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Abstract

Until a few years ago, the fastest known matrix multiplication algorithm, due to Coppersmith and
Winograd (1990), ran in time O(n2.376). Recently, a surge of activity by Stothers, Vassilevska-Williams
and Le Gall has led to an improved algorithm running in time O(n2.3728639), due to Le Gall (2014).
These algorithms are obtained by analyzing higher and higher tensor powers of a certain identity of
Coppersmith and Winograd. We show that this approach cannot result in an algorithm with running
time O(n2.3078), and in particular cannot prove the conjecture that for every ε > 0, matrices can be
multiplied in time O(n2+ε).

We describe a new framework extending the original laser method, which is the method underlying
the previously mentioned algorithms. Our framework accommodates the algorithms by Coppersmith
and Winograd, Stothers, Vassilevska-Williams and Le Gall. We obtain our main result by analyzing this
framework. The framework is also the first to explain why taking tensor powers of the Coppersmith–
Winograd identity results in faster algorithms.

1 Introduction

How fast can we multiply two n× n matrices? Ever since Strassen [10] improved on the O(n3) high-school
algorithm, this question has captured the imagination of computer scientists. A theory of fast algorithms
for matrix multiplication has been developed. Highlights include Schönhage’s asymptotic sum inequality [8],
Strassen’s laser method [12], and the Coppersmith–Winograd algorithm [4]. The algorithm by Coppersmith
and Winograd had been the world champion for 20 years, until finally being improved by Stothers [9] in 2010.
Independently, Vassilevska-Williams [13] obtained a further improvement in 2012, and Le Gall [7] perfected
their methods to obtain the current world champion in 2014.

The Coppersmith–Winograd algorithm relies on a certain identity which we call the Coppersmith–
Winograd identity. Using a very clever combinatorial construction and the laser method technique, Cop-
persmith and Winograd were able to extract a fast matrix multiplication algorithm whose running time is
O(n2.388). Applying their technique recursively for the tensor square of their identity, they obtain an even
faster matrix multiplication algorithm with running time O(n2.376). For a long time, this latter algorithm had
been the state of the art. The calculations for higher tensor powers are complicated, and yield no improve-
ment for the tensor cube. With the advent of modern computers, however, it became possible to automate
the necessary calculations, allowing Stothers to analyze the fourth tensor power and obtain an algorithm with
running time O(n2.37293). Apart from implementing the necessary computer programs, Stothers also had
to generalize the original framework of Coppersmith and Winograd. Independently, Vassilevska-Williams
performed the necessary calculations for the fourth and eighth tensor powers, obtaining an algorithm with
running time O(n2.3728642) for the latter. Higher tensor powers require more extensive calculations, involv-
ing the approximate solution of large optimization problems. Le Gall came up with a faster method for
solving these large optimization problems (albeit yielding slightly worse solutions), and this enabled him to
perform the necessary calculations for the sixteenth and thirty-second tensor powers, obtaining algorithms
with running times O(n2.3728640) and O(n2.3728639), respectively.
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It is commonly conjectured that for every ε > 0, there exists a matrix multiplication algorithm with
running time O(n2+ε). Can taking higher and higher tensor powers yield these algorithms? In this paper we
answer this question in the negative. We show that taking the Nth tensor power cannot yield an algorithm
with running time O(n2.3078), for any value of N . We obtain this lower bound by presenting a framework
which generalizes the techniques of Coppersmith and Winograd, Stothers, Vassilevska-Williams and Le Gall,
and is amenable to analysis. At the same time, our framework is the first to explain what is gained by taking
tensor powers of the original Coppersmith–Winograd identity.

The Coppersmith–Winograd identity bounds the border rank (a certain measure of complexity) of a
certain tensor (three-dimensional analog of a matrix) TCW . The tensor is a sum of six non-disjoint smaller
tensors. Schönhage’s asymptotic sum inequality allows us to obtain a matrix multiplication algorithm given a
bound on the border rank of a sum of disjoint tensors of a special kind, which includes the tensors appearing
in TCW . The idea of the laser method is to take a high tensor power of TCW and zero out some of the
variables so that the surviving smaller tensors are disjoint. Applying Schönhage’s asymptotic sum inequality
then yields a matrix multiplication algorithm. Following this route, we obtain an algorithm with running
time O(n2.388).

In order to improve on this, Coppersmith and Winograd take the tensor square of TCW , and rewrite it
as a sum of fifteen non-disjoint smaller tensors, which result from merging in a particular way the thirty-
six tensors obtained from the squaring. At this point we repeat the earlier construction. In total, the
new construction is equivalent to the following procedure. Starting with the original tensor TCW , we take
a high tensor power, zero out some of the variables, and merge groups of remaining tensors so that the
resulting merged tensors are disjoint and are of the kind that allows application of the asymptotic sum
inequality. We can call this method the laser method with merging. The further constructions of Stothers,
Vassilevska-Williams and Le Gall can all be put in this framework.

Cohn, Kleinberg, Szegedy and Umans [3] analyzed the simple construction of Coppersmith and Winograd
(corresponding to the O(n2.388) algorithm), showing that their construction is optimal in the framework of
the laser method. Using similar but more complicated ideas, we are able to give an analogous bound for
the laser method with merging, showing that the method cannot yield an algorithm with running time
O(n2.3078). Unfortunately, we are not able to come up with an algorithm matching our barrier, but we
believe that our new framework could lead to improved algorithms in the future.

The Coppersmith–Winograd identity is parameterized by an integer parameter q ≥ 0. Our method
applies for all values q ≥ 2. The bound O(n2.3078) corresponds to the choice q = 5, which is the value used
by Coppersmith and Winograd, Stothers, Vassilevska-Williams and Le Gall. Our bound deteriorates as q
gets smaller, and for q = 2 we only obtain a limit of O(n2.254). We do not know whether this deterioration
results from the fact that our bound is not tight, or whether smaller values of q actually lead to better
algorithms.

Paper organization Section 2 describes the theory of fast matrix multiplication up to and including the
simple construction of Coppersmith and Winograd. The laser method with merging is described in Section 3,
in which we also explain how the algorithms of Coppersmith and Winograd, Stothers, Vassilevska-Williams
and Le Gall fit in this framework. We prove our main result in Section 4. We close the paper in Section 5
by discussing our results and their implication.
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2 Background

Notation We define [n] = {1, . . . , n}. We will use the notation exp2 x for 2x. The entropy function H is
given by

H(p1, . . . , pn) = −
n∑
i=1

pi log pi,

where 0 log 0 = 0. It can be used to estimate multinomial coefficients:(
n

np1, . . . npm

)
≤ exp2H(p1, . . . , pm)n.

The entropy function is concave: if ~q1, . . . , ~qr are probability distributions and c1, . . . , cr ≥ 0 sum to 1 then

r∑
i=1

ciH(~qi) ≤ H

(
r∑
i=1

ci~qi

)
.

2.1 Bilinear complexity

The material below can be found in Chapters 14–15 of the book Algebraic Complexity Theory [2].

The model Our goal in this paper is to study the complexity of matrix multiplication in the algebraic
complexity model. In this model, a program for computing the product C = AB of two n × n matrices is
allowed to use the following instructions:

• Reading the input: t← aij or t← bij .

• Arithmetic: t← t1 ◦ t2, where ◦ ∈ {+,−,×,÷}.

• Output: cij ← t.

Each of these instructions has unit cost. A legal program is one which never divides by zero; Strassen [11]
showed how to eliminate divisions at the cost of a constant blowup in the size. Denote by T (n) the size of the
smallest program which computes the product of two n×n matrices. The exponent of matrix multiplication
is defined by

ω = lim
n→∞

T (n)1/n.

It can be shown that the limit indeed exists. For each ε > 0, we also have T (n) = Oε(n
ω+ε), and ω can also

be defined via this property.

Tensors Strassen [10] related ω to the tensor rank of matrix multiplication tensors, a connection we proceed
to explain. The tensors we are interested in are three-dimensional equivalents of matrices. An n×m matrix
A corresponds to the bilinear form

x′Ay =

n∑
i=1

m∑
j=1

Aijxiyj .

Similarly, third order tensors correspond to n×m× p trilinear forms

n∑
i=1

m∑
j=1

p∑
k=1

Tijkxiyjzk.

The rank of a matrix A is the smallest number r such that A can be written as the sum of r outer
products xy′. We define the tensor rank of a tensor analogously. A rank one tensor is an outer product of
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the form
∑
i,j,k xiyjzk. The tensor rank of a tensor T is the smallest number r such that T can be written

as the sum of r rank one tensors:

T =

r∑
s=1

n∑
i=1

m∑
j=1

p∑
k=1

x
(s)
i y

(s)
j z

(s)
k .

We denote the rank of a tensor T by R(T ). In contrast to matrix rank, tensor rank is NP-hard to compute [6].
The matrix multiplication tensor 〈n,m, p〉 is given by

T =

n∑
i=1

m∑
j=1

p∑
k=1

xijyjkzki.

This is an nm × mp × pn tensor which corresponds to the trilinear product Tr(xyz), where x, y, z are
interpreted as n×m,m× p, p× n matrices, correspondingly. Strassen [10] proved that

ω = lim
n→∞

R(〈n, n, n〉)1/n.

The volume of a matrix multiplication tensor 〈n,m, p〉 is defined to be Vol(〈n,m, p〉) = nmp. This is also
the number of non-zero entries in the corresponding three-dimensional array.

If Ai is a sequence of matrices converging to a matrix A, then R(Ai) → R(A). The same doesn’t hold
for tensors: all we are guaranteed is that limiR(Ai) ≤ R(A). For example, the following tensor (appearing
in [1]) has rank 3 if ε = 0 and rank 2 if ε 6= 0:(

1 0
ε 1

)(
0 1
0 0

)
.

The border rank of a tensor T , denoted R(T ), is the smallest rank of a sequence of tensors converging to T .
Equivalently, the border rank of T is the smallest rank over R[ε] of any tensor of the form εkT +

∑r
`=k+1 ε

`T`
(the equivalence is not immediate but follows from a result of Strassen [12], see [2, §20.6]). We denote any
tensor of the latter form by εkT +O(εk+1).

Two tensors are equivalent if they differ by a permutation of the rows, columns and “stacks” (indepen-
dently). We denote equivalence by ≈. Oftentimes we think of tensors as being defined only up to equivalence.

For matrices A1, A2 of dimensions n1×m1, n2×m2, their direct sum A1⊕A2 is the (n1 +n2)×(m1 +m2)
block-diagonal matrix having as blocks A1, A2. Similarly we can define the direct sum of two tensors T1, T2.

The Kronecker or tensor product of matrices is a less familiar operation: the tensor product A1⊗A2 is an
n1n2×m1m2 matrix whose entries are (A1⊗A2)i1i2,j1j2 = (A1)i1,j1(A2)i2,j2 . The tensor product of two ten-
sors is defined analogously. It then follows immediately that 〈n1,m1, p1〉⊗〈n2,m2, p2〉 ≈ 〈n1n2,m1m2, p1p2〉.
The nth tensor power of a tensor T is denoted by T⊗n. Both rank and border rank are submultiplicative:
R(T1 ⊗ T2) ≤ R(T1)R(T2) and R(T1 ⊗ T2) ≤ R(T1)R(T2).

The support of a tensor is the set of variables (corresponding to rows, columns and “stacks”) appearing
in the corresponding trilinear product.

Matrices can be transposed. The corresponding operation for tensors is rotation. For an n×m×p tensor
T =

∑
ijk Tijkxiyjzk, its rotation is the m × p × n tensor T ′ =

∑
jki Tijkyjzkxi. Repeating the operation

again, we obtain a p× n×m tensor T ′′. All rotations of a tensor have the same rank and the same border
rank.

Schönhage [8] proved the following fundamental theorem, which is the main vehicle used for proving
upper bounds on ω.

Theorem 2.1 (Asymptotic sum inequality). For every set ni,mi, pi (1 ≤ i ≤ K) of positive integers,

K∑
i=1

(nimipi)
ω/3 ≤ R

(
K⊕
i=1

〈ni,mi, pi〉

)
.
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2.2 Laser method

The material below is adapted from [2, Chapter 15] and the papers [5, 7].
The asymptotic sum inequality deduces a bound on ω from a bound on the border rank of a direct sum of

matrix multiplication tensors. The laser method, due to Strassen [12], is a technique that exploits a bound
on the border rank of a sum of non-disjoint matrix multiplication tensors:

R

(
K∑
s=1

Ts

)
≤ r.

The tensors T1, . . . , TK , known as constituent tensors, are trilinear forms in variables xi, yj , zk, which we call
x-variables, y-variables and z-variables:

Ts =
∑
i,j,k

Ts,i,j,kxiyjzk.

The x-variables, y-variables and z-variables are each partitioned into blocks. The support of each tensor is
constrained to be a union of blocks. The sum

∑
s Ts together with the partitions of the variables constitute

a partitioned tensor. Two constituent tensors of a partitioned tensor are disjoint if their support is disjoint.
If T =

∑
s Ts and V =

∑
u Vu are two partitioned tensors, then T ⊗ V =

∑
s,u Ts ⊗ Vu is the partitioned

tensor obtained by taking the “product” partitions, that is, if xi belongs to block XI in T and xj belongs
to block XJ in V then xij belongs to block XIJ in T ⊗ V .

If T =
∑
s Ts then T ′ =

∑
s T
′
s is the partitioned tensor obtained by rotating the constitutent tensors

and retaining the partitions.
The concept of value plays a central role.

Definition 2.1. Let T be a partitioned tensor whose constituent tensors are matrix multiplication tensors.
A zeroing degeneration of T is any tensor obtained from T by zeroing blocks of variables (i.e., deleting rows,
columns and “stacks”).

Let T be a partitioned tensor satisfying T ′ = T (we say that T is symmetric). For ρ ∈ [2, 3] and N ≥ 1, we

define Vρ,N (T ) to be the maximum of
∑L
i=1(nimipi)

ρ/3 over all zeroing degenerations of T⊗N with disjoint
constituent tensors equivalent to 〈n1,m1, p1〉, . . . , 〈nL,mL, pL〉. The value of T is the function

Vρ(T ) = lim
n→∞

Vρ,N (T )1/N .

The existence of the limit was proved by Stothers [9, 5].
For an arbitrary partitioned tensor T , we define

Vρ(T ) = Vρ(T ⊗ T ′ ⊗ T ′′)1/3.

Our definition is different from the one appearing in [9, 13, 5, 7]. They define Vρ,N (T ) to be the maximum

of
∑L
i=1(nimipi)

ρ/3 over all zeroing degenerations of T⊗N equivalent to
⊕L

i=1〈ni,mi, pi〉. However, as we
detail in Section 3.2, their actual usage of the definition is more constrained (though more general than
Definition 2.1). The advantage of our definition is that in some cases it is possible to compute the value.

For completeness, we include the proof that Vρ(T ) is well-defined.

Lemma 2.2. Let T be a symmetric partitioned tensor. The limit limn→∞ Vρ,N (T )1/N exists.

Proof. We start by showing that

Vρ,N1+N2(T ) ≥ Vρ,N1(T )Vρ,N2(T ).

Indeed, let S1, S2 be the zeroing degenerations of T⊗N1 , T⊗N2 yielding Vρ,N1
(T ), Vρ,N2

(T ), say S1 =
∑
i S1,i

with Vρ,N1
(T ) =

∑
i Vol(S1,i)

ρ/3 and S2 =
∑
j S2,j with Vρ,N2

(T ) =
∑
j Vol(S2,j)

ρ/3. It is not hard to check
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that S1⊗S2 is a zeroing degeneration of T⊗(N1+N2) with disjoint constituent tensors S1⊗S2 =
∑
i,j S1,i⊗S2,j ,

and so

Vρ,N1+N2(T ) ≥
∑
i,j

Vol(S1,i ⊗ S2,j)
ρ/3 =

∑
i,j

Vol(S1,i)
ρ/3 Vol(S2,j)

ρ/3 = Vρ,N1(T )Vρ,N2(T ).

Hence the sequenceN 7→ log2 Vρ,N (T ) is superadditive, and so Fekete’s lemma shows that (log2 Vρ,N (T ))/N =

log2 V
1/N
ρ,N tends to a limit.

Any matrix multiplication tensor constitutes a paritioned tensor with a unique constituent tensor. The
following formula follows directly from the definition.

Lemma 2.3. The value of a matrix multiplication tensor 〈n,m, p〉 is Vρ(〈n,m, p〉) = (nmp)ρ/3.

The laser method as originally conceived by Strassen used a more powerful concept of degeneration
related to the border rank; see [2, 15.6] for more details.

Stothers [9, 5] extended the asymptotic sum inequality to the setting of partitioned tensors.

Theorem 2.4. For partitioned tensors T1, . . . , TK whose constituent tensors are matrix multiplication ten-
sors,

K∑
i=1

Vω(Ti) ≤ R

(
K⊕
i=1

Ti

)
.

Proof. Consider first the case of a single partitioned tensor T which is symmetric. The asymptotic sum
inequality shows that Vω,N (T )1/N ≤ R(T⊗N )1/N ≤ R(T ). Taking the limit N → ∞ completes the proof.
Consider next the case of an asymmetric single partitioned tensor T . The tensor T ⊗ T ′ ⊗ T ′′ is symmetric
and so Vω(T ) = Vω(T ⊗ T ′ ⊗ T ′′)1/3 ≤ R(T ⊗ T ′ ⊗ T ′′)1/3 ≤ R(T ), since R(T ) = R(T ′) = R(T ′′).

In order to complete the proof, we show that Vω(T1 ⊕ T2) ≥ Vω(T1) + Vω(T2). Suppose first that T1, T2
are symmetric. The tensor (T1 ⊕ T2)⊗N decomposes as

(T1 ⊕ T2)⊗N =
⊕

N1+N2=N

(
N

N1

)
� T⊗N1

1 T⊗N2
2 ,

where M�T denotes the direct sum of M tensors equivalent to T . In particular, as in the proof of Lemma 2.2,

Vρ,N (T1 ⊕ T2) ≥
∑

N1+N2=N

(
N

N1

)
Vρ,N1

(T1)Vρ,N2
(T2).

Let α1 = Vρ(T1)/(Vρ(T1) + Vρ(T2)) and α2 = Vρ(T2)/(Vρ(T1) + Vρ(T2)). Considering N1 ≈ α1N and
N2 ≈ α2N , we get

Vρ,N (T1 ⊕ T2) ' 2H(α1,α2)NVρ(T1)α1NVρ(T2)α2N = (Vρ(T1) + Vρ(T2))N ,

where the approximation is true up to polynomial factors and in the limit N → ∞. This shows that
Vρ(T1 ⊕ T2) ≥ Vρ(T1) + Vρ(T2).
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2.3 Coppersmith–Winograd identity

Coppersmith and Winograd [4] exhibit the following identity, for any q ≥ 1:

ε3

[
q∑
i=1

(
x
[0]
0 y

[1]
i z

[1]
i + x

[1]
i y

[0]
0 z

[1]
i + x

[1]
i y

[1]
i z

[0]
0

)
+ x

[0]
0 y

[0]
0 z

[2]
q+1 + x

[0]
0 y

[2]
q+1z

[0]
0 + x

[2]
q+1y

[0]
0 z

[0]
0

]
+O(ε4) =

ε

q∑
i=1

(x
[0]
0 + εx

[1]
i )(y

[0]
0 + εy

[1]
i )(z

[0]
0 + εz

[1]
i )−(

x
[0]
0 + ε2

q∑
i=1

x
[1]
i

)(
y
[0]
0 + ε2

q∑
i=1

y
[1]
i

)(
z
[0]
0 + ε2

q∑
i=1

z
[1]
i

)
+

(1− qε)(x[0]0 + ε3x
[2]
q+1)(y

[0]
0 + ε3y

[2]
q+1)(z

[0]
0 + ε3z

[2]
q+1).

Here the superscripts denote the partitions:

x
[0]
0 ;x

[1]
1 , . . . , x

[1]
q ;x

[2]
q+1,

and similarly for the y-variables and z-variables. We denote this partition X [0], X [1], X [2]. The identity
shows that

R(〈1, 1, q〉0,1,1 + 〈q, 1, 1〉1,0,1 + 〈1, q, 1〉1,1,0 + 〈1, 1, 1〉0,0,2 + 〈1, 1, 1〉0,2,0 + 〈1, 1, 1〉2,0,0) ≤ q + 2.

Here 〈n,m, p〉I,J,K denotes a matrix multiplication tensor equivalent to 〈n,m, p〉 whose support isX [I], Y [J], Z [K].
We denote the corresponding partitioned tensor TCW (depending on q).

Coppersmith and Winograd calculated the value of TCW .

Theorem 2.5. For q ≥ 1,

log2 Vρ(TCW ) = max
0≤α≤1

H( 2−α
3 , 2α3 ,

1−α
3 ) + 1

3ρα log2 q.

Proof. The upper bound appears implicitly in Cohn, Kleinberg, Szegedy and Umans [3, Lemma 3.2], but
since they discuss a slightly different case, we proceed to spell it out.

The tensor TCW is symmetric, and so

log2 Vρ(TCW ) = lim
n→∞

log2 Vρ,N (TCW )

N
.

Suppose that S is a zeroing degeneration of T⊗N which is the sum of disjoint constituent tensors
〈ni,mi, pi〉. Our goal is to bound

∑
i(nimipi)

ρ/3.

The tensor T⊗NCW has 6N constituent tensors, each resulting from the tensor product of N original
constituent tensors. The type of a constitutent tensor of T⊗NCW is (αx, αy, αz, βx, βy, βz) if the tensor re-
sulted from multiplying αxN,αyN,αzN, βxN, βyN, βzN copies each of 〈1, 1, q〉0,1,1, 〈q, 1, 1〉1,0,1, 〈1, q, 1〉1,1,0,
〈1, 1, 1〉2,0,0, 〈1, 1, 1〉0,2,0, 〈1, 1, 1〉0,0,2, respectively. Note that there are O(N5) many types.

Each constituent tensor in T⊗NCW has an associated block of x-variables, which corresponds to a vector
in {0, 1, 2}N . The x-type of this tensor is the fraction of coordinates of each type, which we denote by
(c0, c1, c2). The y-type and z-type are defined analogously.

Let τ = (αx, αy, αz, βx, βy, βz) be any type. Each constitutent tensor of type τ has volume q(αx+αy+αz)N ,
x-type (αx + βy + βz, αy +αz, βx), y-type (αy + βx + βz, αx +αz, βy) and z-type (αz + βx + βy, αx +αy, βz).
Since the constituent tensors of type τ are disjoint, in particular they have distinct x-types. Since they all
have the same volume, we conclude that∑

i∈τ
(nimipi)

ρ/3 ≤ q(αx+αy+αz)(ρ/3)N

(
N

(αx + βy + βz)N, (αy + αz)N, βxN

)
≤ q(αx+αy+αz)N exp2H(αx + βy + βz, αy + αz, βx)N.
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We can similarly get a bound from y-types and z-types. Let α = αx+αy+αz, and notice that βx+βy+βz =
1− α. Taking the geometric mean of these bounds, we obtain∑
i∈τ

(nimipi)
ρ/3

≤qα(ρ/3)N exp2

H(αx + βy + βz, αy + αz, βx) +H(αy + βx + βz, αx + αz, βy) +H(αz + βx + βy, αx + αy, βz)

3
N

≤qα(ρ/3)N exp2H

(
2− α

3
,

2α

3
,

1− α
3

)
N,

using concavity of the entropy function. Summing over all O(N5) different types, we obtain

Vρ,N (TCW ) ≤ O(N5) max
α∈[0,1]

qα(ρ/3)N exp2H

(
2− α

3
,

2α

3
,

1− α
3

)
N,

and so
log2 Vρ(TCW ) ≤ max

α∈[0,1]
H( 2−α

3 , 2α3 ,
1−α
3 ) + 1

3ρα log2 q.

This completes the proof of the upper bound.
The lower bound on log2 Vρ(TCW ) follows from the work of Coppersmith and Winograd [4], and appears

more formally in [5, 7]; see in particular [7, Theorem 4.1]. The idea is as follows. Given α and N , let τ be
a realizable type close to (α/3, α/3, α/3, (1 − α)/3, (1 − α)/3, (1 − α)/3). Every constituent tensor of this
type has x-type, y-type and z-type ((2−α)/3, 2α/3, (1−α)/3). Coppersmith and Winograd start by zeroing
out all x, y, z-variables not of this x, y, z-type (respectively). Then they zero out more variables to obtain
exp2(H( 2−α

3 , 2α3 ,
1−α
3 ) − o(1))N disjoint constituent tensors (this is the difficult part of the construction).

This shows that Vρ,N (TCW ) ≥ qα(ρ/3)N exp2(H( 2−α
3 , 2α3 ,

1−α
3 ) − o(1))N , and the lower bound follows by

taking the limit N →∞.

Routine calculation reveals that the optimal α given q, ρ is

α =
−3 +

√
32q−ρ + 1

8q−ρ − 2
,

from which we can get an explicit expression for Vρ(TCW ). Following Coppersmith and Winograd, we plug
q = 6 and use Theorem 2.4 (with the single partitioned tensor TCW ) to obtain ω < 2.38719.

In their paper, Coppersmith and Winograd introduced another technique which enabled them to obtain
an improved bound ω < 2.375477. The technique, which we call merging, was used again by Vassilevska-
Williams [13], Stothers [9] and Le Gall [7], culminating in the bound ω < 2.3728639 obtained by Le Gall.
Our goal in the rest of the paper is to describe this technique and its limitations.

Remark Le Gall [7, Theorem 4.1], following Stothers and Vassilevska-Williams, describes a more general
situation and obtains a general lower bound on the value of general partitioned tensors. The argument of
Theorem 2.5 yields an almost matching upper bound, differing only in the ommission of the term ΓS(P ).
This term is not present in the calculations of Coppersmith and Winograd, but appears in Stothers’ and
subsequent work of Vassilevska-Williams and Le Gall. As a consequence, we do not know whether the
constructions described in Stothers’ and subsequent work are tight with respect to the technique they use.
It is an open question to close this gap. As an aside, we note that even if this question is settled, there
remains a difficult numerical optimization problem which is solved only approximately in these papers; in
particular, the parameters used for the construction are only approximately optimal.
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3 Merging

3.1 Definition

We start with a formal definition of merging.

Definition 3.1. Let T be a symmetric partitioned tensor. For ρ ∈ [2, 3] and N ≥ 1, we define V ∗ρ,N (T ) to be

the maximum of
∑L
i=1(nimipi)

ω/3 over all zeroing degenerations of T⊗N with sets T1, . . . , TL of constitutent
tensors on disjoint variables such that

∑
Ti :=

∑
U∈Ti

U is equivalent to 〈ni,mi, pi〉. The extended value of
T is the function

V ∗ρ (T ) = lim
n→∞

V ∗ρ,N (T )1/N .

(We prove the existence of the limit below.)
For an arbitrary partitioned tensor T , we define

V ∗ρ (T ) = V ∗ρ (T ⊗ T ′ ⊗ T ′′)1/3.

The constituent tensors in each Ti are merged together to one big matrix multiplication tensor, whence
the name merging. Before giving an example, let us prove that V ∗ρ (T ) is well-defined.

Lemma 3.1. Let T be a symmetric partitioned tensor and ρ ∈ [2, 3]. The limit limn→∞ V ∗ρ,N (T )1/n exists.

Proof. The proof is very similar to the proof of Lemma 2.2. It is enough to prove the inequality

V ∗ρ,N1+N2
(T ) ≥ V ∗ρ,N1

(T )V ∗ρ,N2
(T ),

and then the existence of the limit follows from Fekete’s lemma. Let S1, S2 be zeroing degenerations of
T⊗N1 , T⊗N2 witnessing V ∗ρ,N1

(T ), V ∗ρ,N2
(T ), that is, S1 =

∑
i

∑
S1,i with

∑
i Vol(

∑
S1,i)

ρ/3 = V ∗ρ,N1
(T ),

and S2 =
∑
j

∑
S2,j with

∑
j Vol(

∑
S2,j)

ρ/3 = V ∗ρ,N2
(T ). The tensor S1 ⊗ S2 is a zeroing degeneration

of T⊗(N1+N2) and S1 ⊗ S2 =
∑
i,j

∑
S1,i ⊗ S2,j . Since Vol(S1,i ⊗ S2,j) = Vol(S1,i) Vol(S2,j), we obtain

V ∗ρ,N1+N2
(T ) ≥

∑
i,j Vol(S1,i ⊗ S2,j)

ρ/3 = V ∗ρ,N1
V ∗ρ,N2

.

The proof of Theorem 2.4 extends mutatis mutandis.

Theorem 3.2. For partitioned tensors T1, . . . , TK whose constituent tensors are matrix multiplication ten-
sors,

K∑
i=1

V ∗ω (Ti) ≤ R

(
K⊕
i=1

Ti

)
.

3.2 Relation to known constructions

As an illustration of the concept of merging, we present the bound ω < 2.375477 obtained by Coppersmith
and Winograd [4]. They consider the tensor square T⊗2CW , repartitioning it according to the sum of the indices
of the original blocks:

X ′0 = X00, X
′
1 = X01 ∪X10, X

′
2 = X20 ∪X11 ∪X02, X

′
3 = X21 ∪X12, X

′
4 = X22.

The resulting partitioned tensor T̃⊗2CW has 15 constituent tensors:

(a) 3 constituent tensors equivalent to T1 = 〈1, 1, 1〉0,0,4, coming from

〈1, 1, 1〉0,0,2 ⊗ 〈1, 1, 1〉0,0,2.

(b) 6 constituent tensors equivalent to T2 = 〈1, 1, 2q〉0,1,3 and its permutations T ′2, . . . , T
(5)
2 , coming from

〈1, 1, q〉0,1,1 ⊗ 〈1, 1, 1〉0,0,2 ⊕ 〈1, 1, 1〉0,0,2 ⊗ 〈1, 1, q〉0,1,1.
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(c) 3 constituent tensors equivalent to T3 = 〈1, 1, q2 + 2〉0,2,2 and its rotations T ′3, T
′′
3 , coming from

〈1, 1, 1〉0,2,0 ⊗ 〈1, 1, 1〉0,0,2 ⊕ 〈1, 1, 1〉0,0,2 ⊗ 〈1, 1, 1〉0,2,0 ⊕ 〈1, 1, q〉0,1,1 ⊗ 〈1, 1, q〉0,1,1.

(d) 3 constituent tensors equivalent to T 1,1,2
4 = S1 + S2 + S3 + S4 and its rotations T ′4, T

′′
4 , coming from

〈1, q, 1〉1,1,0⊗〈1, 1, 1〉0,0,2+〈1, 1, 1〉0,0,2⊗〈1, q, 1〉1,1,0+〈q, 1, 1〉1,0,1⊗〈1, 1, q〉0,1,1+〈1, 1, q〉0,1,1⊗〈q, 1, 1〉1,0,1,

where S1 = 〈1, q, 1〉10,10,02, S2 = 〈1, q, 1〉01,01,20, S3 = 〈q, 1, q〉10,01,11, S4 = 〈q, 1, q〉01,10,11.

Coppersmith and Winograd compute the value Vρ(T4) directly. They proceed to compute a generalized form

of the value of T̃⊗2CW , obtained by pretending that T4 is a matrix multiplication tensor with Vol(T4)ρ/3 =
Vρ(T4), and use a corresponding generalization of Theorem 2.4 to obtain an upper bound on ω:

Vω(T̃⊗2CW ) ≤ R(T̃⊗2CW ) ≤ R(TCW )2.

The proof of the generalized version relies on the property Vρ,N (T4⊗ T ′4⊗ T ′′4 ) ≈ Vρ(T4)3N , and is otherwise
identical to the proof of Theorem 2.4.

We proceed to recast their construction in terms of the extended value. For given N , the first step of
their construction is taking the Nth power of T̃⊗2CW and zeroing variables to obtain a certain quantity XN of
constituent tensors equivalent to

T⊗α1N
1 ⊗ (T2 ⊗ · · · ⊗ T (5)

2 )⊗(α2/6)N ⊗ (T3 ⊗ T ′3 ⊗ T ′′3 )⊗(α3/3)N ⊗ (T4 ⊗ T ′4 ⊗ T ′′4 )⊗(α4/3)N ,

for some parameters α1, α2, α3, α4. Attention is then focused on the factor (T4 ⊗ T ′4 ⊗ T ′′4 )⊗(α4/3)N . More
variables are zeroed to obtain a certain quantity Y(α4/3)N of constituent tensors equivalent to

(S1⊗S′1⊗S′′1 )⊗(β1/3)(α4/3)N⊗(S2⊗S′2⊗S′′2 )⊗(β2/3)(α4/3)N⊗(S3⊗S′3⊗S′′3 )⊗(β3/3)(α4/3)N⊗(S4⊗S′4⊗S′′4 )⊗(β4/3)(α4/3)N .

Altogether, we obtain XNY(α4/3)N tensors equivalent to

T⊗α1N
1 ⊗ (T2 ⊗ · · · ⊗ T (5)

2 )⊗(α2/6)N ⊗ (T3 ⊗ T ′3 ⊗ T ′′3 )⊗(α3/3)N⊗
(S1⊗S′1⊗S′′1 )⊗(β1/3)(α4/3)N⊗(S2⊗S′2⊗S′′2 )⊗(β2/3)(α4/3)N⊗(S3⊗S′3⊗S′′3 )⊗(β3/3)(α4/3)N⊗(S4⊗S′4⊗S′′4 )⊗(β4/3)(α4/3)N .

The tensors T1, S1, S2, S3, S4 are constituent tensors of T⊗2CW , and the tensors T2, T3 result from merging
constituent tensors of T⊗2CW . Hence this construction gives a lower bound on V ∗ρ,2N (TCW ) matching the lower

bound obtained on the generalized value Vρ,N (T̃⊗2CW ). Taking the limit N →∞, we obtain a lower bound on

V ∗ρ (TCW ) mathcing the lower bound on the generalized value
√
Vρ(T̃

⊗2
CW ). Applying Theorem 3.2, we obtain

the same upper bound on ω.
Stothers [9, 5], Vassilevska-Williams [13] and Le Gall [7] generalized the ideas of Coppersmith and Wino-

grad even further, by applying their construction recursively. Stothers considered the tensor square T̃⊗4CW of

T̃⊗2CW , again repartitioned along similar lines. We can again make a list of the constituent tensors. Some

of these are matrix multiplication tensors resulting from merging constitutent tensors of (T̃⊗2CW )⊗2, which
ultimately result from merging constitutent tensors of T⊗4CW . Others are complicated tensors like the tensor
T4 considered above. Stothers computes the generalized value along the lines considered above, and then
applies the generalized Theorem 2.4. His construction therefore also gives a lower bound on the extended
value V ∗ρ (TCW ). The constructions of Vassilevska-Williams and Le Gall proceed in the same way to analyze

higher powers: Vassilevska-Williams analyzes T̃⊗8CW , and Le Gall analyzes T̃⊗16CW and T̃⊗32CW . All of these results
correspond to lwoer bounds on the extended value V ∗ρ (TCW ).
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4 Lower bound

In this section we prove an upper bound on V ∗ρ (TCW ). This correspond to a lower bound on the value of ω
which can be obtained using the technique of merging and the particular tensor TCW .

We start by characterizing the possible mergings of tensors.

Lemma 4.1. Let q ≥ 2, and suppose that S is a subset of the constitutent tensors T⊗NCW such that
∑
S ≈

〈n,m, p〉. Then there is a partition [n] = X ∪ Y ∪ Z such that the x, y, z-indices A,B,C (known collectively
as an index triple) of any tensor in S satisfy At = 0 for t ∈ X, Bt = 0 for t ∈ Y , and Ct = 0 for t ∈ Z.
These are called x-constant, y-constant and z-constant, respectively.

Proof. Recall that

〈n,m, p〉 =

n∑
i=1

m∑
j=1

p∑
k=1

xijyjkzki.

Since
∑
S ≈ 〈n,m, p〉, there is a way to assign to each x-variable appearing in S some (unique) value xij , to

each y-variable some value yjk, and to each z-variable some value zki, so that after all the assignments we
get exactly 〈n,m, p〉. Fix some such assignment.

Call a z-variable zki t-good if it appears in some tensor corresponding to some index triple (A,B,C) ∈ S
such that (At, Bt, Ct) = (1, 1, 0). The tensor in S corresponding to the index triple (At, Bt, Ct) can be
factored as T = T1⊗〈1, q, 1〉1,1,0⊗T2, where the displayed factor is the tth factor. The tensors T1, T2 involve
many variables. Choose single x, y, z-variables from each. The corresponding subtensor of T (obtained by
focusing on specific rows, columns and “stacks”) has the form

∑q
r=1XrYrZ. For some k, i, Z = zki. For

some functions α, β : [q] → [m], Xr = xiα(r) and Yr = yβ(r)k. In particular, the denotations of all variables
Xr are in the same “row” (first index), and the denotations of all variables Yr are in the same “column”
(second index).

Consider any z-variable zkI for I ∈ [n]. Some tensor in S must include the product xIα(1)yα(1)kzkI , say
the one with index triple (A′, B,C ′) (note that the y-index must indeed be B). Since Bt = 1, (A′t, Bt, C

′
t) ∈

{(1, 1, 0), (0, 1, 1)}. We want to show that (A′t, Bt, C
′
t) = (1, 1, 0). Suppose to the contrary that (A′t, Bt, C

′
t) =

(0, 1, 1). As before, some subtensor of the tensor corresponding to (A′, B,C ′) has the form
∑q
r=1X

′YrZ
′
r.

The same reasoning as before shows that the denotations of all variables Yr are in the same row, contradicting
our earlier observation that they must be in the same column (here it is essential that q ≥ 2). We conclude
that C ′t = 0 and so zkI is also t-good.

Similar reasoning applies for any z-variable zKi for K ∈ [p]. Some tensor in S must include the product
xiα(1)yα(1)KzKi, say the one with index triple (A,B′, C ′). Since At = 1, (At, B

′
t, C
′
t) ∈ {(1, 1, 0), (1, 0, 1)}. We

want to rule out the latter case. If (At, B
′
t, C
′
t) = (1, 0, 1) then some subtensor has the form

∑q
r=1XrY

′Z ′r.
It follows that the denotations of all variables Xr are in the same column, whereas earlier we observed that
they must be in the same row. Since q ≥ 2, we obtain a contradiction, and again conclude that C ′t = 0 and
so zKi is t-good.

We have shown that if zki is t-good then for all I ∈ [n] and K ∈ [p], the z-variables zkI , zKi are t-good.
It follows by transitivity that all variables zKI are t-good, and so t is z-constant. This shows that as long
as (At, Bt, Ct) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} for some index triple (A,B,C) ∈ S, the coordinate t is either
z-constant, y-constant or x-constant (respectively).

It remains to consider coordinates t such that for all index triples (A,B,C) ∈ S, it is the case that
(At, Bt, Ct) ∈ {(2, 0, 0), (0, 2, 0), (0, 0, 2)}. If only two of the options occur then the coordinate is z-constant
(if the third doesn’t appear), y-constant (if the second doesn’t appear) or x-constant (if the first doesn’t
appear), so it remains to rule out the case in which all of these options occur.

Say that an x-variable xij has t-type τ ∈ {0, 2} if the x-index A in which its denotation appears satisfies
At = τ , and define the t-type of y-variables and z-variables analogously. By assumption, there are some
variables xij , ypq, zrs of t-type 2. The product xipypqzqi corresponds to some index triple (A,B,C) ∈ S
satisfying Bt = 2. We conclude that (At, Bt, Ct) = (0, 2, 0) and so xip has t-type 0. Similarly, the product
xspyprzrs shows that ypr has t-type 0, and the product xijyjrzri shows that zri has t-type 0. But then the
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product xipyprzri corresponds to some index triple (A,B,C) ∈ S satisfying (At, Bt, Ct) = (0, 0, 0), which is
impossible. This contradiction completes the proof.

Given this characterization, we can prove our main theorem.

Theorem 4.2. For every q ≥ 2,

V ∗ρ (TCW ) ≤ max
α∈[0,1]

qαρ/3 exp2H( 2−α
3 , 2α3 ,

1−α
3 ) exp2[H( 1−α

2 , α, 1−α2 )ρ−23 ].

Proof. Given an integer N , we will bound V ∗ρ,N (TCW ). Let T be a zeroing degeneration T⊗nCW and T =
⋃
i Si

be a decomposition such that Si ≈ 〈ni,mi, pi〉 and V ∗ρ,N (TCW ) =
∑
i(nimipi)

ρ/3. We call each Si a line.
Lemma 4.1 shows that for each line Si, each t ∈ [N ] is either x-constant, y-constant or z-constant. If there
are γxN, γyN, γzN of each then we say that Si has line type τ` = (γx, γy, γz). There are O(N2) different line
types.

Each tensor T ∈ Si has an associated index triple (A,B,C), as in Lemma 4.1. We define the type of T ,
the x-type of A, the y-type of B and the z-type of C as in Theorem 2.5. There are O(N5) possible types.
We let Volτ (Si) be the sum of the volumes of all T ∈ Si of type τ . Since the volume is the number of basic
products xyz, it follows that nmp = Vol(

∑
Si) =

∑
τ Volτ (Si).

Consider a specific line type τ` = (γx, γy, γz) and a specific type τ = (αx, αy, αz, βx, βy, βz). We will
upper bound

Uρ,N (τ`, τ) =
∑

i : Si has type τ`

Volτ (Si)
ρ/3.

This implies an upper bound on V ∗ρ,N (TCW ) as follows. First,

∑
i : Si has type τ`

Vol(Si)
ρ/3 =

∑
i : Si has type τ`

(∑
τ

Volτ (Si)

)ρ/3

≤
∑

i : Si has type τ`

(
O(N5) max

τ
Volτ (Si)

)ρ/3
≤ O(N5) max

τ
Uρ,N (τ`, τ).

Summing over all τ`,
V ∗ρ,N (TCW ) ≤ O(N7) max

τ`,τ
Uρ,N (τ`, τ).

When taking the Nth root and letting N →∞, the factor O(N7) disappears. Therefore

V ∗(TCW ) ≤ max
τ`,τ

lim
N→∞

Uρ,N (τ`, τ)1/N . (1)

Let α = αx + αy + αz and β = βx + βy + βz, and define

Px = exp2H(αx + βy + βz, αy + αz, βx)N,

Py = exp2H(βx + αy + βz, αx + αz, βy)N,

Pz = exp2H(βx + βy + αz, αx + αy, βz)N,

Qx = exp2H
(αx+βy+βz−γx

1−γx ,
αy+αz

1−γx ,
βx

1−γx

)
(1− γx)N,

Qy = exp2H
(βx+αy+βz−γy

1−γy , αx+αz

1−γy ,
βy

1−γy

)
(1− γy)N,

Qz = exp2H
(βx+βy+αz−γz

1−γz ,
αx+αy

1−γz ,
βz

1−γz

)
(1− γz)N.

Here Px, Py, Pz are upper bounds on the number of different x, y, z-indices, respectively. The quantities
Qx, Qy, Qz are upper bounds on the number of different x, y, z–indices, respectively, that can appear in any
given line. The reason that Qx bounds the number of x-indices is that a γx-fraction of the indices are fixed at
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0, and these have to be deducted from the αx + βy + βz-fraction which is 0 among the entire N coordinates.
The resulting distribution then applies only to the remaining (1− γx)N coordinates.

From now on, we consider only lines of line type τ`. Let It, Jt,Kt be the number of x, y, z-indices,
respectively, in tensors of type τ in line St. Note that

∑
t It ≤ Px,

∑
t Jt ≤ Py,

∑
tKt ≤ Pz. As noted

above, It ≤ Qx, Jt ≤ Qy, Kt ≤ Qz. In order to upper bound Volτ (St), notice that if a matrix multiplication

tensor involves X,Y, Z each of x, y, z-variables, respectively, then its volume is
√
XY Z: indeed, for 〈n,m, p〉

we have X = nm, Y = mp, Z = pn and the volume is Vol(〈n,m, p〉) = nmp =
√
XY Z. Each x-index

contains exactly (αy +αz)N coordinates equal to 1, and so it corresponds to q(αy+αz)N variables. Therefore

Volτ (St) =

√
q(αy+αz)NItq(αx+αz)NJtq(αx+αy)NKt = qαN

√
ItJtKt.

In total, we obtain the upper bound

Uρ,N (τ`, τ) ≤ q(αρ/3)N
∑
t

(ItJtKt)
ρ/6.

Let us focus now on the quantity

σ =
∑
t

(ItJtKt)
ρ/6.

We want to obtain an upper bound on σ. We can assume that
∑
t It = Px,

∑
t Jt = Py,

∑
tKt = Pz. La-

grange multipliers show that this quantity is optimized when I
ρ/6−1
t (JtKt)

ρ/6, J
ρ/6−1
t (ItKt)

ρ/6,K
ρ/6−1
t (ItJt)

ρ/6

are all constant. Multiplying all these constraints together, we get that ItJtKt is constant (assuming ρ 6= 2)
and so It, Jt,Kt are constant. In order to find the constants, let π be the number of different summands.
Then It = Px/π, Jt = Py/π, Kt = Pz/π. On the other hand, It ≤ Qx, Jt ≤ Qy, Kt ≤ Qz, and so

π ≥ max(Px/Qx, Py/Qy, Pz/Qz) ≥ 3
√
PxPyPz/QxQyQz. Therefore

σ ≤ max
π≥ 3
√
PxPyPz/QxQyQz

π1−ρ/2(PxPyPz)
ρ/6.

Since 1− ρ/2 ≤ 0, we would like π to be as small as possible, and so

σ ≤ (PxPyPz/QxQyQz)
1/3−ρ/6(PxPyPz)

ρ/6 = (PxPyPz)
1/3(QxQyQz)

(ρ−2)/6.

Altogether, we obtain the upper bound

Uρ,N (τ`, τ) ≤ q(αρ/3)N (PxPyPz)
1/3(QxQyQz)

(ρ−2)/6.

The concavity of the entropy function shows that

1

N
log(PxPyPz)

1/3

=
H(αx + βy + βz, αy + αz, βx) +H(βx + αy + βz, αx + αz, βy) +H(βx + βy + αz, αx + αy, βz)

3

≤H(α+2β
3 , 2α3 ,

β
3 ) = H( 2−α

3 , 2α3 ,
1−α
3 ).

Similarly,

1

N
log(QxQyQz)

1/2

=
1− γx

2
H(

αx+βy+βz−γx
1−γx ,

αy+αz

1−γx ,
βx

1−γx ) +
1− γy

2
H(

βx+αy+βz−γy
1−γy , αx+αz

1−γy ,
βy

1−γy ) +
1− γz

2
H(

βx+βy+αz−γz
1−γz ,

αx+αy

1−γz ,
βz

1−γz )

≤H(α+2β−1
2 , α, β2 ) = H( 1−α

2 , α, 1−α2 ).

Therefore
Uρ,N (τ`, τ)1/N ≤ qαρ/3 exp2H( 2−α

3 , 2α3 ,
1−α
3 ) exp2[H( 1−α

2 , α, 1−α2 )ρ−23 ].

The theorem now follows from (1).
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The following table gives the corresponding values of ω (third column). The merging technique cannot
produce better bounds on ω. For comparison, the second column presents the values of ω obtained through
computing the value.

q Vω(TCW ) = q + 2 V ∗ω (TCW ) = q + 2
2 2.698562159324317 2.254065971513967
3 2.4739043228079143 2.2725388264017234
4 2.4141016915313966 2.2907590555822686
5 2.393410050907498 2.3078038096573787
6 2.387189908200805 2.323464284487939
7 2.387427468309851 2.3377704174176306
8 2.3908116579971983 2.3508319889917244
9 2.3957738127065547 2.3627788661850917

The best known upper bound on ω, due to Le Gall [7], obtained for q = 5 and T̃⊗32CW , is ω < 2.3728639.

Theorem 4.2 shows that using q = 5 and T̃⊗NCW for any N , the best bound on ω that can possibly be obtained
is ω < 2.3078039.

5 Discussion

Our main result shows that the conjecture ω = 2 cannot be proved using the merging technique applied to
the tensor TCW . On the other hand, we believe that the technique can be used to improve known bounds
on ω. We believe that it is possible that

V ∗ρ (TCW ) > lim sup
n→∞

Vρ(T̃
⊗n
CW ).

The reason is that Vρ,N/n(T̃⊗nCW ) corresponds to a lower bound on V ∗ρ,N (TCW ) in which merging is done in
groups of n coordinates at a time, for fixed n; if the merging width n is allowed to vary with N , then a
better lower bound on V ∗ρ,N (TCW ) can potentially be obtained.

Our main result gives a limit on the possible upper bounds on ω obtainable for given q ≥ 2 which
deteriorates as q gets smaller. In contrast, for known constructions the best q is q = 5 (or q = 6 for the
construction without merging). This leads us to believe that our upper bound on the extended value is not
tight. We leave it as an open question to determine the correct value of V ∗ρ (TCW ).

A similar issue concerns the generalized value Vρ(T̃
⊗n
CW ). The methods of Theorem 2.5 can be used to

calculate the value for n = 1 and n = 2, but already for n = 4 there is a gap between the lower bound given
by the construction in Stothers [9, 5] and the upper bound given by the method of Cohn et al. [3]; more
details appear following Theorem 2.5. We conjecture that the lower bound is tight, but have so far been
unable to prove this.

Research in matrix multiplication has proceeded in the past by finding new techniques and new identities
(corresponding to upper bounds on ranks or border ranks of tensors). Notwithstanding recent developments,
this process seems to have stagnated. In this paper we propose a new technique that could potentially lead to
improved bounds on ω. However, we find the most promising research direction to be finding new identities.
Perhaps a systematic search for new identities can be automated and could lead to significantly improved
upper bounds on ω.
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