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Abstract Humans demonstrate a remarkable ability
to parse complicated motion sequences into their con-
stituent structures and motions. We investigate this
problem, attempting to learn the structure of one or
more articulated objects, given a time series of two-
dimensional feature positions. We model the observed
sequence in terms of “stick figure” objects, under the
assumption that the relative joint angles between sticks
can change over time, but their lengths and connectiv-
ities are fixed. The problem is formulated as a single
probabilistic model that includes multiple sub-compo-
nents: associating the features with particular sticks,
determining the proper number of sticks, and finding
which sticks are physically joined. We test the algorithm
on challenging datasets of 2D projections of optical hu-
man motion capture and feature trajectories from real
videos.

Keywords structure from motion · graphical models ·
non-rigid motion

1 Introduction

An important aspect of analyzing dynamic scenes in-
volves segmenting the scene into separate moving ob-
jects and constructing detailed models of each object’s
motion. For scenes represented by trajectories of fea-
tures on the objects, structure-from-motion methods
are capable of grouping the features and inferring the
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object poses when the features belong to multiple in-
dependently moving rigid objects. Recently, however,
research has been increasingly devoted to more compli-
cated versions of this problem, when the moving objects
are articulated and non-rigid.

In this article we investigate the problem, attempt-
ing to learn the structure of an articulated object while
simultaneously inferring its pose at each frame of the
sequence, given a time series of feature positions. We
propose a single probabilistic model for describing the
observed sequence in terms of one or more “stick fig-
ure” objects. We define a “stick figure” as a collection
of line segments (bones or sticks) joined at their end-
points. The structure of a stick figure—the number and
lengths of the component sticks, the association of each
feature point with exactly one stick, and the connectiv-
ity of the sticks—is assumed to be temporally invari-
ant, while the angles (at joints) between the sticks are
allowed to change over time. We begin with no infor-
mation about the figures in a sequence, as the model
parameters and structure are all learned. An example
of a stick figure learned by applying our model to 2D
feature observations from a video of a walking giraffe is
shown in Figure 1.

Learned models of skeletal structure have many pos-
sible uses. For example, detailed, manually constructed
skeletal models are often a key component in full-body
tracking algorithms. The ability to learn skeletal struc-
ture could help to automate the process, potentially
producing models more flexible and accurate than those
constructed manually. Additionally, skeletons are nec-
essary for converting feature point positions into joint
angles, a standard way to encode motion for animation.
Furthermore, knowledge of the skeleton can be used to
improve the reliability of optical motion capture, per-
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Fig. 1 Four frames from a video of a walking giraffe, with the articulated skeleton learned by our model superimposed. Each black

line represents a stick, and each white circle a joint between sticks. The tracked features, which serve as the only input, are shown as

coloured markers. Features associated with the same stick are assigned markers of the same colour and shape.

mitting disambiguation of marker correspondence and
occlusion (Herda et al., 2001). Finally, a learned skele-
ton might be used as a rough prior on shape to help
guide image segmentation (Bray et al., 2006).

In the following section we discuss other recent ap-
proaches to modelling articulated figures from tracked
feature points. In Section 3 we formulate the problem
as a probabilistic model, and in Section 4 we propose an
algorithm for learning the model from data. Learning
proceeds in a stage-wise fashion, building up the struc-
ture incrementally to maximize the joint probability of
the model variables.

In Section 5 we test the algorithm on a range of
datasets. In the final section we describe assumptions
and limitations of the approach, and discuss future work.

Research presented in this paper is a continuation
of Ross et al. (2008), and includes results from Ross
(2008a).

2 Related Work

Humans demonstrate a remarkable ability to parse com-
plicated motion sequences, even from apparently sparse
streams of information. One field where this is readily
apparent is in the study of human response to point
light displays. A point light display (PLD), as depicted
in Figure 2, is constructed by attaching a number of
point light sources to an object, then recording (only)
the positions of these lights as the object moves. The
canonical example is to instrument a human’s limbs and
body with lights, then to record their positions as he
or she performs motions such as walking, running, or
swinging a golf club. PLDs have received considerable
attention in psychology research (e.g. Johansson, 1973)
due to one remarkable property. Despite the apparently
limited information they contain, biological motion de-
picted in PLDs is almost instantly recognizable by hu-
mans. From a PLD of a person or animal, humans are
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Fig. 2 A point light display of a human, in four different poses.

able to understand the structure of the display (how
the lights are connected via the performer’s underlying
skeleton), and the motions that are performed.

Point light displays are also common in several do-
mains of computer science research. The field of motion
capture, in essence, is the study of recording and ana-
lyzing PLDs. In computer animation, PLDs obtained
via motion capture are used to animate synthetic char-
acter models. Finally, in computer vision many appli-
cations choose to represent digital images sequences in
terms of feature point trajectories. When the original
image data is discarded, the feature points locations are
equivalent to a PLD.

What follows is a discussion of three recent approaches
to modelling articulated figures from tracked feature
points. Each of these approaches addresses the problem
from a different viewpoint: the first as structure from
motion, the second as geometrical constraints in motion
capture data, and the third as learning the structure of
a probabilistic graphical model.

2.1 Articulated Structure From Motion

The first work we will consider is “Automatic Kine-
matic Chain Building from Feature Trajectories of Ar-
ticulated Objects” by Yan and Pollefeys (2006b, 2008).
This work builds on a history of solutions for the struc-
ture from motion (SFM) problem, extending them to
handle articulated objects. We begin with a brief overview
of this evolution, before describing the Yan and Polle-
feys approach.

2.1.1 Standard Structure From Motion

Given a set of feature points observed at a number of
frames, the goal of SFM is to recover the structure—
the time-invariant relative 3D positions of the points—

while simultaneously solving for the motion—the per-
frame pose of the object(s) relative to the camera—
that produced the observations. Generally, the input
for SFM is assumed to be two-dimensional observations
(image coordinates) of points on an inherently three-
dimensional object. However most algorithms, includ-
ing the ones presented here, work equally well given 3D
inputs.

When the trajectories come from one rigid object
(or equivalently, the scene is static and only the camera
moves), and the camera is assumed to be orthographic,
Tomasi and Kanade (1992) have shown that structure
and motion can recovered by using the singular value
decomposition (SVD) to obtain a low-rank factorization
of the matrix of feature point trajectories.

Suppose we are given a matrix W where each col-
umn contains the x and y image coordinates of one
of the observed points, at all time frames. Thus, given
P points and F frames, the size of W is 2F × P (or
3F × P for three-dimensional observations). Consider-
ing the generative process that produced the observa-
tions (and disregarding noise), W is the product of a
motion matrix and a structure matrix,

W = MS,

both of which are rank 4. The structure S is a 4×P ma-
trix containing the time-invariant (homogeneous) 3D
coordinates of the points. At each frame f , the observa-
tions are produced by applying a rigid-body motion—a
rotation Rf and a translation tf —to S, and projecting
the points onto the image plane:[
xf,1 . . . xf,P

yf,1 . . . yf,P

]
=
[
1 0 0
0 1 0

] [
Rf tf

]
S.

Hence, M is formed by stacking the first two rows of
each of these F motion matrices. From W, M and S
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can be recovered by taking the singular value decom-
position1:

W = UΣV> ⇒ M = UΣ
1
2 S = Σ

1
2 V>.

In practice, feature trajectories will be contaminated
by noise, giving W a rank larger than 4. In this case
Tomasi and Kanade suggest retaining only the columns
of U,Σ and V corresponding to the four largest singu-
lar values, which is the optimal rank-4 approximation
to W (under squared error).

Despite the elegance and popularity of this solution,
Tomasi and Kanade (1992) assume a rather unrealistic
camera model—scaled orthography—for the projection
of three-dimensional points down to two dimensions.
As such, this does not represent a complete solution
to rigid-body SFM.2 However, when the input consists
of three-dimensional points (e.g. obtained from a mo-
tion capture system), scaled orthography is perfectly
reasonable assumption.

2.1.2 Multibody SFM

Recovering structure and motion when the scene con-
tains multiple objects moving independently is more
challenging. Consider the case in which the point tra-
jectories arise from two independent rigid objects. If the
columns of W are sorted so that all points from object
1 come first, and the points from object 2 come second,
the low-rank factorization can be written as follows:

W = MS =
[
M1 M2

] [S1 0
0 S2

]
. (1)

In this case the ranks of the motion and structure ma-
trices (and hence, of W) have increased to 8, or 4× the
number of objects. If the grouping of point trajecto-
ries into objects was known, the structure and motion
of each object, Mi and Si, could be recovered indepen-
dently, using the method described earlier. The problem
now becomes, how to group the points?

The solution proposed by Costeira and Kanade (1996,
1998) involves considering what they term the shape-
interaction matrix, Q ≡ VV>. When the columns of

1 In most cases, although the columns of U and V span the
correct subspaces, they are actually linear transformations of the
columns of M and S respectively. This can be corrected by solv-
ing, via nonlinear optimization, for a transformation that satisfies

the constraints on the rotational components of M Tomasi and
Kanade (1992).

2 Solutions based on the more-realistic projective camera, per-

haps using the above method as an initialization, can be obtained
via an algorithm for bundle adjustment (Hartley and Zisserman,

2003).

W are correctly sorted, as in (1), Q assumes a distinc-
tive block-diagonal structure3

Q ≡ VV>= S>Σ−1S =
[
S1
>Σ−1

1 S1 0
0 S2

>Σ−1
2 S2

]
,

where V and Σ again arise from the SVD of W. Re-
gardless of the sorting of the points, Qi,j is nonzero if
points i and j are part of the same rigid object, and 0
otherwise. The shape-interaction matrix has the advan-
tage of being invariant to object motion, image scale,
and choice of coordinate system.

Costeira and Kanade suggest that grouping point
trajectories can now be accomplished by reordering the
points to make Q block-diagonal. This problem, how-
ever, is NP-complete, thus the greedy algorithm they
propose obtains only sub-optimal solutions. Interest-
ingly, Q can be interpreted as a pairwise affinity matrix.
In fact, VV> is simply a weighted version of the in-
ner product matrix W>W. This interpretation suggests
that other ways of normalizing the shape-interaction
matrix are possible, and that points could be grouped
by any clustering algorithm which takes as input an
affinity matrix, such as spectral clustering (Shi and Ma-
lik, 2000; Culverhouse and Wang, 2003; Weiss, 1999) or
Affinity Propagation (Frey and Dueck, 2007).

The primary disadvantage to this approach is that
the shape-interaction matrix is highly sensitive to noise
in the observations (Gruber and Weiss, 2004). First of
all, in the presence of noise Qi,j is no longer zero when
i and j come from different objects. Furthermore, com-
puting Q requires knowing the rank of W, which is the
number of columns of V retained after the SVD. (Note
that if we retain all columns of V, then Q = VV>= I.)
In the simplest case, this rank is 4× the number of
objects, but it can be less when an object does not ex-
press all its degrees of mobility. Noise makes the rank of
W difficult to determine, requiring an often-unreliable
analysis of the eigenspectrum. One approach for deal-
ing with this, in the presence of noise, is described by
Gear (1998).

2.1.3 Probabilistic SFM

Gruber and Weiss (2003) have noted that the approach
of Tomasi and Kanade can be reinterpreted as a proba-
bilistic graphical model, specifically factor analysis. In
factor analysis, each observed data vector is generated
by taking a linear combination of a set of basis vectors,
and adding diagonal-covariance Gaussian noise. In the
context of single-body SFM each row wi of W, the x or

3 VV> is also block-diagonal if we allow V> to more generally
be an invertible linear transformation of the true structure: S =

A−1Σ
1
2 V> (Costeira and Kanade, 1998).
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y coordinates of all feature points in one frame, is gen-
erated by taking a linear combination mi of the rows
of S. Including a standard Gaussian prior on the rows
of the motion matrix produced the following model:

wi = miS + ni, where

ni ∼ N (0,diag(ψi))

mi ∼ N (0, I).

Structure and motion can be recovered by fitting the
model using the standard Expectation Maximization
(EM) algorithm for factor analysis (Ghahramani and
Hinton, 1996a). An advantage of this formulation is
that missing observations can be dealt with easily; set-
ting the corresponding variances to ∞ has the effect
of eliminating them from the calculations (Gruber and
Weiss, 2003).

Another key innovation of the Gruber and Weiss
approach is to assume temporal coherence of motions.
This allows them to take advantage of the fact, when
estimating motions, that motions for adjacent frames
should be similar. In the graphical model, temporal
coherence is incorporated easily through the use of a
Markov chain prior (a Kalman filter) over the latent
motion variables. The result is closely related to the
EM algorithm for learning linear dynamical systems
(Ghahramani and Hinton, 1996b).

Multibody factorization

The probabilistic approach has also been extended to
handle multiple independent rigid objects (Gruber and
Weiss, 2004). Structure and motion are modeled in much
the same way as (Costeira and Kanade, 1996): one inde-
pendent factor analyzer of dimension 4 for each object.
However, the approach of Gruber and Weiss to group-
ing point trajectories is quite different.

Instead of grouping points by clustering a pairwise
affinity matrix, Gruber and Weiss incorporate addi-
tional discrete latent variables that assign each of the
points to one of the motions. With this addition, the
grouping, together with the structures and motions, can
be estimated jointly using EM. This provides a distinct
advantage over the method of Costeira and Kanade
which, once it has grouped the points, is unable to rees-
timate the grouping based on subsequent information.
Although fitting with EM often leads to local minima,
in the presence of noise it outperforms Costeira and
Kanade.

The core of this model is the same as Multiple Cause
Factor Analysis (Ross and Zemel, 2006), independently
proposed for simultaneous segmentation and appear-
ance modelling of images.

2.1.4 Articulated Structures

The motion of an articulated object can be described
as a collection of rigid motions, one per part, with the
added constraint that the motions of connected parts
must be spatially coherent. Yan and Pollefeys (2005a)
have shown that this constraint causes the motion sub-
spaces of two connected objects to intersect, making
them linearly dependent. In particular, for each pair
of connected parts, the motion subspaces share one di-
mension (translation) if they are joined at a point and
two dimensions (translation and one angle of rotation)
if they are joined at an axis of rotation. As a result of
this dependence, the method of Costeira and Kanade
(1996) for grouping points is no longer applicable.

To illustrate this, consider two parts that are con-
nected by a rotational joint. Without loss of generality
the shape matrices of the objects, S1 and S2 (dropping
the homogeneous coordinate) can be adjusted to place
this joint at the origin. Now, because the objects are
connected at the joint, at each frame the translation
components of their motions must be identical. Thus
the ranks of W, M, and S have been reduced to at
most 7 (Yan and Pollefeys, 2005a,b).

W = MS =
[
R1 R2 t

] S1 0
0 S2

1 1


From this equation, we can see that the off-diagonal
blocks of the shape interaction matrix, VV>= S>Σ−1S,
are no longer zero, so clustering it will not effect the
grouping of point trajectories.

Recognizing this, Yan and Pollefeys (2006a,b, 2008)
propose an alternative affinity matrix to use for group-
ing points, and an approach for recovering the full ar-
ticulated structure and motion of the sequence. Their
method consists of four key steps: (1) segmenting the
feature point trajectories into a number of rigid parts,
(2) computing an affinity measure indicating the like-
lihood that each pair of parts is connected by a joint,
(3) obtaining a spanning tree that connects parts while
maximizing affinity, and finally (4) solving for the loca-
tions of joints.

When specifying the affinity between a pair of fea-
tures, instead of relying on the dot product (angle) be-
tween rows vi and vj of V, they suggest that a more
robust measure could be obtained by comparing the
subspace spanned by vi and its nearest neighbors with
that of vj and its neighbors. Given these two subspaces,
they compute the principal angles θ1, . . . , θm between
them, and define the affinity between i and j to be

exp

(
−
∑

n

sin2(θn)

)
.
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The affinity is used as input for spectral clustering (Shi
and Malik, 2000), thereby producing a grouping of fea-
ture point trajectories.

Principal angles are also used as a basis for learning
the articulated structure. Noting that the four-dimen-
sional motions (and hence shape subspaces) of parts
connected by an articulated joint will have at least one
dimension in common, at least one of the principal an-
gles between the parts should be zero. Using minimum
principal angle as an edge weight, Yan and Pollefeys
set up a fully connected graph and solve for the articu-
lated structure by finding the minimum spanning tree.
The method can be extended to finding multiple artic-
ulated objects in a scene simply by disallowing edges
with weight exceeding a manually specified threshold.

Finally, the locations of the joints can be obtained
from the intersections of the motion subspaces of con-
nected parts, as described in (Yan and Pollefeys, 2005a)

Due to the reliance on estimating subspaces, this
method requires each body part to have at least as
many feature points as the dimensionality of its motion
subspace. (In practice, segmenting two independent ob-
jects requires at least five points per object, using at
least three neighbors to estimate the local subspace,
in the noise-free case.) However, relying on subspaces
provides an additional advantage: the approach is able
to deal with non-rigid body parts–single subpaces with
rank higher than four.

Alternative approaches to articulated structure from
motion are presented by Tresadern and Reid (2005) and
Sminchisescu and Triggs (2003).

2.2 Geometric Analysis of Motion Capture Data

When observations are the 3D world locations of fea-
ture points, rather than 2D projections, the geometry of
recovering 3D skeletal structure becomes easier. Based
on a simple analysis of the distance between feature
points, and following roughly the same four steps as
Yan and Pollefeys (2006b), Kirk et al. (2005) are able
to automatically recover skeletal structure from motion
capture data. This is an improvement upon existing
methods of fitting a skeleton to motion capture data
(e.g. Silaghi et al., 1998; Abdel-Malek et al., 2004),
which often require a user to manually associate mark-
ers with positions on a generic human skeleton.

The key property motivating the approach of Kirk
et al. (2005) is, if two feature points are attached to the
same rigid body part, then the distance between these
points is constant. Furthermore, if two body parts are
connected by a rotational joint, then the distances be-
tween the joint and the points belonging to both parts

should also be constant. Feature points are grouped, to
obtain body parts, by computing the standard devia-
tion of the distance between each pair of points and
using that as the (negative or inverse) affinity matrix
for spectral clustering (Ng et al., 2002). The number of
body parts is chosen manually, or again by analysis of
the eigenspectrum.

When determining the skeletal connectivity of the
body parts, Kirk et al. define a joint cost, which is the
average variance in the distance from a putative joint
to each of the points in the two parts it connects. Joint
costs are computed for each pair of body parts. Eval-
uating the joint cost requires non-linear conjugate gra-
dient minimization, but also returns the optimal joint
location at each frame. Note that joint locations can be
estimated as long as one stick has at least two observed
markers and the other stick has at least one. Finally,
the skeletal structure is obtained by running a mini-
mum spanning tree algorithm, using the joint costs as
edge weights.

This method has a few drawbacks. First, it is only
able to work on 3D observations–none of the distance
constraints it relies upon apply when points are pro-
jected into 2D. Second, like (Yan and Pollefeys, 2006b),
it consists of a sequence of steps without feedback or
reestimation. Finally, beyond computing the positions
of joints in each frame, the method does not produce
a time-invariant model of structure or a set of motion
parameters. As such, filling in missing observations or
computing joint angles would require further process-
ing.

One further caveat regarding this method is that,
contrary to the images included in the paper (Kirk
et al., 2005), its output is not actually a “stick figure”—
a collection of line segments (bones or sticks) joined at
their endpoints. Instead, in the learned graph, parts of
the body are nodes and joints are edges, which is a
more-difficult structure to visualize.

2.3 Learning a Graphical Model Structure

Another approach to the analysis of PLDs is to model
the relationships between feature point locations with
a probabilistic graphical model. In this setting, recover-
ing the skeleton is a matter of learning the graph struc-
ture and parameters of the model. This is the approach
taken by Song et al. (2001, 2003), with a goal of auto-
matically detecting human motion in cluttered scenes.

Treating each frame as an independent, identically
distributed sample, Song et al. construct a model in
which each variable node represents the position and
velocity of one of the observed points. No latent vari-
ables are included, instead each feature point is treated
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as a unique part of the body. This presumes a much
sparser set of features than (Yan and Pollefeys, 2006b)
and (Kirk et al., 2005), which require each part to give
rise to multiple feature point trajectories. The set of
graphs considered is restricted to a particular class, de-
composable triangulated graphs, in which all cliques are
of size three. The limitation placed on the structure en-
sures that, although these graphs are more complicated
than trees, efficient exact inference is still possible. The
clique potentials, over triplets of nodes, are multivariate
Gaussian distributions over the velocities and relative
positions of the parts.

The maximum likelihood (ML) graph is the one that
minimizes the empirical entropy of each feature point
given its parents. Unfortunately no tractable algorithm
exists for computing the ML graph, so Song et al. pro-
pose the following approximate greedy algorithm. As-
suming all nodes are initially disconnected, choose the
first edge in the graph by connecting the nodes B and
C that minimize the joint entropy h(B,C). Then, for
all possible ways of choosing an pair of connected par-
ents (B,C) already in the graph, find the child A that
minimizes the conditional entropy h(A|B,C) and con-
nect it to the graph. Continue connecting child nodes
to the graph until it has reached the desired size, or
the entropy of the best putative child exceeds a thresh-
old. The cost of this algorithm is O(n4), where n is the
number of feature points.

Note that if the class of graphical models considered
is restricted to trees, the graph structure can be found
efficiently, by calculating the mutual information be-
tween each pair of body parts and solving for the max-
imum spanning tree (Taycher et al., 2002; Song et al.,
2003).

Song et al. further extend their approach to han-
dle cluttered scenes, obtained by automatically tracking
features in video. Since the results of tracking are in-
variably noisy, this requires solving the correspondence
problem at each frame (identifying which feature points
are body parts, which come from the background, and
which body parts are occluded). Learning can now be
accomplished via an EM-like algorithm, which alter-
nates optimizing the feature correspondence with learn-
ing the graphical model structure and parameters.

Although the authors are able to show some inter-
esting results, this approach has a number of draw-
backs. First, learned models are specific to the 3D posi-
tion and orientation of the subject, accounting only for
invariance to translation parallel to the image plane.
Thus a model trained on a person walking from left to
right is unable to detect a person walking from right to
left (Song et al., 2003). Secondly, a single time-invariant
model is learned on the data from all frames, thereby

confounding structure and motion. Instead of trying to
model these two latent factors separately, the presence
of motion serves only to increase uncertainty in the
graphical model.

3 Model

Here we formulate a probabilistic graphical model for
sequences generated from articulated skeletons. By fit-
ting this model to a set of feature point trajectories (the
observed locations of a set of features across time), we
are able to parse the sequence into one or more ar-
ticulated skeletons and recover the corresponding mo-
tion parameters for each frame. The observations are
assumed to be 2D, whether tracked from video or pro-
jected from 3D motion capture, and the goal is to learn
skeletons that capture the full 3D structure. Fitting
the model is performed entirely via unsupervised learn-
ing; the only inputs are the observed trajectories, with
manually tuned parameters restricted to a small set of
thresholds on Gaussian variances.

The observations for this model are the locations wf
p

of feature points p in frames f . A discrete latent vari-
able R assigns each point to one of S sticks. Each stick
s consists of a set of time-invariant 3D local coordi-
nates Ls, describing the relative positions of all points
belonging to the stick. Ls is mapped to the observed
world coordinate system by a different motion matrix
Mf

s at every frame f (see Figure 3). For example, in a
noiseless system, where rp,1 = 1, indicating that point
p has been assigned to stick 1, Mf

1 l1,p = wf
p .

If all of the sticks are unconnected and move inde-
pendently, then this model essentially describes multi-
body SFM (Costeira and Kanade, 1998; Gruber and
Weiss, 2004), or equivalently an instance of Multiple
Cause Factor Analysis (Ross and Zemel, 2006). How-
ever, for an articulated structure, with connections be-
tween sticks, the stick motion variables are not inde-
pendent (Yan and Pollefeys, 2006a). Allowing connec-
tivity between sticks makes the problems of describing
the constraints between motions and inferring motions
from the observations considerably more difficult.

To deal with this complexity, we introduce variables
to model the connectivity between sticks, and the (un-
observed) locations of stick endpoints and joints in each
frame. Every stick has two endpoints, each of which is
assigned to exactly one vertex. Each vertex can corre-
spond to one or more stick endpoints (vertices assigned
two or more endpoints are joints). We will let ki specify
the coordinates of endpoint i relative to the local coor-
dinate system of its stick, s(i), and vf

j and ef
i represent

the world coordinate location of vertex j and endpoint
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Fig. 3 The generative process for the observed feature positions, and the imputed positions of the stick endpoints. For each stick,

the relative positions of its feature points and endpoints are represented in a time-invariant local coordinate system (left). For each

frame in the sequence (right), motion variables attempt to fit the observed feature positions (e.g. wf
P ) by mapping local coordinates

to world coordinates, while maintaining structural cohesion by mapping stick endpoints to inferred vertex (joint) locations.

i in frame f , respectively. Again, in a noiseless system,
ef

i = Mf
s(i)ki for every frame f . Noting the similarity

between the ef
i variables and the observed feature po-

sitions wf
p , these endpoint locations can be interpreted

as a set of pseudo-observations, inferred from the data
rather than directly observed.

Vertices are used to enforce a key constraint: for all
the sticks that share a given vertex, the motion matrices
should map their local endpoint locations to a consis-
tent world coordinate. This restricts the range of pos-
sible motions to only those resulting in appropriately
connected figures. For example, in Figure 3, endpoint
2 (of stick 1), is connected to endpoint 4 (of stick 2);
both are assigned to vertex 2. Thus in every frame f
both endpoints should map to the same world location,
the location of the knee joint, i.e. vf

2 = ef
2 = ef

4 .

The utility of introducing these additional variables
is that, given the vertices V and endpoints E, the prob-
lem of estimating the motions and local geometries (M
and L) factorizes into S independent structure-from-
motion problems, one for each stick. Latent variable
gi,j = 1 indicates that endpoint i is assigned to vertex j;
hence G indirectly describes the connectivity between
sticks. The assumed generative process for the feature
observations and the vertex and endpoint pseudo-ob-

servations is shown in Figure 3, and the corresponding
probabilistic model is shown in Figure 4.

The complete joint probability of the model can be
decomposed into a product of two likelihood terms, one
for the true feature observations and the second for the
endpoint pseudo1-observations, and priors over the re-
maining variables in the model:

P = P(W|M,L,R)P(E|M,K,V,φ,G) (2)

P(V)P(φ)P(M)P(L)P(K)P(R)P(G)

Assuming isotropic Gaussian noise with precision
(inverse variance) τw, the likelihood function is

P(W|M,L,R) =
∏
f,p,s

N (wf
p |Mf

s ls,p, τ
−1
w I)rp,s (3)

where rp,s is a binary variable equal to 1 if and only
if point p has been assigned to stick s. This distribu-
tion captures the constraint that for feature point p, its
predicted world location, based on the motion matrix
and its location in the local coordinate system for the
stick to which it belongs (rp,s = 1), should match its
observed world location. Note that dealing with missing
observations is simply a matter of removing the corre-
sponding factors from this likelihood expression.4

4 This likelihood is applicable if the observations wf
p are 2D or

3D. In the 2D case, we assume an affine camera projection. How-
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Fig. 4 The graphical model. The bottom half shows the model for independent multibody SFM; the top half describes the vertices
and endpoints, which account for motion dependencies introduced by the articulated joints.

Each motion variable consists of a 2 × 3 rotation
matrix Rf

s and a 2 × 1 translation vector tf
s : Mf

s ≡
[Rf

s tf
s ]. The motion prior P(M) is uniform, with the

stipulation that all rotations be orthogonal: Rf
sR

f
s
>=

I.
We define the missing-data likelihood of an endpoint

location as the product of two Gaussians, based on the
predictions of the appropriate vertex and stick:

P(E|M,K,V,φ,G) ∝ (4)∏
f,i

N (ef
i |M

f
s(i)ki, τ

−1
m I)

∏
f,i,j

N (ef
i |v

f
j , φ
−1
j I)gi,j

Here τm is the precision of the isotropic Gaussian noise
on the endpoint locations with respect to the stick, and
gi,j is a binary variable equal to 1 if and only if endpoint
i has been assigned to vertex j. The second Gaussian
in this product captures the requirement that endpoints
belonging to the same vertex should be coincident. In-
stead of making this a hard constraint, connectivity is

ever, it would be possible to extend this to a projective camera

by making the mean depend non-linearly on Mf
s ls,p.

softly enforced, allowing the model to accommodate a
certain degree of non-rigidity in the underlying struc-
ture, as illustrated by the mismatch between endpoint
and vertex positions in Figure 3. The vertex precision
variables φj capture the degree of “play” in the joints,
and are assigned Gamma prior distributions:

P(φ) =
∏
j

Gamma(φj |αj , βj). (5)

The prior on the vertex locations incorporates a
temporal smoothness constraint, with precision τt:

P(V) =
∏
f,j

N (vf
j |v

f−1
j , τ−1

t I) (6)

The priors for feature and endpoint locations in the
local coordinate frames, L and K, are zero-mean Gaus-
sians, with isotropic precision τp.

P(L) =
∏
s,p

N (ls,p|0, τ−1
p I) P(K) =

∏
i

N (ki|0, τ−1
p I)

Finally, the priors for the variables defining the struc-
ture of the skeleton, R and G, are multinomial. Each
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point p selects exactly one stick s (enforced mathemati-
cally by the constraint

∑
s rp,s = 1) with prior probabil-

ity cs, and each endpoint i selects one vertex j (similarly∑
j gi,j = 1) with probability dj :

P(R) =
∏
p,s

(cs)rp,s P(G) =
∏
i,j

(dj)gi,j .

4 Learning

Given a set of observed feature point trajectories, we
propose to fit this model in an entirely unsupervised
fashion, by maximum likelihood learning. Conceptu-
ally, we divide learning into two challenges: recovering
the skeletal structure of the model, and given a struc-
ture, fitting the model’s remaining parameters. Struc-
ture learning involves grouping the observed trajecto-
ries into a number of rigid sticks, including determining
the number of sticks, as well as determining the connec-
tivity between them. Parameter learning involves deter-
mining the local geometries and motions of each stick,
as well as imputing the locations of the stick endpoints
and joints — all while respecting the connectivity con-
straints imposed by the structure.

Both learning tasks seek to optimize the same ob-
jective function—the expected complete log-likelihood
of the data given the model—using different, albeit re-
lated, approaches. Given a structure, parameters are
learned using the standard variational expectation max-
imization algorithm. Structure learning is formulated as
an “outer loop” of learning: beginning with a fully dis-
joint multibody SFM solution, we incrementally merge
stick endpoints, at each step greedily choosing the merge
that maximizes the objective. Finally the expected com-
plete log-likelihood can be used for model comparison
and selection.

A summary of the proposed learning algorithm is
provided in Figure 4.2.1.

4.1 Learning the model parameters

Given a particular model structure, indicated by a spe-
cific setting of R and G, the remaining model parame-
ters are fit using the variational expectation-maximization
(EM) algorithm (Neal and Hinton, 1998; Dempster et al.,
1977). This well-known algorithm takes an iterative ap-
proach to learning: beginning with an initial setting of
the parameters, each parameter is updated in turn, by
choosing the value that maximizes the expected com-
plete log-likelihood objective function, given the values
(or expectations) of the other parameters.

The objective function—also known as the negative
Free Energy (Neal and Hinton, 1998)—is formed by as-
suming a fully factorized variational posterior distri-
bution Q over a subset of the model parameters, then
computing the expectation of the model’s log probabil-
ity (2) with respect to Q, plus an entropy term:

L = EQ[log P]− EQ[log Q]. (7)

For this model, we define Q over the variables V, E,
and φ, involved in the world-coordinate locations of the
joints. The variational posterior for vf

j is a multivari-
ate Gaussian with mean parameter µ(vf

j ) and precision
parameter τ(vf

j ), for ef
i is also a Gaussian with mean

µ(ef
i ) and precision τ(ef

i ), and for φ is a Gamma dis-
tribution with parameters α(φj) and β(φj):

Q = Q(V)Q(E)Q(φ)

Q(V) =
∏
f,j

N (vf
j |µ(vf

j ), τ(vf
j )−1)

Q(E) =
∏
f,i

N (ef
i |µ(ef

i ), τ(ef
i )−1)

Q(φ) =
∏
j

Gamma(φj |α(φj), β(φj)).

The EM update equations are obtained by differentiat-
ing the objective function L, with respect to each pa-
rameter, and solving for the maximum given the other
parameters. We now present the parameter updates,
with detailed derivation of L and the updates appearing
in (Ross, 2008b). As a reminder, the constants appear-
ing in these equations denote: Do the dimensionality
of the observations, generally 2 but 3 will also work;
F the number of observation frames; J the number of
vertices; P the number of data points; S the number of
sticks.

τ−1
w =

∑
f,p,s rp,s‖wf

p −Mf
s ls,p‖2

FPDo

τ−1
m =

∑
f,i ‖µ(ef

i )−Mf
s(i)ki‖2

2FSDo
+

∑
f,i τ(ef

i )−1

2FS

τ−1
t =

∑F
f=2

∑
j ‖µ(vf

j )− µ(vf−1
j )‖2

(F − 1)JDo

+

∑
f,j τ(vf

j )−12h(f)

(F − 1)J
,
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where h(f) = 1 if 1 < f < F and 0 otherwise.

τ(ef
i ) =

∑
j

gi,j
α(φj)
β(φj)

+ τm

µ(vf
j ) =

(
α(φj)
β(φj)

∑
i

gi,jµ(ef
i )

+ [f > 1]τtµ(vf−1
j ) + [f < F ]τtµ(vf+1

j )
)

/

(
α(φj)
β(φj)

∑
i

gi,j + τt2h(f)

)
τ(vf

j ) =
α(φj)
β(φj)

∑
i

gi,j + τt2h(f)

α(φj) = αj +
FDo

2

∑
i

gi,j

β(φj) = βj +
1
2

∑
f,i

gi,j‖µ(ef
i )− µ(vf

j )‖2

+
Do

2

∑
f,i

gi,j [(τ(ef
i ))−1 + (τ(vf

j ))−1]

αj = α(φj)

βj = β(φj)

The update for the motion matrices is slightly more
challenging due to the orthogonality constraint on the
rotations. A straightforward approach is to separate the
rotation and translation components of the motion and
to solve for each individually. The update for transla-
tion is obtained simply via differentiation:

Mf
s =

[
Rf

s tf
s

]
ts,f =

(
τw
∑

p

rp,s(wf
p −Rf

s ls,p)

+ τm
∑

{i|s(i)=s}

(µ(ef
i )−Mf

sks,i)
)

/
(
τw
∑

p

rp,s + 2τm
)

To deal with the orthogonality constraint on Rf
s , its

update can be posed as an orthogonal Procrustes prob-
lem (Golub and Van Loan, 1996; Viklands, 2006). Given
matrices A and B, the goal of orthogonal Procrustes is
to obtain the matrix R that minimizes ‖A − RB‖2,
subject to the constraint that the rows of R form an
orthonormal basis. Computing the most likely rotation
involves maximizing the likelihood of the observations
(3) and of the endpoints (4), which can be written as
the minimization of

∑
p ‖(wf

p − ts,f ) − Rf
s ls,p‖2 and∑

{i|s(i)=s} ‖(µ(ef
i )−ts,f )−Rf

sks,i‖2 respectively. Con-
catenating the two problems together, weighted by their

respective precisions, allows the update of Rf
s to be

written as a single orthogonal Procrustes problem
argminRf

s
‖A−Rf

sB‖2, where

A =
[[√

τw rp,s(wf
p − ts,f )

]
p=1..P

[√
τm (µ(ef

i )− ts,f )
]
{i|s(i)=s}

]
B =

[[√
τw rp,sls,p

]
p=1..P

[√
τm ki

]
{i|s(i)=s}

]
.

The solution is to compute the singular value decom-
position of BA> SV D= UΣV>, and let R = VIm×nU>,
where m and n are the numbers of rows in A and B
respectively.

Given Rf
s and tf

s , the updates for the local coordi-
nates are:

ls,p =
(∑

f

Rf
s
>Rf

s +
τp
τw

I
)−1∑

f

Rf
s
>(wf

p − ts,f )

ki =
(∑

f

Rf
s(i)
>Rf

s(i) +
τp
τm

I
)−1∑

f

Rf
s(i)
>(µ(ef

i )− tf
s(i))

The final issue to address for EM learning is initial-
ization. Many ways to initialize the parameters are pos-
sible; here we settle on one simple method that produces
satisfactory results. The motions and local coordinates,
M and L, are initialized by solving SFM independently
for each stick (Tomasi and Kanade, 1992). The ver-
tex locations are initialized by averaging the observa-
tions of all sticks participating in the joint: µ(vf

j ) =
(
∑

i,p gi,j rp,s(i) wf
p )/(

∑
i,p gi,j rp,s(i)). The endpoints are

initially coincident with their corresponding vertices,
µ(ef

i ) =
∑

j gi,j µ(vf
j ), and the Ks by averaging the

backprojected endpoint locations: ki = 1
F

∑
f Rf

s(i)
>(µ(ef

i )−
tf
s(i)). All precision parameters are initialized to con-

stant values, as discussed in Section 5.1.

4.2 Learning the skeletal structure

Structure learning in this model entails estimating the
assignments of feature points to sticks (including the
number of sticks), and the connectivity of sticks, ex-
pressed via the assignments of stick endpoints to ver-
tices. The space of possible structures is enormous. We
therefore adopt an incremental approach to structure
learning: beginning with a fully disconnected multibody-
SFM model, we greedily add joints between sticks by
merging vertices. After each merge the model parame-
ters are updated via EM, and the assignments of ob-
servations to sticks are resampled. After performing
the desired number of merges, model selection—that
is, choosing the optimal number of joints—is guided by
comparing the expected complete log-likelihood of each
model.
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The first step in structure learning involves hypoth-
esizing an assignment of each observed feature trajec-
tories to a stick. This is accomplished by clustering the
trajectories using the Affinity Propagation algorithm of
Frey and Dueck (2007). Affinity Propagation takes as
input an affinity matrix, for which we supply the affin-
ity measure from Yan and Pollefeys (2006a,b, 2008) as
presented in Section 2.1.4 (or for 3D data, Kirk et al.
(2005) discussed in 2.2). During EM parameter learn-
ing, the stick assignments R are resampled every 10
iterations using the posterior probability distribution

P(rp,s) ∝cs exp

−αw

2

∑
f

‖wf
p −Mf

s ls,p‖2


s.t.
∑
s′

rp,s′ = 1.

Instead of relying only on information available be-
fore model fitting begins (Costeira and Kanade, 1998;
Kirk et al., 2005; Yan and Pollefeys, 2006b), resam-
pling of stick assignments allows model probability to
be improved by leveraging current best estimates of the
model parameters.

The second step of structure learning involves deter-
mining which sticks endpoints are joined together. As
discussed earlier, connectivity is captured by assigning
stick endpoints to vertices; each endpoint must be asso-
ciated to one vertex, and vertices with two or more end-
points act as articulated joints. (Valid configurations in-
clude only cases in which endpoints of a given stick are
assigned to different vertices.) We employ an incremen-
tal greedy scheme for inferring this graphical structure
G, beginning from an initial structure that contains no
joints between sticks. Thus, in terms of the model, we
start with J = 2S vertices, one per stick-endpoint, so
gi,j = 1 if and only if j = i. Given this initial structure,
parameters are fit using variational EM.

A joint between sticks is introduced by merging to-
gether a pair of vertices. The choice of vertices to merge
is guided by our objective function L. At each stage of
merging we consider all valid pairs of vertices, puta-
tively joining them and estimating (via 20 iterations
of EM) the change in log-likelihood if this merge were
accepted. The merge with the highest log-likelihood is
performed, by modifying G accordingly, and the model
parameters are re-optimized with 200 additional itera-
tions of EM, including resampling of the stick assign-
ments R. This process is repeated until no valid merges
remain, or the desired maximum number of merges has
been reached.

4.2.1 Computational Cost

By examining the updates presented in Section 4.1, in
can be seen that the cost of each iteration of EM param-
eter learning scales linearly in the following quantities:
F the number of frames, J the number of joints, P the
number of observed feature point trajectories, and S

the number of sticks. (Note that since the number of
rows in A and B are fixed, each orthogonal Procrustes
update of Rf

s has a cost that is linear in P—the ini-
tial multiplication AB>—in addition to a constant-cost
SVD and final multiplication.)

Each stage of greedy merging requires computing
the expected log-likelihood for all of the possible pairs
of vertices to be merged. The number of possible merges
scales with O(J2), which, since J = 2S during the first
stage, can be as high as 4S2. In practice, however, it
is possible to reduce the number that must be consid-
ered. Savings can be obtained by noting the symmetry
of the merge operation, reducing the number of unique
merges by a factor of two, as well as by disallowing
self-merges between the two endpoints of a stick. A less
obvious savings can be realized by avoiding duplica-
tion when merging with a stick that has two free end-
points, since the change in probability from merging
to either of these otherwise unconstrained endpoints
will be identical. During the initial stage, when the
structure contains no joints, this reduces the number of
unique merges by an additional factor of four. During
later stages, there are fewer possible merges to consider
since J , the number of vertices, decreases by one for
each stage, and our previously mentioned restriction—
that the endpoints of a stick cannot be assigned to the
same vertex—eliminates a greater proportion of poten-
tial merges.

In our experiments these optimizations are suffi-
cient to yield acceptable runtimes, however given much
larger models the number of possible merges could be
reduced to O(J) by allowing each stick to merge with
only a fixed number (e.g. five) of its nearest neigh-
bors. It may also be possible to achieve further savings
through caching—approximating the expected change
in log-likelihood of a merge with its value from the pre-
vious stage, without recomputing (Ross et al., 2007).

5 Experimental Results and Analysis

We now present results of the proposed algorithm on
a range of different feature point trajectory datasets.
This includes data obtained by automatically tracking
features in video, from optical motion capture (both 2D
and 3D), as well as a challenging artificially generated
sequence. In each experiment a model was learned on
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1. Obtain an initial grouping R by clustering the observed trajectories using Affinity propagation. Initialize G to a fully

disconnected structure.
2. Optimize the parameters M, L, K, V, φ, E, using 200 iterations of the variational EM updates, resampling R every

10 iterations.

3. For all vertex-pair merges, estimate gain resulting from the proposed structure by updating the parameters with 20
EM iterations and noting the change in expected log-probability.

4. Choose the merge with the largest gain, modifying G accordingly. Re-optimize parameters using another 200 EM

iterations, resampling R every 10th.
5. Go to Step 3 and repeat. Exit when there are no more valid merges, or the maximum number of merges has been

reached.

Fig. 5 A summary of the learning algorithm

the first 70% of the sequence frames, with the remaining
30% held out as a test set used to measure the model’s
performance. Learning was performed using the algo-
rithm summarized in Figure 4.2.1, with greedy merging
continuing (generally) until no valid merges remained.
After each stage of merging, we saved the learned model
and corresponding expected complete log-likelihood—
the objective function learning maximizes. The likeli-
hoods were plotted for comparison, and used to select
the optimal model.

The learned model’s performance was evaluated based
on its ability to impute (reconstruct) the locations of
missing observations. For each test sequence we gener-
ated a set of missing observations by simulating an oc-
cluder that sweeps across the scene, obscuring points as
it passes. We augmented this set with an additional 5%
of the observations chosen to be “missing at random”,
to simulate drop-outs and measurement errors, result-
ing in a overall occlusion rate of 10-15%. The learned
model was fit to the un-occluded points of the test se-
quence, and used to predict the location of the missing
points. Performance was measured by computing the
root-mean-squared error between the predictions and
the locations of the heldout points. We compared the
performance of our model against similar prediction er-
rors made by single-body and multibody structure from
motion models.

This section begins with a brief analysis of the ef-
fect of precision parameters during learning, followed
by experimental results on five datasets: a video of an
excavator, a video of a walking giraffe, 2D feature tra-
jectories obtained from human motion capture, an syn-
thetic dataset of a jointed ring, and an additional set
of human motion data in 3D. Finally we conclude with
a brief comparison against two related methods (Yan
and Pollefeys, 2008; Kirk et al., 2005).

Videos of the experimental results may be found at
http://www.cs.toronto.edu/∼dross/articulated/.

5.1 Setting Precision Parameters During Learning

As presented, the model contains a number of preci-
sion parameters to be determined during learning: τw,
τm, τt, τp, τ(vf

j ), τ(ef
i ), as well as the parameters of the

prior distribution on the joint prior, αj and βj . In prac-
tice, simply initializing these precisions to arbitrary val-
ues and allowing them to adapt freely during EM leads
to poor results. Some of the precisions—particularly
αw, αm, τ(vf

j ), and τ(ef
i )—tend to grow unbounded,

thus we have found it useful to specify a maximum pre-
cision of 50 (a standard trick during EM). In contrast,
the joint precisions φj (given by α(φj)/β(φj)) tend to-
wards relatively small values, resulting in a model that
has very little cohesion in the joints. To counteract this
we specify a very strong prior on φj encouraging it to-
wards large values: αj = 2× 105 ×maximum precision
and βj = 105, resulting in an expected value of 2 ×
maximum precision with limited variance. When fitting
the motion of a stick, assuming other precisions satu-
rate at the maximum, this means that keeping an end-
point near its vertex is at least twice as important as
keeping a feature point near its observed location.

In our experiments, we have found temporal smooth-
ing of the vertices, governed by precision τt to be a dis-
advantage during learning. Particularly at the begin-
ning, when the structure contains no joints, smoothing
causes the unconnected vertices and endpoints to drift
away from the actual observations at each frame, to-
wards their temporal mean. Thus, in all of the follow-
ing experiments we disable smoothing during learning.
However, when measuring test performance it’s not un-
common for one or more adjacent sticks to be entirely
occluded during a frame. When this happens, smoothed
locations of the vertices provide the only source of in-
formation about the location of the stick, and thus
temporal smoothing is essential for limiting test error.
When measuring test performance, therefore, we enable
smoothing and set τt = 2000.

Finally, the precisions play an important role in de-
termining the optimal number of joints. During model
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selection we seek the model with the largest expected
complete log-likelihood, hoping that this will include as
many plausible joints as possible. However most terms
in this objective function favour a disconnected model,
with more vertices and fewer joints. To understand this,
consider the problem of estimating the motion of an
unconnected stick. Since there are no constraints on
the vertices, they can be trivially placed to be coin-
cident with endpoints, thus the motion variable needs
only focus on maximizing the probability of the obser-
vations. However when two sticks are joined together,
perfect placement of the vertices is generally not pos-
sible, requiring modelling compromises that introduce
slight reductions in observation probability. The one
term in the objective function that does not decrease
as merges are performed is the entropy of the vertices
EQ(V)[logQ(V)].

Assuming each precision parameter in Q(v) is equal
to the maximum precision, p, this entropy is
(FJDo/2) log(2πe/p). If p is greater than 2πe ≈ 17.08,
then the differential entropy is negative5. The result is
that decreasing the number of vertices J causes the log-
likelihood to increase. In fact a fixed cost of
(FDo/2) log(2πe/p) is paid for each vertex in the model,
giving us the desired bias towards connectivity. Plots
of the relevant log-likelihood terms are included for the
datasets presented below.

5.2 Excavator

Our first dataset consisted of a video clip of an ex-
cavator. We used a Kanade-Lucas-Tomasi tracker (Shi
and Tomasi, 1994) (with manual assistance to correct
for frequent loss-of-track) to obtain 35 feature trajec-
tories across 176 frames. Our algorithm processed the
data in 4 minutes on a 2.8 GHz processor. The learned
model at each stage of greedy merging is depicted in
Figure 6. The optimal structure was chosen by com-
paring the log-likelihood at each stage, as plotted in
Figure 7 (left). The four most significant terms com-
prising this objective function are plotted individually
in Figure 7 (right). As can be seen, joining sticks adds
additional constraints that reduce the expected proba-
bility of the observations (top left), the endpoints given
vertices (top right), and the endpoints given Mk (bot-
tom left). In contrast the vertex entropy term (bottom
right) acts as a per-vertex penalty, which decreases as
we merge vertices, favoring more highly connected mod-
els. Figure 7 (bottom) shows that the system’s pre-

5 Although unintuitive, negative differential entropies are per-

fectly acceptable (Cover and Thomas, 1991).

diction error for occluded data was significantly better
than either multibody or single-body SFM.

As can be seen in Figure 6, the model does a good
job at recovering the structure—the grouping and connectivity—
of the observed trajectories. The reconstruction shows
some deviation between the inferred locations of the
joints and their intuitive positions. The probable source
of this inaccuracy is that the small range of motion
exhibited by the excavator’s arm permits a range of
possible joint positions, while the Gaussian prior says
that the joints should be near the center of mass of each
stick. Apparently, while mathematically convenient, the
Gaussian prior is not always the best choice. Neverthe-
less, the model is fully able to capture the observed
motion of the excavator’s arm, despite the inaccurate
joints.

Using the excavator data, we also examined the model’s
robustness to learning with occlusions in the training
data. When the occlusion scheme described earlier was
employed to generate a training set with missing obser-
vations, and the learning algorithm was applied to this
data, it was still able to recover the correct structure.
Similarly, when training observations were randomly
withheld during training, rather than using structured
occlusion, the correct structure was reliably recovered
with up to 75% of the training observations missing.

5.3 Giraffe

Our second dataset consisted of a video of a walking gi-
raffe. As before features were tracked, producing 60 tra-
jectories across 128 frames. Merging results are depicted
in Figure 8. Using the objective function to guide model
selection (Figure 9), the best structure corresponded to
stage 10, and this model is shown superimposed over
the original video in Figure 1, appearing at the start of
this article.

5.4 2D Human

Our third dataset consisted of optical human motion
capture data (courtesy of the Biomotion Lab, Queen’s
University, Canada), which we projected from 3D to 2D
using an isometric projection. The data contained 53
features, tracked across a 1018-frame range-of-motion
exercise (training data), and 318 frames of running on
an inclined plane (test data). The structures learned
during greedy merging are shown in Figure 10, of which
stage 11 most closely matches human intuition.

By examining the plots in Figure 11, it can be noted
that the expected log-likelihood of the various mod-
els forms a plateau, roughly between stages 8 and 11,
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Fig. 6 Excavator Data: Shown at the top are the models learned in each of the five successive stages of greedy learning. Reconstructions

of the observed markers are shown with different symbols depending on their stick assignments. The locations of vertices are shown
as black o’s, and black lines are drawn to connect each stick’s pair of vertices. At the bottom, the selected model (stage 3) is used to

reconstruct the observed feature trajectories, and the results are superimposed over the corresponding frames of the input video.
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Fig. 7 Excavator Log-likelihood and Error. At the top-left we see that stage 3 of merging produces the model with the highest

log-probability. At the top-right are individual plots of the four most significant terms comprising the log probability. At the bottom,

we can see that the learned model exhibits less reconstruction error than either single or multibody SFM models.

rather than a sharp peak as seen for the Excavator
data. Although stage 11 is not actually the most likely
model (stage 8 is slightly higher), the log-likelihood de-
creases rapidly after stage 11. This suggests that having
too many joints—and thereby hampering the ability of
sticks to move so as to fit the observations—is a bigger
disadvantage to the model than simply having too few
joints. Theoretically it may be possible to encourage a
global maximum in log-likelihood at stage 11 by simply
increasing the maximum precision (thereby penalizing
stage 8 which has more vertices). However, recogniz-
ing our preference for models with as many plausible

joints as possible, selecting the stage at the edge of the
plateau—stage 11—seems a reasonable choice.

Again, the articulated model achieved a lower test
error than either SFM or multibody SFM.

5.5 Synthetic Ring

In order to evaluate the performance of the model on
data which contains significant out-of-plane motion, we
created a challenging synthetic dataset depicting a seg-
mented ring deforming in space. The generated sequence
consisted of 100 features across 300 frames, to which
independent Gaussian noise of standard deviation 0.05
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Fig. 8 Giraffe structures learned during greedy merging. Stage 10 has the highest expected log-likelihood.
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Fig. 9 Giraffe Log-likelihood and Error.

was added. (For comparison, each stick was approxi-
mately 0.5 units wide and 5 units long.) Six frames
from the sequence are depicted in Figure 12.

The models learned for the successive stages of merg-
ing are shown in Figure 13. The sharp downturn in
log-likelihood between stages 8 and 9, shown in Fig-
ure 14, suggests selecting stage 8 as the best model.
(Note that although stage 0, which is equivalent to
multibody SFM, has a higher expected log-probability,
stage 8 has the lower test error.) Unlike methods based
on spanning trees, our approach was able to recover the
correct closed ring structure.

Interestingly, all of the learned structures chose to
group the feature points into eight sticks, three more
than were in the true grouping used to generate the
data, as illustrated in the bottom-right of Figure 13.
Examination of the results show that these extra groups
arise from splitting three of the true sticks each into a
pair sticks connected by a joint. Although the learned

structure is an over-segmentation of the ground truth
structure, it still provides a perfectly acceptable model
of the data.

As a further analysis of the algorithm’s inability to
identify the correct number of sticks and joints, an ex-
periment was performed in which the correct ground-
truth segmentation for the ring data was provided as an
initialization. From this starting point, the learning al-
gorithm was able to recover the connectivity, joint loca-
tions, and parameters correctly. This suggests that the
problem is not inherent in the representative capability
of the model, rather that the greedy/EM optimization
algorithm has difficulty escaping from a poor initial seg-
mentation, thereby impairing the ability to identify the
correct number of sticks.
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Fig. 10 2D Human structures learned during greedy merging, of which stage 11 most closely matches human intuition.
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Fig. 11 2D Human Log-likelihood and Error.

5.6 3D Human

Although recovering 3D structure from 3D observations
is much simpler than from 2D data, it also receives
attention in the literature. As mentioned previously,
our model easily extends to 3D observations, so we in-
clude an additional experiment demonstrating this abil-
ity. Here we trained our model on optical human mo-
tion capture data obtained from the Carnegie Mellon
University Motion Capture Database. The data con-
sisted of 174 feature points tracked across 732 frames
(downsampled by a factor of three from the original
framerate). The results of greedy merging are shown in
Figure 15, and the corresponding log-likelihoods in Fig-
ure 16. Since learning from 3D observations is an easier
problem, the most likely structure—stage 15—is visu-
ally more appealing than the structure learned earlier
on the 2D human data.

5.7 Comparisons with Related Methods

Finally, as an additional qualitative comparison, we ran
our method on two sequences from Yan and Pollefeys
(2008), and ran a re-implementation of Kirk et al. (2005)
on our 3D datasets.

The results of our method on Yan and Pollefeys’s
“puppet” and “dancing” sequences are shown in Fig-
ure 17, at the top left and top right respectively. (Please
compare with Figures 10 and 11 in Yan and Pollefeys
(2008).) As can be seen, our method does a good job
recovering the structure, including segmentation and
joints, of the puppet. In contrast with Yan and Polle-
feys’s, our approach finds more segments: the arms and
legs are split into two segments each, instead of only
one; and the head, neck, and chest are subdivided, in-
stead of being combined into one segment. An unintu-
itive choice made by our algorithm was to place a joint
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Fig. 12 Synthetic Ring Data: Six frames selected from a synthetic data sequence depicting the motion of a 5-segmented ring. The
ring undergoes significant out-of-plane motion.

connecting the legs, above the knees. This placement
makes more sense upon watching the entire sequence,
and noticing how little the legs appear to move. Specif-
ically, the left leg is stationary, and the right leg moves
only slightly, back and forward perpendicularly to the
image plane. In this case the algorithm favours a sim-
pler model which still adequately captures the visible
motion.

The results on the “dancing” sequence are similar.
Again our method find more segments. In particular the
chest is divided into four segments instead of one. In-
terestingly, the algorithm learned interconnections be-
tween these chest segments, producing a near-fully con-
nected graph. This shows that the model does a good
job capturing the near-rigidity of the chest segments.
However it also suggests there is a limitation in the ex-
tent to which initial segments which are actually tightly
coupled can be combined into a single segment during
learning. The segments which show the most motion,
the forearms and head, each are reasonably modeled
by sticks which extend from the main body.

As described earlier, the method of Kirk et al. is
designed to work on 3D optical motion capture data,
thus we trained it on the 3D Human dataset used in Sec-
tion 5.6, as well as on the 3D feature locations that gave
rise to the 2D Human dataset from Section 5.4. In the
original paper, Kirk et al. focus on fitting their model to
“calibration” sequences, in which the actor fully flexes
each of his individual joints. Indeed, as shown in Fig-

ure 17, (bottom right), the method does a good job
at recovering the structure from the range-of-motion
sequence. (For comparison, the results of our method
trained on the 2D-projection of the same sequence is
shown in Figure 10.) In contrast, on the other 3D Hu-
man sequence which depicts walking and sitting rather
than range-of-motion exercises, Kirk’s method fares much
more poorly (Figure 17 (bottom left), c.f. our method
Figure 15).

6 Discussion

We have demonstrated a single coherent model that can
learn the structures and motion of articulated skeletons.
This model can be applied to a variety of structures,
requiring no input beyond the observed feature trajec-
tories, and a minimum of manually adjusted precision
parameters.

Our model makes a number of contributions to the
state of the art. First, it is based optimizing a sin-
gle global objective function, which details how all as-
pects of learning—grouping, connectivity, and param-
eter fitting—contribute to the overall quality of the
model. Having this objective function permits iteration
between updates of the structure and parameters, al-
lowing information obtained from one stage to assist
learning in the other. Moreover, the value of the ob-
jective function proves useful for model selection, de-
termining the optimal number of joints. Also, the noise
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Fig. 13 Synthetic Ring Structures learned during greedy merging, of which stage 8 is the best. In comparison to the ground-truth

structure, shown in the lower-right, the learned model over-segments the data into 8 sticks, rather than 5. However, since this involves
splitting three of the true sticks in half, the learned model still provides a good fit to the data.

in our generative model plays an important role, allow-
ing a degree of non-rigidity in the motion with respect
to the learned skeleton. This not only allows a feature
point to move in relation to its associated stick, but
also permits complexity in the joints, as the stick end-
points joined at a vertex need not coincide exactly. In
addition we presented a method for quantitative com-
parison, based on imputing the locations of occluded

observations, and were able to demonstrate that our
model performs measurably better than single-body or
multibody structure from motion.

Our model has some limitations. First, as illustrated
in the “excavator” example (Section 5.2) the choice of
a Gaussian prior for joint locations, while mathemat-
ically convenient, is not ideal, since it encourages the
model to place joints in the middle of each stick, rather
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Fig. 14 Synthetic Ring Log-likelihood and Error. The sharp downturn in log-likelihood at stage 9 suggests selecting the structure

learned during stage 8.

than at its endpoints. In many cases the effect of the
prior is minor, and the problem does not arise. How-
ever, when the range of observed motion in a particular
joint is quite limited, the prior can be more pronounced,
moving the inferred joint away from its true location.
Secondly, when starting from a poor initial segmenta-
tion, the greedy/EM learning algorithm can have dif-
ficulty identifying the correct number of sticks, due to
challenges escaping from local minima. This problem
occurs in the synthetic ring experiment (Section 5.5),
and suggests that alternative optimization procedures
be investigated.

To obtain good results, the model requires a certain
density of features, in particular because the affinity
matrix used for initialization (Yan and Pollefeys, 2006a,
2008) requires at least 4 points per stick. In addition,
the flexibility of learned models is limited to the de-
grees of freedom visible in the training data; if a joint

is not exercised, then the body parts it connects can-
not be distinguished. Finally, our model requires that
the observations arise from a scene containing roughly
articulated figures; it would be a poor model of an oc-
topus, for example.

An important direction for future study is the abil-
ity of learned skeletal structures to generalize: applying
them to new motions not seen during training, and to
related sequences, such as using a model trained on one
giraffe to parse the motion of another.
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Fig. 15 3D Human structures learned during greedy merging. Stage 15 has the highest log-likelihood.
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