance matrices, and
initialised the EM algorithm randomly. We use the standard
forward algorithm to evaluate the likelihood of a new se-
quence given a trained HMM. The number of hidden states
was chosen by evaluating performance of the method using
different settings (see Section 4).

For each experiment, we split the data into training and
test sets, as detailed in Section 4. We use the manual tem-
poral segmentations for the training set and either the man-
ual or automatic segmentations in the test set. The CRF
segmenter was trained using the first 12 components of the
Zernike polynomial basis (an extension of the affine basis,
described in [10]). We then perform a cross-validation pro-
cedure on the training data. We remove all anomalous se-
quences and a single normal sequence, si, from the training
set and train the HMM, M , on the remaining normal se-
quences. We then compute a cost for the validation set for
each value of L

Ci(L) = Cvf g(logP (si|Mv), L)

+
Cvm
Na

Na∑

j=1

(1− g(logP (sj |Mv), L)) (1)

where Na are the number of anomalous sequences in the
training (and hence validation) set, sj is one of these anoma-
lous sequences, Mv is the trained HMM and g(p, t) = 1 if
p < t and 0 otherwise. The constants Cvf , C

v
m give the

relative cost of a false positive anomaly (a normal sequence
classified as an anomaly) and a missed anomalous sequence,
respectively. We choose Cvm = 3Cvf : a miss is three times
worse than a false positive, as prescribed by our aim of fil-
tering normal steps out of the data set, while preserving
anomalous steps. We then choose Lmax to minimise the
summed cost over all validation sets

Lmax = arg min
L

Nr∑

i=1

Ci(L)

where Nr is the number of normal training sequences.
Finally, we train an HMM, Mt, on all the normal se-

quences in the training data. We evaluate the test sets
for the manual segmentations by counting the fraction of
false positives, N−1

n

∑Nn
k=1 g(logP (sk|Mt), Lmax), where

sk is the kth normal test sequence and Nn is the num-
ber of normal test sequences, and the fraction of misses



N−1
a

∑Na
l=1(1 − g(logP (sl|Mt), Lmax)), where sl is the

lth anomalous test sequence and Na is the number of anor-
malous test sequences. In the WEAK generalisation experi-
ments, these results are averaged over all validation sets.

We compared our HMM method to a simple polyno-
mial ridge regression method, in which order-K polyno-
mials were fit to normal and abnormal step sequences in
the training set and used to classify the test data. In the
simplest, K = 0 case, this method classifies the sequences
based only on their mean values, and is akin to a simple
threshold in the temporally averaged mean flow. Higher or-
ders of K give more complex fitting capabilities.

4 Experiments and Results

This section describes the results we obtained on a small
dataset of three subjects descending an experimental set of
four stairs in our laboratory, as shown in Figure 1. A Point
Grey Research BumblebeeTM camera with a 4mm focal
length was mounted on the ceiling at a perpendicular dis-
tance of approximately 280cm from the nosing of the cen-
ter step in the stairway. The camera is visible in the top
right corner of Figure 1. We used the RGB color images at
640×480 resolution from the reference (left) camera 1. The
subjects descended the stairs in three sets of events. In the
first set, they descended normally. In the second set, they
missed one step completely (an overstep). In the third set,
they slipped off one step (a slip). In total, subject 1 had 165
normal step sequences, and 30 anomalous step sequences,
subject 2 had 85 normal and 26 anomalous, and subject 3
had 86 normal and 26 anomalous.

We did four separate types of experiments. The first
three experiments tested weak generalisation, in the training
set included examples of the person in the test set. These
experiments are labeled Ti-WEAK, where i ∈ {1, 2, 3} is
the number of subjects in the training set. In the fourth ex-
periment, T2-STRONG, no examples of the test subject are
included in the training data, testing strong generalisation
across people. It is this fourth experiment that is the most
relevant to our final system: we want to be able to flag an
anomalous event occurring for a never before seen person
descending the stairs. However, it is also the most diffi-
cult: the types of normal motion exhibited by the unseen
person will not be modeled by the HMMs and will more
often be flagged as anomalous. In the WEAK generalisation
experiments, we split the data into two parts: a training set
comprised of all but one of the normal stair events and only
one stair event with an anomaly (an overstep or slip), and a
test set with the one left out normal stair event and all but
one stair event containing an overstep or slip step sequence.
This leave-out procedure is repeated N times, where N is

1Stereo information was not used in this study, but could play an im-
portant role in future work.

the number of normal step sequences in the training data. In
the STRONG generalisation experiments, the training set is
all the data from 2 subjects, and the test data is all the data
from the third subject.

Figures 4– 6 show examples of stair events for two dif-
ferent subjects. In each figure, the top row shows original
images for key frames with the foreground region marked.
The second row shows the corresponding optical flow fields.
The bottom rows show the affine coefficients for vertical
(top) and horizontal (bottom) flow. The solid lines show
the mean flow. Figure 4 shows a normal step. We can see
the periodic motion in both the horizontal and vertical flow
components. Figure 5 shows an example of an overstep on
the 3rd step. In this case, the periodicity is not as clear, but
we see a large motion towards the end of the sequence. Fig-
ure 6 shows an example of a slip for a different subject on
the 3rd step. We see large motions towards the end of the
sequence, and less regular periodic structure over the event.
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Figure 7. (a) Precision recall curve (b) cost
function Ci(L). Plots show the value of Lmax.

Figure 7(a) shows the precision recall curve (the rela-
tive values of the two terms in Equation 1), and Figure 7(b)
shows the cost Ci(L) as a function of L for one test subject
for one train-test data split, i, for a T1-WEAK experiment.
The cost function is used to set the threshold Lmax. We can
see in Figure 7(a) how this impacts the tradeoff between
misses and false positives.

We set the number of hidden units in our HMMs by
testing different numbers on the T1-WEAK experiments, as
shown in Table 1. The results are fairly consistent between
4− 10, and we use 8 in our experiments.

units 1 2 4 6 10 16
train .96 1.0 1.0 1.0 1.0 1.0
test .80 .81 .83 .84 .84 .79

Table 1. Results for differing numbers of hid-
den units (manual segmentations, T1-WEAK).
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Exp. test missed False +ve
type subj. anom.(%) anom.(%)

1 0.0 15.9
T1- 2 4.0 31.2

WEAK 3 0.0 23.8
avg 1.2 21.8
1,2 5.5 29.6

T2- 1,3 3.6 32.9
WEAK 2,3 0.9 41.2

avg 3.4 33.5
1 0.0 43.6

T2- 2 7.7 30.2
STRONG 3 11.5 25.8

avg 6.1 35.6
T3-WEAK 1,2,3 4.9 38.8

Table 2. HMM results (manual segments).

Table 2 shows our results for manual temporal segmen-
tation of the training data, for each of the experiment types
and subjects, using only the lowest order (mean) flow. Also
shown are the averages across all test sets for each exper-
iment type. We see that, for the T1-WEAK experiments,
we can get very low miss rates, and reasonable false pos-
itive rates. For comparison, Table 4 shows the the miss

test segm. segm. missed False +ve
subj. error(%) error(%) anom. anom.

(train) (test) (%) (%)
1 3.6 31.1 10.6 58.4
2 6.0 17.0 0.0 70.8
3 4.8 32.1 23.3 68.0

Table 3. Results for CRF segmentations of
the test data for T2-STRONG experiments

and false positive rates for the polynomial regression for the
T1-WEAK experiments. We see the results are worse, yield-
ing unacceptable miss rates at similar false positive rates.

When generalising to more than one person in both train-
ing and test sets, T2-WEAK and T3-WEAK, we see similar
results, with slightly more false positives and misses. The
experiments on unseen subjects (T2-STRONG), are again
slightly worse, giving over 10% misses on one test subject,
but only 5.5% and 3.6% on the other two. These experi-
ments show that we can reduce the data set size by almost
65% on average across persons, while only missing 6% of
the anomalous events. The false positive rates are similar
to those seen in the T2-WEAK experiments. The additional
misses are due to variability between persons in stair de-
scent styles or speeds, for example. Our methods rely on a



K=0 K=1 K=4
test miss F+ve miss F+ve miss F+ve
sub- anom anom anom anom anom anom
ject (%) (%) (%) (%) (%) (%)
1 33.3 17.6 50.0 26.7 36.7 29.1
2 80.7 50.0 42.3 31.4 57.7 27.9
3 34.6 40.0 34.6 36.6 42.3 29.4

Table 4. Polynomial regression results for
T1-WEAK (manual segmentations).

good estimate of the between-person variance, and so would
improve with data from more people. Our a-priori meth-
ods for setting the costs Cf and Cm also need further ex-
ploration. Another avenue for research are more complex
representations of motion, such as skeletal models. The fil-
tering step we present here, however, would be appropriate
as a front-end for such more intensive analyses.

Table 3 show the results when using CRF segmentations
of the test data. The results in this case are evaluated on a
per-frame basis, and thus are showing, as misses, the total
number of frames in an anomalous sequence that were la-
beled as normals, and, and false positives, the total number
of frames in normal sequences that were labeled as anoma-
lous. Also shown are the per-frame error rates of the CRF
segmentations when compared to the manual ones. In this
case, we only ran the T2-STRONG experiments, and found
that (as expected) the results were worse. In some cases,
we see low miss rates at the cost of high false positive rates.
The high false positive rates could be due to many small
segments which are found to be classified as anomalous,
but actually are part of a longer normal sequences.

5 Conclusions

We have demonstrated a method for filtering a large
database of video sequences of people descending stairs
for anomalous events. This type of method has the poten-
tial to be invaluable to biomedical researchers interested in
the causes and types of stair accidents. We used optical
flow features and a hidden Markov model to detect unusual
events in data, and experimented with a conditional random
field for automatic temporal segmentation of the data. Our
results demonstrate that our method could be used as an ef-
fective first filtering step to remove large quantities of nor-
mal steps from data. Our current work is investigating how
to further filter the reported anomalous events by more com-
plex visual anlyses.
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