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Abstract

The goal of rating-based recommender systems is
to make personalized predictions and recommen-
dations for individual users by leveraging the pref-
erences of a community of users with respect to a
collection of items like songs or movies. Recom-
mender systems are often based on intricate statis-
tical models that are estimated from data sets con-
taining a very high proportion of missing ratings.
This work describes evidence of a basic incom-
patibility between the properties of recommender
system data sets and the assumptions required for
valid estimation and evaluation of statistical mod-
els in the presence of missing data. We discuss the
implications of this problem and describe extended
modelling and evaluation frameworks that attempt
to circumventit. We present prediction and ranking
results showing that models developed and tested
under these extended frameworks can significantly
outperform standard models.
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for each specific user. The personalization aspect of recom-
mender systems makes them well suited to applications in
electronic commerce and entertainment, while the fact that
they do not rely on text-based descriptions of items makes
them well suited to content like movies and music.

In this paper, we focus on a key problem in rating-based
collaborative filtering: the possibility of a basic incontipd-
ity between the properties of recommender system data sets
and the assumptions required for valid estimation and eval-
uation of statistical models in the presence of missing.data
We describe properties of recommender system data sets and
relate them to the statistical theory of model estimation in
the presence of non-random missing data. We describe an
extended modelling framework and a modified set of eval-
uation protocols for dealing with non-random missing data.
We present rating prediction and ranking results showiag th
models developed and tested under this extended framework
can significantly outperform standard models.

2 Recommender Systemsand Missing Data

The data collected in a recommender system can be thought
of as a matrix with one row per user and one column per item.
Since the items often number in the thousands to millions,

The development of the world wide web, electronic com-mqst individual users naturally rate only a small perceatag
merce and social media has led to a dramatic increase in th& the items. The marginal rating distribution of a data set
amount of content available through the Internet. The wehs 4 simple summary statistic that shows the proportion of
has tens of billions of indexed pages. Electronic commercgach rating value in the observed data. Marginal rating dis-
web sites like Netflix and Amazon contain tens of thousandgipytions for several well known data sets and web sites are
to millions of items. Social media web sites like YouTube ghown in Figure 1 including EachMovie, MovieLens, Netflix,
continue to add new content at astounding rates. As a resulty,q vouTubée: Typically, these data sets contains a very low
the problem of matching people to the content that best Meelsroportion of observed ratingd % to 5%), and we see that
their needs and interesits is of great importance. the first four data sets all exhibit a skew towards high rating
Classical information retrieval methods solve the problem 51 es. The YouTube data exhibits the largest skew with ap-
of matching people to content based on explicit queriess Thi roximately90% of the ratings taking the maximum rating
approach has been highly successful when both the conteBgdue.
and queries are text-based, as in the case of web sgtioh The first question that interests us is what accounts for this
and Page, 1998 Classical recommender systems and col-seeming overabundance of high rating values? To begin, we
laborative filtering algorithms take a different approaitfey  nsider two hypothetical processes that could both gemera
match people to content based on prefereriGeidberget  yhe ghserved marginal rating distributions. First, mostpe

al., 1993. Preferences are often expressed using explicitea|ly do like most items and the probability of observing a
numerical ratings for individual content items. The collab

orative aspect of this approach stems from the fact that it iThe marginal rating distribution for YouTube was taken
leverages the stored preferences of a whole community Gfom: http://yout ube- gl obal . bl ogspot . com 2009/
users to make personalized predictions and recommendatiof9/ f i ve- st ar s- doni nat e- rati ngs. ht m
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Figure 1: Distribution of rating values from several sograecluding EachMovie, MovieLens, Netflix, YouTube and two

Yahoo! Music data sets.
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most often, the implied observation process is more complex
than the example given above. The results indicate an apa-
thy effect where users are more likely to supply ratings when
their preferences are strongly positive or strongly negati
and less likely to supply ratings when their preferences are
neutral. This can be explained by taking the user interactio
model underlying the LaunchCast system into account. Since
a user’s only control over song choice in the LaunchCast rec-
ommender system is to supply feedback by rating items, the
user has a large incentive to rate items they both stronigy li
and strongly dislike to cause those items to be played more or
less often. Items that the user feels neutral about reqoire n
action and are thus rated much less frequently.

Figure 2: Results of a survey asking users to report how of- Eqjlowing the survey, users were presented with a set of
ten they would choose to rate a song given their opinion of itiey songs selected at random from a total@fo songs and
Each group of bars represents a different opinion level fromysked to rate them all. The artist name, song title and athirt

Hate itto Love it Each bar within a group represents a dif-
ferent frequency level froleverto Very frequently

second audio clip were provided for each song. The marginal
distribution shown in Figure 1(f) corresponds to the raging
collected during this study. It can be directly comparedwit

rating is independent of its value. Second, most people gthe marginal distribution shown in Figure 1(e), which cerre

not really like most items but the probability of observing a
rating depends on its value. For example, the users of a mov{8
recommender system may be more likely to watch and rat

items they think they will like and less likely to watch and
rate items they think they will dislike. This would create a
systematic bias toward observing a disproportionate numb
of high rating values, explaining the skew in the first foureda

sets.

In previous work, we conducted a study of users of Ya-
hoo! Music’s LaunchCast recommender system to explor

these two hypothesd#arlin et al, 2007. LaunchCast is

a streaming music recommender system that generates con-

tinuous play-lists based on user ratings. The first part ef tr:ﬁhe observation process implied by the LaunchCast survey re

study consisted of a survey that asked users to report how

ten they would choose to rate a song given their opinion o

it. The answers collected froml00 users are summarized in
Figure 22

The results show a clear dependence of rating frequency
the underlying preference level, lending support to ouosdc
hypothesis. Although high-rated items are reportedlydrate

Note that the study had ovés, 000 respondents. Th&400
users included in the data set were those who, during norseabti
the LaunchCast system, had rated at |éasif the 1000 songs used
in second stage of the study.

sponds to existing ratings collected from the LaunchCast ra

jag database for the same setl600 songs and400 users

%/ho participated in the study. The randomly-selected songs
ave a completely known (and uniformly random) observa-

tion process while the user-selected songs have an unknown

Hbservation process. We see dramatic differences betieent

two distributions with many fewer high rating values when
songs are selected at random compared to selected by the
user, again lending support to the hypothesis of a ratihgeva

gdependent observation process.

The question of how these results generalize to other rec-
ommender systems is an interesting one. As we noted above,

pults does appear to be rating-value dependent, but it ie mor

complicated than the simple hypothesis that users are more

likely to supply ratings for items that they like. In general
believe that in a recommender system where users can

e
0\c‘:)imose what data they supply, the observation processyis ver

likely to contain some form of rating-value dependent bias.
The precise form of this bias will depend on the incentive
to rate items of various quality. This incentive structurié w

in turn depend on the constraints and affordances built into
the recommender system, as we have seen in the case of the
LaunchCast system.



3 Missing Data Theory regression) will essentially learn that all items shoulddted
five-stars based on such a training set. Evaluating ratieg pr
diction performance on the corresponding test set (whieh al
only contains five-star ratings) will yield zero error. Hovee,
the true task of interest is predicting ratings for all uacht
items. In the worst case, all of the unrated items could ac-
etuaIIy have one-star ratings. A model that always predicts
five-stars would then achieve the worst possible value of the
prediction error over the set of unrated items.

In the ranking case, the true task of interest is to supply a
ranking of all unrated items. Any rating prediction method

We denote the rating matrix by and the rating of usen : . .
for item d by z,,4. To reason about the observation process¢2n Pe used to produce rankings simply by sorting unrated
" ems according to their predicted ratings. In the datacet ¢

we require a representation for missing and observed rating. . A g
d b g idered above, the trained model would carry no information

\églrtrig?a{nigg"r%v:trr]ig tittigszgisiuialgi%?zf%irlgi«r:ddLfela about how to rank the items since all the predictions are the
if 2, , is observed, and,; — 0 if z,,, is not observed. We S&Me: The test datfi would again not reveallthe pro_blem be-
useX andR to denote random variables representing a ratingicf"’uquSe all of the_test ltems hgve the same max_|mal rating value
matrix and matrix of response indicators. It the unrated items contain a small JProportion of h'gh rat-
ngs and a large proportion of low ratings, it is possibledor

The question of interest in this section concerns the joinir ined model to obtain arbitraril ; ] h thetr
probability distribution of the random variabl& and R. ained modet fo obtain arbitrarily poor accuracy on th@tru
ranking task of interest.

This distribution can be factorized into the form shown kelo S .
These arguments show that violations of the missing at ran-

wherey: andd are the parameters of the joint distribution, dom assumption can significantly affect statistical model e
PR=r,X=xy,0) = PR =r|X=x,u)P(X =x|§) timation as well as rating prediction and ranking evaluatio
) ) ) when this evaluation is based on historical ratidg3ealing

Little and Rubin refer taP(R = r|X = x, ) as themiss-  wjth non-random missing data in recommender systems thus
ing data mode{we have been referring to it as the observa-requires both extended evaluation protocols and extended
tion process), while?(X = x|0) is referred to as theata  models. We turn to the development of models that explicitly
model Standard maximum likelihood model estimation with incorporate a non_random missing data mechanism to reduce
missing data is based on ignoring the missing data model anghe pias in model estimation in Section 4. We then explore

optimizing the parameters of the data model given whatevejhe question of evaluation protocols in Section 5.
elements ok happen to have been observed. For this proce-

dure to be valid, the missing data mustrbissing at random . .

(MAR). The MAR condition asserts that the probability that a4 Models for Non Random M I.SS ng Data. ) )
given random variable is missing depends only on the value§he framework we consider for learning and prediction with
of other random variables that are observed. The MAR confion-random missing data follows the basic outline suggeste
dition is expressed below where the supersaiptindicates Py the theory of missing dafd.ittle and Rubin, 1987 We

The data presented in the previous section support the lypot
esis that the probability of supplying a rating for an item is
dependent on a user’s underlying rating for that item. Ia thi
section, we will formalize this idea and explore its impagt o
both statistical model estimation and the evaluation afgat
prediction and ranking methods. We begin by defining th
required notation.
We let N be the number of users in the data sbt,be

the number of items an be the number of rating values.

the observed entries in the given matrix. combine a probabilistic model for complete data, in thiecas
a probabilistic clustering model, with a probabilistic nebd
Prar(R=1|X =x, 1) = P(R = r|X°* = x°% 1)) of the missing data process. We consider two missing data

models that can represent a direct dependence between the

The MAR condition is best understood in the context of rec'grobability of rating an item and its underlying rating velu

ommender systems in terms of the minimal circumstance
where it fails to hold. Specifically, if the probability that 4.1 Data Modd

user will supply a rating for an item depends on the USersy, s 4 probabilistic clustering model for the data model,
underlying rating for that item, the MAR condition will fail - i1 26"2 Very natural interpretation in the collabogativ
to hold. The implications of a failure of the MAR condition iiltering domain. A cluster can simply be thought of as a col-

i(’i\rc(:eo(rqruelf:?l pir O:]%Lrjirr:d' trTehrerwitgseir?ry d‘;gﬁg?g éjljirtii te";;Sng;a ection of users that express similar preferences overuhe f
yig 9 9 gp set of items. In a movie recommender system, for example,

estimation wil Iead_ to provably _b|ased estimates of thadat clusters may reflect preferences for specific genres like ac-
model parametelfs.ittle and Rubin, 198]. - - o
The | t of violati f the MAR dit del tion, drama, science fiction and so on.
€ impact ot vioiations of the condition on MOGe! A finite multinomial mixture model is a probabilistic clus-

estimation and evaluation can be illusirated ihrough a S'Miering model for discrete data. In this model, an unobserved
ple thought experiment. Consider a data set where a rating Br latent variableZ,, is associated with every user indicat-

only observed if it is five-stars (@ slightly more extreme-Ver ;.\ /0 c1uster to which userbelongs. We assume that there
sion of the, YouTgbe datq S?t)‘ Standarq e’T‘P'“C&' IOrOtOCOI%{re a fixed, finite number of clustefs. The parameters of
for evaluating rating prediction and ranking in recommende '

systems are based on sub-sampling the observed data to form 3yt js worth pointing out that organizations operating thaim

training and testing sef8reeseet al, 1994. Standard mod-  recommender systems are not limited to evaluation basedstor-h
els (including non-parametric models like K-nearest nbah ical ratings, as they can carry out tailored user studies.



O,
OO

1]

K

O,

SO £ SO £
®, o, clj©}

@
® @@

N

ORO20

O

X

D

¢

(a) Mixture Model (b) Mixture Model/CPT-v (c) Mixture Model/Logit-vd

Figure 3: Graphical models illustrating the basic multinammixture model, the multinomial mixture/CPT-v modeldathe
multinomial mixture/Logit-vd model.

each clustep;, specify the preferences of a prototypical userachieve different rating-dependent missing data prosdsge
that belongs to clustet. Specifically,5,qi is the probabil-  assigning different values to the parameters
ity P(znq = v|Z, = k) that usem will assign ratingv to This simple coin flip model corresponds to a Bernoulli
item d under the assumption that usebelongs to clustek. likelihood on each response indicator variable conditibne
There is a discrete distribution over the clusters with peea on the corresponding rating value, as given in Equation 5.
tersd whered,, = P(Z,, = k) is the prior probability thata The modelis defined through the conditional probabilityeab
user will belong to clustek. We give the probabilistic model specified byu, hence the name of the model. The multino-
for the multinomial mixture model in Equations 1 to 4. The mial mixture data model augmented with the CPT-v missing
corresponding graphical model is pictured in Figure 3(a). data model is shown in Figure 3(b). The model includes a
conjugate Dirichlet prior on eagh,.

P(bla) = D(0]c) 1) P(rpg = 1[%na = v, ) = pto (5)
P(Bak|dar) = D(Bak|dar) (2) 7 1
P(Z, = k|6) = 0, 3) Plrna =1lana = v,0,0) = 7= ey R VL)
D VvV . . . . .
— The Logit-vd model shown in Equation 6 is a generaliza-
o o [zpa="]
P(xp|Zn =k, B) = H H Budi' (4)  tion of CPT-v that allows the observation probability toywar
d=lv=1 across items in a restricted fashion. The model includes a

For the purpose of model estimation, the parameters real-valued non-random missing data factqrand a real-
and 3 are given prior distributions that act like regulariza- valued item popularity factap,. The two factors are com-
tion functions and smooth the estimated probability paramebined through a logistic function to yield the observation
ters away from extreme values. Both prior distributions areProbability for each item/ and rating value). The muilti-
Dirichlet distributions denoted bf. The square bracket no- nomial mixture model augmented with the Logit-vd missing
tation[s] represents an indicator function that takes the valuglata model is shown in Figure 3(c). The model includes an
1 if the statement is true, and) if the statement is false. independent Gaussian prior on each parameter.

The default when dealing with missing data in a mixture It is important to note that both of these models are highly
model is to invoke the missing at random assumption. Undegimplified. While they can each represent a rating-value de-
the missing at random assumption, the missing data model gendent missing data process and Logit-vd can model some
ignored and inference, learning, and prediction can bedbasevariation across items, both models ignore the possitthiy

on the observed data only. ratings for multiple items might influence whether a particu
o lar rating value is observed. They also ignore side informa-
4.2 Missing Data M odels tion about users and items that might influence whether or

The basic mixture model can be augmented with an explicifiot ratings for particular items will be observed. Neithgoe
model of the missing data process when the MAR Conditiorpf information is ava”able_ fOI’ the data Set we ConS!der, but
is not believed to hold. We consider two missing data modelgh advantage of a probabilistic approach is that basic rsodel
that we refer to a€PT-vandLogit-vd due to their parame- can easily be extended to deal with additional features and
terizations. In the CPT-v missing data model, the probigbili side information should it be available.

that a rating is observed depends only on its underlyingavalu . .

The modelgcan be thought gf in termsyof a set of biayse(éigacl:oins‘,l-3 Model Estimation

one for each rating value Coinwv has a probability of com- Locally optimal maximum likelihood estimates for the basic
ing up heads given by the parameter. To determine if a multinomial mixture model can be computed under the miss-
rating with valuev will be observed, we flip coin. We can  ing at random assumption using a standard Expectation Max-



imization (EM) algorithm[Dempsteret al, 1977. The per- mixture components and select the best setting using cross
iteration complexity of the algorithm scales linearly witte  validation. The prior parameters for all of the mixture-bas
number of observed ratings. In the case of the multinomiamodels were set to yield broad priors. For the matrix fac-
mixture model combined with the CPT-v and Logit-vd miss- torization model, we considered ranks = 1,5, 10, 20 and

ing data models, efficient EM algorithms can be also derivedegularization parametefs1,1,5,10 and selected the best
where the computational complexity per iteration is domi-values by cross validation. For the item-based KNN method,
nated by the number of observed ratings. This is the main adve use an adjusted cosine similarity mefi®arwaret al,
vantage of using simplified missing data models. We use th2001], combined with the standard weighted nearest neigh-
EM algorithm to simultaneously learn the parameters of bottbor prediction rule.

the data and missing data models in all of the experiments Once the models are trained, we condition on the training
described in the following sections. Further details rdgar set ratings for each user and predict the ratings for each of
ing the estimation and prediction algorithms for these mod+hat user’s test items. We form a ranked list of test items for
els can be found in our previous wolklarlin et al, 2007;  each user by sorting that user’s test items according to thei
Marlin and Zemel, 2000 predicted ratings.

5 Evaluation Protocols 6 Results

As described in Section 3, standard empirical protocols foRRating Prediction: We evaluate rating prediction perfor-

rating prediction and ranking evaluation can lead to biaseti,”ance in terms of normalized mean absolute error (NMAE).

performance estimates in the presence of non-random mis his error measure is proportional to the average absoifite d

ing data, necessitating modified empirical protocols. ka th 1€rence between actual and predicted ratings. NMAE is com-

case of rating prediction, we require a test set that is aseclo puted as seen below. We assume therefatest items per

as possible to a random selection of unrated items. The rat’-Ser with indices(1, ) to (7', n). The normalizing constant

; ; ; equal to 1.6) is the expected MAE assuming uniformly dis-
ings for randomly selected items collected during the Yahooéributed predictions and true ratings. Note thuaer NMAE

Music user study described in Section 2 provide just such h o
Y b J indicates better prediction performance.

test set since the expected overlap between randomlytselec

items and previously-rated items is low. N T . — Fiem]
We also propose the use of ratings for randomly selected NMAE=Y"%" ni(t,n) = Zni(tn)
items for the evaluation of ranking accuracy, although this o1 =1 L6NT

choice presents some issues. In particular, since we oaé/ ha _. .
ten items per user and most of the items in the test set ha/d9ure 4(&) shows the test NMAE score for each of the five

low ratings, the ranking evaluation may unduly reflect thquOd%IS' we selectll':jhe_optmﬁ'k(éomplexity fé)r ezchdmodel
model’s ability to discriminate between items with low rat- ased on cross validation scores. Standard errors

ing values. However, we feel this is preferable to measurin%re represented on the plots using error bars. We see that

the ranking performance on a subset of the observed data sup'® MM/Logit-vd and _MM/CPT—v_modeIs, which do not as-

ject to a completely unknown observation process. Whether pume the MAR condition, Qrastlcally outperform the MM,

is possible to construct better test sets for ranking evialma <NN and MF models, which do assume random missing

given both sources of ratings is an open question. data, wh(_en measuring performance on ratings for randomly
The full empirical protocol uses a training set containingselec'[e(.j m?ms. . .

the 5400 users who participated our study (described in Sec- Ranking: We evaluate the ranked lists of test items

tion 2), plus an additional0000 LaunchCast users selected produced by each method_ using a standard fa”k”_‘g accu-
at random from those with at leas ratings on thel000 racy measure, the normalized discounted cumulative gain

songs used in the study data set. All of the training set rat.(NDCGt)'hND?hGC‘?L meaigres hk())tvv_we(;l kt)he pr(ta_dicﬁd rf[mk-
ings are ratings for items selected by the users during Horm g matches the true ranking (obtained by sorting the items

interaction with the LaunchCast music recommender syste y their actual ratmgs_) for a raf?ked list of length NDCG
(Figure 1(e)). The validation and test sets contain raf places more emphasis on ranking errors at the top of the or-

: : dering and is normalized so that the true ranking yields an
sampled from the ratings for randomly-selected items col- ;
lected during the user study for each of G0 study users accuracy ofl. The NDCG@L score is computed as seen be-
(Figure 1(f) low wherer(l,n) is the index of the item with rankwhen

The models we evaluate include the multinomial mix- test items are sorted in descending order by true rating

. (l,n) is the index of the item with rank when items are
ture model under the MAR assumption (MM/MAR), as well w(l,n) i . . . \
as the multinomial mixture modelpcomkgined with )the CP.I.__sorted in descending order according to their predicted rat

v (MM/CPT-v) and Logit-vd (MM/Logit-vd) missing data ings #,4. When sorting by true and predicted ratings, ties

models. We also evaluate two very common collaborative " be broken arbitrarily without affecting the NDCG@L

filtering models that implicitly assume random missing data score. Note thahigher NDCG indicates better ranking per-

a matrix factorization (MF) moddBalakhutdinov and Mnih, 'ormance:
2004 and an item-based K-nearest neighbor method (iKNN) N L (9znzam)y — 1)/ log(1 + 1
[Sarwaret al,, 2007. NDCGQL — Z 212 ( )/ log(1+1)

L :ETMT n —
We train each mixture-based model usihg, 10 and 20 a1t N2l (20t — 1)/ log(1 4 1)
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