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Abstract

The goal of rating-based recommender systems is
to make personalized predictions and recommen-
dations for individual users by leveraging the pref-
erences of a community of users with respect to a
collection of items like songs or movies. Recom-
mender systems are often based on intricate statis-
tical models that are estimated from data sets con-
taining a very high proportion of missing ratings.
This work describes evidence of a basic incom-
patibility between the properties of recommender
system data sets and the assumptions required for
valid estimation and evaluation of statistical mod-
els in the presence of missing data. We discuss the
implications of this problem and describe extended
modelling and evaluation frameworks that attempt
to circumvent it. We present prediction and ranking
results showing that models developed and tested
under these extended frameworks can significantly
outperform standard models.

1 Introduction
The development of the world wide web, electronic com-
merce and social media has led to a dramatic increase in the
amount of content available through the Internet. The web
has tens of billions of indexed pages. Electronic commerce
web sites like Netflix and Amazon contain tens of thousands
to millions of items. Social media web sites like YouTube
continue to add new content at astounding rates. As a result,
the problem of matching people to the content that best meets
their needs and interests is of great importance.

Classical information retrieval methods solve the problem
of matching people to content based on explicit queries. This
approach has been highly successful when both the content
and queries are text-based, as in the case of web search[Brin
and Page, 1998]. Classical recommender systems and col-
laborative filtering algorithms take a different approach:they
match people to content based on preferences[Goldberget
al., 1992]. Preferences are often expressed using explicit
numerical ratings for individual content items. The collab-
orative aspect of this approach stems from the fact that it
leverages the stored preferences of a whole community of
users to make personalized predictions and recommendations

for each specific user. The personalization aspect of recom-
mender systems makes them well suited to applications in
electronic commerce and entertainment, while the fact that
they do not rely on text-based descriptions of items makes
them well suited to content like movies and music.

In this paper, we focus on a key problem in rating-based
collaborative filtering: the possibility of a basic incompatibil-
ity between the properties of recommender system data sets
and the assumptions required for valid estimation and eval-
uation of statistical models in the presence of missing data.
We describe properties of recommender system data sets and
relate them to the statistical theory of model estimation in
the presence of non-random missing data. We describe an
extended modelling framework and a modified set of eval-
uation protocols for dealing with non-random missing data.
We present rating prediction and ranking results showing that
models developed and tested under this extended framework
can significantly outperform standard models.

2 Recommender Systems and Missing Data
The data collected in a recommender system can be thought
of as a matrix with one row per user and one column per item.
Since the items often number in the thousands to millions,
most individual users naturally rate only a small percentage
of the items. The marginal rating distribution of a data set
is a simple summary statistic that shows the proportion of
each rating value in the observed data. Marginal rating dis-
tributions for several well known data sets and web sites are
shown in Figure 1 including EachMovie, MovieLens, Netflix,
and YouTube.1 Typically, these data sets contains a very low
proportion of observed ratings (1% to 5%), and we see that
the first four data sets all exhibit a skew towards high rating
values. The YouTube data exhibits the largest skew with ap-
proximately90% of the ratings taking the maximum rating
value.

The first question that interests us is what accounts for this
seeming overabundance of high rating values? To begin, we
consider two hypothetical processes that could both generate
the observed marginal rating distributions. First, most people
really do like most items and the probability of observing a

1The marginal rating distribution for YouTube was taken
from: http://youtube-global.blogspot.com/2009/
09/five-stars-dominate-ratings.html
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Figure 1: Distribution of rating values from several sources including EachMovie, MovieLens, Netflix, YouTube and two
Yahoo! Music data sets.
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Figure 2: Results of a survey asking users to report how of-
ten they would choose to rate a song given their opinion of it.
Each group of bars represents a different opinion level from
Hate it to Love it. Each bar within a group represents a dif-
ferent frequency level fromNeverto Very frequently.

rating is independent of its value. Second, most people do
not really like most items but the probability of observing a
rating depends on its value. For example, the users of a movie
recommender system may be more likely to watch and rate
items they think they will like and less likely to watch and
rate items they think they will dislike. This would create a
systematic bias toward observing a disproportionate number
of high rating values, explaining the skew in the first four data
sets.

In previous work, we conducted a study of users of Ya-
hoo! Music’s LaunchCast recommender system to explore
these two hypotheses[Marlin et al., 2007]. LaunchCast is
a streaming music recommender system that generates con-
tinuous play-lists based on user ratings. The first part of the
study consisted of a survey that asked users to report how of-
ten they would choose to rate a song given their opinion of
it. The answers collected from5400 users are summarized in
Figure 2.2

The results show a clear dependence of rating frequency on
the underlying preference level, lending support to our second
hypothesis. Although high-rated items are reportedly rated

2Note that the study had over35, 000 respondents. The5400
users included in the data set were those who, during normal use of
the LaunchCast system, had rated at least10 of the1000 songs used
in second stage of the study.

most often, the implied observation process is more complex
than the example given above. The results indicate an apa-
thy effect where users are more likely to supply ratings when
their preferences are strongly positive or strongly negative,
and less likely to supply ratings when their preferences are
neutral. This can be explained by taking the user interaction
model underlying the LaunchCast system into account. Since
a user’s only control over song choice in the LaunchCast rec-
ommender system is to supply feedback by rating items, the
user has a large incentive to rate items they both strongly like
and strongly dislike to cause those items to be played more or
less often. Items that the user feels neutral about require no
action and are thus rated much less frequently.

Following the survey, users were presented with a set of
ten songs selected at random from a total of1000 songs and
asked to rate them all. The artist name, song title and a thirty
second audio clip were provided for each song. The marginal
distribution shown in Figure 1(f) corresponds to the ratings
collected during this study. It can be directly compared with
the marginal distribution shown in Figure 1(e), which corre-
sponds to existing ratings collected from the LaunchCast rat-
ing database for the same set of1000 songs and5400 users
who participated in the study. The randomly-selected songs
have a completely known (and uniformly random) observa-
tion process while the user-selected songs have an unknown
observation process. We see dramatic differences between the
two distributions with many fewer high rating values when
songs are selected at random compared to selected by the
user, again lending support to the hypothesis of a rating-value
dependent observation process.

The question of how these results generalize to other rec-
ommender systems is an interesting one. As we noted above,
the observation process implied by the LaunchCast survey re-
sults does appear to be rating-value dependent, but it is more
complicated than the simple hypothesis that users are more
likely to supply ratings for items that they like. In general,
we believe that in a recommender system where users can
choose what data they supply, the observation process is very
likely to contain some form of rating-value dependent bias.
The precise form of this bias will depend on the incentive
to rate items of various quality. This incentive structure will
in turn depend on the constraints and affordances built into
the recommender system, as we have seen in the case of the
LaunchCast system.



3 Missing Data Theory
The data presented in the previous section support the hypoth-
esis that the probability of supplying a rating for an item is
dependent on a user’s underlying rating for that item. In this
section, we will formalize this idea and explore its impact on
both statistical model estimation and the evaluation of rating
prediction and ranking methods. We begin by defining the
required notation.

We let N be the number of users in the data set,D be
the number of items andV be the number of rating values.
We denote the rating matrix byx and the rating of usern
for item d by xnd. To reason about the observation process,
we require a representation for missing and observed rating
values. Following Little and Rubin[1987], we introduce a
companion matrix of response indicatorsr wherernd = 1
if xnd is observed, andrnd = 0 if xnd is not observed. We
useX andR to denote random variables representing a rating
matrix and matrix of response indicators.

The question of interest in this section concerns the joint
probability distribution of the random variablesX andR.
This distribution can be factorized into the form shown below
whereµ andθ are the parameters of the joint distribution.

P (R = r,X = x|µ, θ) = P (R = r|X = x, µ)P (X = x|θ)

Little and Rubin refer toP (R = r|X = x, µ) as themiss-
ing data model(we have been referring to it as the observa-
tion process), whileP (X = x|θ) is referred to as thedata
model. Standard maximum likelihood model estimation with
missing data is based on ignoring the missing data model and
optimizing the parameters of the data model given whatever
elements ofx happen to have been observed. For this proce-
dure to be valid, the missing data must bemissing at random
(MAR). The MAR condition asserts that the probability that a
given random variable is missing depends only on the values
of other random variables that are observed. The MAR con-
dition is expressed below where the superscriptobs indicates
the observed entries in the given matrix.

Pmar(R = r|X = x, µ) = P (R = r|Xobs = x
obs, µ)

The MAR condition is best understood in the context of rec-
ommender systems in terms of the minimal circumstances
where it fails to hold. Specifically, if the probability thata
user will supply a rating for an item depends on the user’s
underlying rating for that item, the MAR condition will fail
to hold. The implications of a failure of the MAR condition
are quite profound. The theory of missing data tells us that
incorrectly ignoring the missing data model during parameter
estimation will lead to provably biased estimates of the data
model parameters[Little and Rubin, 1987].

The impact of violations of the MAR condition on model
estimation and evaluation can be illustrated through a sim-
ple thought experiment. Consider a data set where a rating is
only observed if it is five-stars (a slightly more extreme ver-
sion of the YouTube data set). Standard empirical protocols
for evaluating rating prediction and ranking in recommender
systems are based on sub-sampling the observed data to form
training and testing sets[Breeseet al., 1998]. Standard mod-
els (including non-parametric models like K-nearest neighbor

regression) will essentially learn that all items should berated
five-stars based on such a training set. Evaluating rating pre-
diction performance on the corresponding test set (which also
only contains five-star ratings) will yield zero error. However,
the true task of interest is predicting ratings for all unrated
items. In the worst case, all of the unrated items could ac-
tually have one-star ratings. A model that always predicts
five-stars would then achieve the worst possible value of the
prediction error over the set of unrated items.

In the ranking case, the true task of interest is to supply a
ranking of all unrated items. Any rating prediction method
can be used to produce rankings simply by sorting unrated
items according to their predicted ratings. In the data set con-
sidered above, the trained model would carry no information
about how to rank the items since all the predictions are the
same. The test data would again not reveal the problem be-
cause all of the test items have the same maximal rating value.
If the unrated items contain a small proportion of high rat-
ings and a large proportion of low ratings, it is possible fora
trained model to obtain arbitrarily poor accuracy on the true
ranking task of interest.

These arguments show that violations of the missing at ran-
dom assumption can significantly affect statistical model es-
timation as well as rating prediction and ranking evaluation
when this evaluation is based on historical ratings.3 Dealing
with non-random missing data in recommender systems thus
requires both extended evaluation protocols and extended
models. We turn to the development of models that explicitly
incorporate a non-random missing data mechanism to reduce
the bias in model estimation in Section 4. We then explore
the question of evaluation protocols in Section 5.

4 Models for Non-Random Missing Data
The framework we consider for learning and prediction with
non-random missing data follows the basic outline suggested
by the theory of missing data[Little and Rubin, 1987]. We
combine a probabilistic model for complete data, in this case
a probabilistic clustering model, with a probabilistic model
of the missing data process. We consider two missing data
models that can represent a direct dependence between the
probability of rating an item and its underlying rating value.

4.1 Data Model
We use a probabilistic clustering model for the data model,
which has a very natural interpretation in the collaborative
filtering domain. A cluster can simply be thought of as a col-
lection of users that express similar preferences over the full
set of items. In a movie recommender system, for example,
clusters may reflect preferences for specific genres like ac-
tion, drama, science fiction and so on.

A finite multinomial mixture model is a probabilistic clus-
tering model for discrete data. In this model, an unobserved
or latent variableZn is associated with every usern, indicat-
ing the cluster to which usern belongs. We assume that there
are a fixed, finite number of clustersK. The parameters of

3It is worth pointing out that organizations operating theirown
recommender systems are not limited to evaluation based on histor-
ical ratings, as they can carry out tailored user studies.
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Figure 3: Graphical models illustrating the basic multinomial mixture model, the multinomial mixture/CPT-v model, and the
multinomial mixture/Logit-vd model.

each clusterβk specify the preferences of a prototypical user
that belongs to clusterk. Specifically,βvdk is the probabil-
ity P (xnd = v|Zn = k) that usern will assign ratingv to
item d under the assumption that usern belongs to clusterk.
There is a discrete distribution over the clusters with parame-
tersθ whereθk = P (Zn = k) is the prior probability that a
user will belong to clusterk. We give the probabilistic model
for the multinomial mixture model in Equations 1 to 4. The
corresponding graphical model is pictured in Figure 3(a).

P (θ|α) = D(θ|α) (1)

P (βdk|φdk) = D(βdk|φdk) (2)

P (Zn = k|θ) = θk (3)

P (xn|Zn = k, β) =
D∏

d=1

V∏

v=1

β
[xnd=v]
vdk (4)

For the purpose of model estimation, the parametersθ
andβ are given prior distributions that act like regulariza-
tion functions and smooth the estimated probability parame-
ters away from extreme values. Both prior distributions are
Dirichlet distributions denoted byD. The square bracket no-
tation[s] represents an indicator function that takes the value
1 if the statements is true, and0 if the statements is false.

The default when dealing with missing data in a mixture
model is to invoke the missing at random assumption. Under
the missing at random assumption, the missing data model is
ignored and inference, learning, and prediction can be based
on the observed data only.

4.2 Missing Data Models
The basic mixture model can be augmented with an explicit
model of the missing data process when the MAR condition
is not believed to hold. We consider two missing data models
that we refer to asCPT-vandLogit-vd due to their parame-
terizations. In the CPT-v missing data model, the probability
that a rating is observed depends only on its underlying value.
The model can be thought of in terms of a set of biased coins,
one for each rating valuev. Coinv has a probability of com-
ing up heads given by the parameterµv. To determine if a
rating with valuev will be observed, we flip coinv. We can

achieve different rating-dependent missing data processes by
assigning different values to the parametersµv.

This simple coin flip model corresponds to a Bernoulli
likelihood on each response indicator variable conditioned
on the corresponding rating value, as given in Equation 5.
The model is defined through the conditional probability table
specified byµ, hence the name of the model. The multino-
mial mixture data model augmented with the CPT-v missing
data model is shown in Figure 3(b). The model includes a
conjugate Dirichlet prior on eachµv.

P (rnd = 1|xnd = v, µ) = µv (5)

P (rnd = 1|xnd = v, σ, ω) =
1

1 + exp(−(σv + ωd))
(6)

The Logit-vd model shown in Equation 6 is a generaliza-
tion of CPT-v that allows the observation probability to vary
across items in a restricted fashion. The model includes a
real-valued non-random missing data factorσv and a real-
valued item popularity factorωd. The two factors are com-
bined through a logistic function to yield the observation
probability for each itemd and rating valuev. The multi-
nomial mixture model augmented with the Logit-vd missing
data model is shown in Figure 3(c). The model includes an
independent Gaussian prior on each parameter.

It is important to note that both of these models are highly
simplified. While they can each represent a rating-value de-
pendent missing data process and Logit-vd can model some
variation across items, both models ignore the possibilitythat
ratings for multiple items might influence whether a particu-
lar rating value is observed. They also ignore side informa-
tion about users and items that might influence whether or
not ratings for particular items will be observed. Neither type
of information is available for the data set we consider, but
an advantage of a probabilistic approach is that basic models
can easily be extended to deal with additional features and
side information should it be available.

4.3 Model Estimation
Locally optimal maximum likelihood estimates for the basic
multinomial mixture model can be computed under the miss-
ing at random assumption using a standard Expectation Max-



imization (EM) algorithm[Dempsteret al., 1977]. The per-
iteration complexity of the algorithm scales linearly withthe
number of observed ratings. In the case of the multinomial
mixture model combined with the CPT-v and Logit-vd miss-
ing data models, efficient EM algorithms can be also derived
where the computational complexity per iteration is domi-
nated by the number of observed ratings. This is the main ad-
vantage of using simplified missing data models. We use the
EM algorithm to simultaneously learn the parameters of both
the data and missing data models in all of the experiments
described in the following sections. Further details regard-
ing the estimation and prediction algorithms for these mod-
els can be found in our previous work[Marlin et al., 2007;
Marlin and Zemel, 2009].

5 Evaluation Protocols
As described in Section 3, standard empirical protocols for
rating prediction and ranking evaluation can lead to biased
performance estimates in the presence of non-random miss-
ing data, necessitating modified empirical protocols. In the
case of rating prediction, we require a test set that is as close
as possible to a random selection of unrated items. The rat-
ings for randomly selected items collected during the Yahoo!
Music user study described in Section 2 provide just such a
test set since the expected overlap between randomly-selected
items and previously-rated items is low.

We also propose the use of ratings for randomly selected
items for the evaluation of ranking accuracy, although this
choice presents some issues. In particular, since we only have
ten items per user and most of the items in the test set have
low ratings, the ranking evaluation may unduly reflect the
model’s ability to discriminate between items with low rat-
ing values. However, we feel this is preferable to measuring
the ranking performance on a subset of the observed data sub-
ject to a completely unknown observation process. Whether it
is possible to construct better test sets for ranking evaluation
given both sources of ratings is an open question.

The full empirical protocol uses a training set containing
the5400 users who participated our study (described in Sec-
tion 2), plus an additional10000 LaunchCast users selected
at random from those with at least10 ratings on the1000
songs used in the study data set. All of the training set rat-
ings are ratings for items selected by the users during normal
interaction with the LaunchCast music recommender system
(Figure 1(e)). The validation and test sets contain ratingssub-
sampled from the ratings for randomly-selected items col-
lected during the user study for each of the5400 study users
(Figure 1(f)).

The models we evaluate include the multinomial mix-
ture model under the MAR assumption (MM/MAR), as well
as the multinomial mixture model combined with the CPT-
v (MM/CPT-v) and Logit-vd (MM/Logit-vd) missing data
models. We also evaluate two very common collaborative
filtering models that implicitly assume random missing data:
a matrix factorization (MF) model[Salakhutdinov and Mnih,
2008] and an item-based K-nearest neighbor method (iKNN)
[Sarwaret al., 2001].

We train each mixture-based model using1, 5, 10 and20

mixture components and select the best setting using cross
validation. The prior parameters for all of the mixture-based
models were set to yield broad priors. For the matrix fac-
torization model, we considered ranksK = 1, 5, 10, 20 and
regularization parameters0.1, 1, 5, 10 and selected the best
values by cross validation. For the item-based KNN method,
we use an adjusted cosine similarity metric[Sarwaret al.,
2001], combined with the standard weighted nearest neigh-
bor prediction rule.

Once the models are trained, we condition on the training
set ratings for each user and predict the ratings for each of
that user’s test items. We form a ranked list of test items for
each user by sorting that user’s test items according to their
predicted ratings.

6 Results
Rating Prediction: We evaluate rating prediction perfor-
mance in terms of normalized mean absolute error (NMAE).
This error measure is proportional to the average absolute dif-
ference between actual and predicted ratings. NMAE is com-
puted as seen below. We assume there areT test items per
user with indicesi(1, n) to i(T, n). The normalizing constant
(equal to 1.6) is the expected MAE assuming uniformly dis-
tributed predictions and true ratings. Note thatlower NMAE
indicates better prediction performance.

NMAE =

N∑

n=1

T∑

t=1

|xni(t,n) − x̂ni(t,n)|

1.6NT

Figure 4(a) shows the test NMAE score for each of the five
models. We select the optimal complexity for each model
based on cross validation NMAE scores. Standard errors
are represented on the plots using error bars. We see that
the MM/Logit-vd and MM/CPT-v models, which do not as-
sume the MAR condition, drastically outperform the MM,
iKNN and MF models, which do assume random missing
data, when measuring performance on ratings for randomly
selected items.

Ranking: We evaluate the ranked lists of test items
produced by each method using a standard ranking accu-
racy measure, the normalized discounted cumulative gain
(NDCG). NDCG@L measures how well the predicted rank-
ing matches the true ranking (obtained by sorting the items
by their actual ratings) for a ranked list of lengthL. NDCG
places more emphasis on ranking errors at the top of the or-
dering and is normalized so that the true ranking yields an
accuracy of1. The NDCG@L score is computed as seen be-
low whereπ(l, n) is the index of the item with rankl when
test items are sorted in descending order by true ratingxnd,
π̂(l, n) is the index of the item with rankl when items are
sorted in descending order according to their predicted rat-
ings x̂nd. When sorting by true and predicted ratings, ties
can be broken arbitrarily without affecting the NDCG@L
score. Note thathigher NDCG indicates better ranking per-
formance.

NDCG@L =

N∑

n=1

∑L

l=1(2
xnπ̂(l,n) − 1)/ log(1 + l)

N
∑L

l=1(2
xnπ(l,n) − 1)/ log(1 + l)
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Figure 4: Figure (a) presents the test set rating predictionerror on randomly selected items. Figure (b) presents the test set
NDCG@L results on randomly selected items. The methods are iKNN, MF, MM/MAR, MM/CPT-v, and MM/Logit-vd.

Figure 4(b) shows the test NDCG@L performance for each
model estimated on lists of ratings for the10 randomly se-
lected items. We select the optimal complexity for each
model based on cross validation NDCG@L scores. The re-
sults again show that the MM/Logit-vd and MM/CPT-v mod-
els, which do not assume the MAR condition, outperform the
MM, iKNN and MF models, which do assume random miss-
ing data.

7 Conclusions
In this paper, we have explored properties of the missing data
process in recommender systems, discussed their impact on
the validity of standard statistical model estimation and eval-
uation procedures, and described and tested extended mod-
eling and evaluation frameworks that seek to overcome the
problems caused by non-random missing data. The develop-
ment of more sophisticated models within the extended mod-
eling framework is of great interest, as is the design of bet-
ter test sets for ranking. The question of how non-random
missing data affects methods for learning to rank is also of
great interest. The continued convergence of recommender
systems, content-based search and social networks raises the
question of the extent to which the detrimental effects of non-
random missing ratings can be mitigated by incorporating ad-
ditional sources of information including content-based fea-
tures for items (including social tags) and information about
both individual users and the relationships between users.
This is a very interesting direction for future research.
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