
Factorization Methods: Very Quick Overview

Yuval Filmus

October 17, 2012

1 Introduction

In this lecture we introduce modern factorization methods. We will assume
several facts from analytic number theory. The analyses we present are not
formal, but serve well to explain why the algorithms work. Also, since some
of the algorithms are quite intricate, we won’t give a full description of them,
rather only their flavor.

Our base line algorithm is trial division, which will factor an integer n in
time proportional to

√
n. However, if n has a small prime factor p, then this

factor would be found much faster, viz. in time p. Several of the algorithms
we consider below have this property.

We will be mostly interested in the difficult RSA case, viz. n = pq with
p, q primes of size approximately

√
n. This case is interesting, since if you

can factor n then you can break the corresponding cryptosystem.

2 Pollard’s rho

Suppose that x, y are random integers that happen to satisfy x ≡ y (mod p)
for some factor p of n. With high probability (at least in the RSA case),
in fact (n, x − y) = p, so such a pair leads to a factorization of n. How
do we find such a pair of integers? Suppose that we are supplied with N
random integers modulo n. How many such pairs x, y do we expect? About(
N
2

)
/p ≈ N2/2p. Thus, given N ≈

√
2p random integers, we expect there to

be a pair x, y which leads to a factorization of p. The question is how to find
such a pair efficiently (testing all pairs will lead to a trivial O(p) algorithm).

The trick is to have the numbers form a pseudorandom sequence. Decide
on some pseudorandom rational function ϕ : Zn −→ Zn, and form a sequence
xi+1 = ϕ(xi), with some arbitrary starting point. Note that since ϕ is
defined only using arithmetic operations, then the sequence law xi+1 = ϕ(xi)

1

holds also modulo p. After about
√

2p iterations, the sequence will close
on itself, roughly at the middle. This eventually periodic structure of the
sequence is the origin of the name ρ. The question is how to find two points
xi, xj that satisfy xi ≡ xj (mod p).

If we know in advance the size of the smallest factor p of n (as in the
RSA case), then we can start with x√2p, which should be on the cycle, and
compare each further value to it; after we finish the entire cycle, we will
reach a point x√2p+` satisfying (x√2p+` − x√2p, n) = p (the GCD can also
be larger, but we expect that to happen with negligible probability). The
total running time is at most 2

√
2p, which is O(4

√
n) in the RSA case.

In case we do not have an estimate of p, we can use one of the following
two methods, which are in fact slightly faster than the method presented.
The first method (Floyd’s) compares xt to x2t constantly; we detect the
cycle when t is larger than the initial segment, and is a multiple of the cycle
length. The second method (Brent’s) comprises of a list of snapshot times
ti. Each xt is compared to the most recent snapshot. Taking ti = 2i results
in a better algorithm than Floyd’s.

3 Pollard’s p− 1

The next algorithm we describe is Pollard’s p − 1 algorithm, on which one
of the fastest algorithms around, Lenstra’s ECM, is based. The idea is to
use Fermat’s little theorem: ap−1 ≡ 1 (mod p). Consider the RSA setting.
Suppose we find an integer N which satisfies p− 1 | N but q − 1 - N . Then
for general a, aN ≡ 1 (mod p) but aN 6≡ 1 (mod q) (this fails to hold in the
lucky but rare case when (a, n) > 1). Therefore, in that case (aN−1, n) = p.

We are going to search systematically for such an N . It is extremely
likely that the largest prime factor P of p − 1 is different than the largest
prime factor Q of q − 1. Without loss of generality, P < Q. The following
N will then factor n:

N =
∏
π≤P

πblogn/ log πc,

where the product is over all primes less than P . Pollard’s method works
by starting with some a and repeatedly raising it to the πblogn/ log πc power,
constantly checking whether for the current exponent N , (aN − 1, n) is
non-trivial. Raising a number to an exponent k can be done using 2 log k
multiplications (using repeated squaring), and so if we have to go up to P ,
the total amount of work is proportional to P logP , or even to P if we take

2

care to only peruse prime π (the prime number theorem shows that there
are P/ logP primes below P).

What is the efficiency of this method? The largest prime factor of a
random integer m is about m0.62433, where 0.62433 is the Golomb-Dickman
constant. Therefore, we expect the method to run in time p0.62433 for the
smallest prime factor p of n. In the RSA case, this boils down to n0.31217.
In the worst case, (p− 1)/2 is also prime (such primes are known as Sophie
Germain primes), and then the running time is the same as trial division.

An optimization which is used in practice takes notice of the fact that
the second largest prime factor is of size only m0.20958. Therefore, we ex-
pect there to be only one prime factor larger than m0.20958. Thus, once we
get to aN(m0.20958), we only need to test the numbers aN(m0.20958)P with P
starting with m0.20958. In each step, instead of raising to the power P , we
only multiply by a, which is significantly faster. This optimization doesn’t
considerably improve the asymptotic running time, but is very useful in
practice.

We comment on the amusing fact that the expected exponents of the
largest prime factors are the same as the expected lengths of the largest
cycles in a random permutation, as a fraction of the number of points! The
constant 0.62433 is the Golomb-Dickman constant. The classical paper ana-
lyzing cycle lengths in permutations is Ordered Cycle Lengths in a Random
Permutation by Shepp & Lloyd. Knuth & Prado (Analysis of a simple factor-
ization algorithm) have done the calculations for factorizations, amazingly
getting the same results. See also Granville’s The Anatomy of Integers and
Permutations.

4 Williams’ p+ 1

Pollard’s method can be adapted to a slightly different setting, where re-
liance on p−1 is replaced by reliance on p+1. The trick is to replace ordinary
powers with traces of powers in a quadratic field, picking an element of order
p+ 1 (the multiplicative group of the field has order p2 − 1).

Given a parameter A, define a Lucas sequence Vi by

V0 = 2,

V1 = A,

Vm = AVm−1 − Vm−2.

We know that Vm = C1α
m
1 + C2α

m
2 , where α1, α2 are the roots of the

characteristic polynomial t2−At+1 (given that α1 6= α2). The roots of this

3

http://www.jstor.org/stable/1994483
http://www.jstor.org/stable/1994483

polynomial are

α1,2 =
A±
√
A2 − 4

2
.

It is easy to verify that C1 = C2 = 1, and so we obtain the formula

Vn =

(
A+
√
A2 − 4

2

)n
+

(
A−
√
A2 − 4

2

)n
.

Now suppose that the entire computation is done modulo p for some prime p.
We can think of the two roots α1, α2 as elements of the field Zp[

√
A2 − 4].

If A2 − 4 is a quadratic non-residue, then this is a quadratic field, and
Vn is the trace of αn1 . Moreover, (A2 − 4)(p−1)/2 ≡ −1 (mod p), and so(

x+ y
√
A2 − 4

)p
= x− y

√
A2 − 4 in Zp[

√
A2 − 4].

Thus αp1 = α2, and so αp+1
1 = αp+1

2 = α1α2 = 1. It immediately follows that
Vc(p+1) ≡ 2 (mod p) for any c.

If, on the contrary, A2 − 4 is a quadratic residue, then Zp[
√
A2 − 4]

reduces to Zp. Thus

Vc(p+1) = α
c(p+1)
1 + α

c(p+1)
2 ≡ α2c

1 + α2c
2 (mod p).

Since α1α2 = 1, we have

(α2c
1 − 1)(α2c

2 − 1) = 2− α2c
1 − α2c

2 .

Thus Vc(p+1) ≡ 2 (mod p) if and only if α2c
1 ≡ α2c

2 ≡ 1 (mod p).
Summarizing, for general A which are quadratic non-residues modulo p,

we have Vc(p+1) ≡ 2 (mod p) but Vc(q+1) 6≡ 2 (mod q) for a prime q 6= p
unless (q−1)/2 | c. This prompts using an algorithm very similar to Pollard’s
p − 1 method: compute VN for the same values of N used by Pollard’s
method; if N embodies all primes up to the highest prime dividing p + 1,
then we expect (VN − 2, n) = p.

There are two problems with the method as stated. First, the method
only works if A2 − 4 is a quadratic non-residue modulo p. Fortunately, for
random A we expect that to hold with probability roughly 1/2 (experiments
verify this), and so we can find a good A by simply trying a few random
values.

4

The second problem is how to compute the sequence Vm efficiently. We
use the following identity, which ultimately follows from α1α2 = 1:

VnVm = (αn1 + αn2)(αm1 + αm2)

= αn+m1 + αn+m2 + (αn−m1 + αn−m2)(α1α2)
m

= Vn+m + Vn−m.

Using this identity we can mimic exponentiation using repeated squaring.
Furthermore, all computations can be done modulo n, so that the values do
not blow up.

5 Elliptic Curve Method

The trouble with Pollard’s p−1 method and Williams’ p+ 1 method is that
we have to rely on the random fact that p± 1 has small prime factors. The
number p − 1 itself is simply the order of the group Z×p . What if we could
pick another group related to p of different length?

Such groups appear in the form of elliptic curves, as suggested by Lenstra.
An elliptic curve is the set of solutions of an equation of the form y2 =
ax3 + bx+ c. Each elliptic curve, along with a special point at infinity which
we designate O, has an associated group (defined over any field). The group
action is defined as follows: to calculate X + Y , draw a line between X
and Y ; usually the line will touch the curve in a third point Z; the sum is
the conjugate point to Z (with opposite sign of y). This funny operation
turns out to be associative. In terms of the (x, y) coordinates, addition is a
rational mapping, that is the result is a quotient of two polynomials in all
the inputs. Division by zero corresponds to the point at infinity, which is
also the identity of the group.

How many points are on the curve mod p (i.e. where x, y ∈ Zp)? For a
random x, we expect ax3 + bx+ c to be a quadratic residue with probability
about half, in which case we get two solutions for y; if it’s a quadratic non-
residue, we get no solutions. Thus, we expect the number of points (not
counting O) to be about p. The standard deviation is about

√
p, so we

expect the number of points to be roughly p± C√p for some small C.
Indeed, Hasse’s theorem tells us that the number S of points, including

the point at infinity, satisfies |S− p| ≤ 2
√
p. For a random curve, we expect

the size to vary quite uniformly along this range. This number replaces p−1,
which is the number of points in the multiplicative group mod p.

How do we adapt Pollard’s p − 1 algorithm to this new setting? We
start with a point a on the elliptic curve. Instead of raising it to powers,

5

we multiply it by repeated addition using the rational addition formula. If
N divides the order of the elliptic curve modulo p but not the order of the
elliptic curve modulo all other prime factors, then Na = O modulo p but
Na 6= O modulo n/p. We mentioned earlier that the point O is obtained
when the denominator is zero in the addition formula. In this case the
denominator d will be zero only modulo p, and so (d, n) = p.

In slightly more detail, the addition formula requires us to calculate
inverses of elements modulo n. This is done using the extended GCD algo-
rithm: if (n, x) = 1 then this algorithm finds a, b such that an + bx = 1,
and so b is the inverse of x. When we are about to reach a point which
is the identity modulo p but not modulo n/p, the denominator in question
will have non-trivial GCD with n, something which we can discover while
running the GCD algorithm.

Why have we gone to all this trouble? The reason is that if we look at a
large number of integers, we have a fair chance of finding one with only small
factors — such numbers are called smooth. Explicitly, the probability that
a number m will have all its prime factors at most m1/u is approximately
1/uu (the exact expression is given by the Dickman function). If we take
about uu random elliptic curves and run the above algorithm up to p1/u (i.e.
up to n1/2u), the total running time will be

uup1/u = exp

(
u log u+

log p

u

)
.

We want to minimize this quantity. The minimum is obtained when the
derivative log u+ 1− log p/u2 is zero. Thus approximately u2 ≈ log p/ log u,
so that log u ≈ 1

2 log log p. We conclude that u ≈
√

2 log p/ log log p and the
total running time is about

exp

(
u log u+

log p

u

)
≈ exp

(√
2 log p log log p

)
.

A detail which we did not cover is how to find a random elliptic curve
with a point on it. One way is to start with a random point (x, y) and
random a, b, and calculate c via c = y2 − ax3 − bx.

As m to infinity, the fraction of integers at most m having all their prime
factors at most m1/u tends to a limit ρ(u), where ρ is the Dickman function.
The Dickman function satisfies the differential equation uρ′(u) = −ρ(u−1),
with initial conditions ρ(u) = 1 whenever u ≤ 1 (trivially); the idea behind
this equation is to consider the largest prime factor of any smooth integer
in the range, using the prime number theorem to estimate the number of
primes of a given size.

6

We are interested in a lower bound of the formm/uu. There is an easy ar-
gument giving a somewhat worse result: consider all roughlym1/u/(logm1/u) =
um1/u/ logm primes of size at most m1/u. If we multiply any u of them,
we get an integer of size at most m, thus giving a lower bound of roughly(
um1/u/ logm

u

)
≈ m/(logm)u. This estimate turns out to be good enough in

some cases, for example it is used by Dixon’s for his provable version of the
quadratic sieve.

For more about the Dickman function, see Granville’s Smooth numbers:
computational number theory and beyond.

6 Continued Fractions

The next algorithm we present is based on continued fractions. The idea that
we present can be developed more formally, and this line of work culminated
in Shanks’ algorithm SQUFOF.

The basic idea is to use good rational approximations to
√
n. For every

b, we can find a a such that |a/b −
√
n| ≤ 1/b. Partial convergents of the

continued fraction of
√
n satisfy the stronger property |a/b −

√
n| ≤ 1/b2.

This implies that a2/b2 is a good approximation to n:∣∣∣∣a2b2 − n
∣∣∣∣ =

∣∣∣a
b
−
√
n
∣∣∣ ∣∣∣a
b

+
√
n
∣∣∣ ≤ 2

√
n

b2
.

We note that the inequality is only approximate if a/b >
√
n. Next, we

multiply both sides by the denominator b2:

|a2 − nb2| ≤ 2
√
n.

The probability that the right-hand side is a square (with the correct sign;
this corresponds to considering only the odd convergents) is about 4

√
n. If

it is ±r2, we obtain the equation

a2 ≡ r2 (mod n).

How does this equation help us? Consider the RSA case. How many square
roots can a number have? Modulo p it has two square roots, and modulo q
it has two square roots, and so four in total. With probability one half, a
and r will be equivalent modulo only one of the prime factors of n, say p.
In that case, p | a2 − r2 but q - a2 − r2, so that (a2 − r2, n) = p. The GCD
is easily computable using the Euclidean algorithm, and so the resulting
factorization method has complexity 4

√
n.

7

http://www.dms.umontreal.ca/~andrew/PDF/msrire.pdf
http://www.dms.umontreal.ca/~andrew/PDF/msrire.pdf

There are some technicalities to consider: first, the partial convergents
of the continued fraction can be rather large — indeed, they grow exponen-
tially. Second, in order to compute the continued fraction naively, we need
to go through high precision calculations, which could also be costly. The
second problem is solved by noticing that the residuals are always of the form
α+ β

√
n, and so they can be stored implicitly using such a representation.

An even better representation is a quadratic form Ax2 + Bx + C, the
current residue is a root of which. It is well-known that the coefficients
A,B,C are bounded (that’s the reason the continued fraction is eventually
periodic), and one can actually calculate the next residual from the preceding
one given quadratic form representation. This representation also allows us
to calculate the partial convergents (in fact, we only need the numerators)
modulo n, and so the algorithm is practical.

Shanks’ SQUFOF is an algorithm based intuitively on these ideas but
cast entirely in the language of quadratic forms and reductions thereof.
SQUFOF can guarantee that once a square is found, it will result in a non-
trivial factorization. For more details, consult Square Form Factorization or
Continued fractions and Parallel SQUFOF.

7 Quadratic Sieve

Pomerance’s quadratic sieve also attempts to find two numbers x, y such
that x2 ≡ y2 (mod n), but using a completely different approach. For a
positive number x < n, denote ψ(x) = x2 mod n. This function defines
a homomorphism, i.e. ψ(xy) ≡ ψ(x)ψ(y) (mod n). Our general approach
will be to find a set of integers xi such that

∏
ψ(xi) is a square. Since∏

ψ(xi) ≡
∏
x2i (mod n), this will give us the required factorization.

How do we find a set of integers such that
∏
ψ(xi) is a square? We

will use the factorizations of ψ(xi). That might seem pointless, but we will
only consider ψ(xi) with easy factorizations, more specifically B-smooth
numbers (number all of whose prime factors are at most B). How do these
factorizations help us? An integer is square if in its prime factorization, all
the exponents are even. This leads us to consider exponent vectors, which
give for each ψ(xi) the exponents of all primes ≤ B. In fact, we only care
about the parity of the exponents, and so the exponent vectors are bit vectors
of length B/ logB (the approximate number of primes).

Multiplying two numbers corresponds to adding their exponent vectors.
Therefore, given a list of smooth numbers ψ(xi) and their exponent vectors,
finding a set whose product is a square is tantamount to finding a subset

8

http://www.ams.org/mcom/2008-77-261/S0025-5718-07-02010-8/S0025-5718-07-02010-8.pdf

of the exponent vectors summing to the zero vector. This much we can
accomplish using Gaussian elimination! The number of exponent vectors
needed to guarantee a non-trivial linear combination summing to zero is
B/ logB + 1.

We make two comments: first, we can get easy squares by reusing the
same number twice: indeed, ψ(xi)

2 is a square. However, the resulting
equation x4i ≡ x4i (mod n) clearly does not lead to factorization. In general,
there is no point in reusing the same number twice. Second, our exponent
vectors only contain parities, so how do we calculate the square root? This
can be done easily and quickly using a binary search approach involving only
shifts, adds and comparisons.

Let us describe the algorithm so far: we pick random numbers and test
them for B-smoothness; this can be done by trying to factor them (a better
method will be described later). When we have B of them, we use Gaussian
elimination to find a subset of them {xi} that multiplies to a square. We
then get an equation

∏
x2i ≡

∏
ψ(xi) (mod n). We attempt to factor n by

computing the GCD (
∏
xi−

√∏
ψ(xi), n), which we expect to be non-trivial

half the time (for the RSA case).
When picking random numbers, it is best to pick them quite close to

√
n,

since ψ(b
√
nc+ k) ≈ 2k

√
n+ k2 will be quite small by itself. For simplicity,

let’s assume that these numbers are O(
√
n); in practice they are somewhat

bigger, but this can be avoided using different ψ’s (this is known as the
MPQS, described below).

How should we choose B? If B = n1/2u, then the total running time
of the algorithm is n1/2uuu + n3/2u. This is an expression very similar to
the one we got for the ECM, with essentially the same solution, under the
substitution p =

√
n. Hence the running time (ignoring the linear algebra

part) is
exp(

√
log n log logn).

Using efficient O(N2) linear algebra (see later), the linear algebra part has
similar running time. Note that contrary to the ECM, the running time
does not depend on p.

So far we’ve explained the quadratic part of the algorithm’s name; what
about the sieve? The sieve is an efficient way of finding smooth numbers.
One could test for smoothness by trial division, but this is quite slow. The
correct way is to use a sieve somewhat analogous to Eratosthenes’. Consider
some small prime p. When does p divide ψ(b

√
nc+ k)? Recall that

ψ(b
√
nc+ k) = b

√
nc2 − n+ 2b

√
nck + k2.

9

This is a quadratic polynomial in p. If we solve this quadratic equation
modulo p, then we can list all k such that p | ψ(b

√
nc + k) by taking each

of the two solutions K modulo p and jumping ahead p steps at a time. In
order to find smooth integers this way, we can make a list of ψ(b

√
nc + k)

for a range of k’s, go over all primes p, for each prime go over all the values
of k corresponding to multiples of p, and divide them by p. When we’ve
reached our bound B, integers which have been reduces to 1 are smooth.
We can then refactor them to calculate the exponent vector.

A more efficient method of executing the sieve without repeated divi-
sions (which are time consuming) subtracts log p from an initial logψ (or its
estimate) instead of dividing by p. Numbers whose remaining value is small
are probably smooth.

In practice, two further optimizations are made. First, just as in the
p − 1 algorithm, we can have two smoothness thresholds, i.e. require that
the numbers will factor almost completely within a bound B0, perhaps with
an additional prime factor within B1. We then “pair” numbers with the
same additional prime factor, or reduce even more general “cycles”.

Second, the matrix we need to solve in the linear algebra part is sparse,
and in that case there are methods that outperform Gaussian elimination,
including “block Lanczos” (basically an adaptation of the power method).
We note that there are also theoretic sub-cubic methods (corresponding to
the matrix multiplication exponent ω; the current champion is B2.376), but
these aren’t efficient in practice.

We conclude with a toy example, illustrating the factoring of 77:

202 = 400 ≡ 15 = 3 ∗ 5 (mod 77),

262 = 676 ≡ 60 = 22 ∗ 3 ∗ 5 (mod 77),

5202 = (20 · 26)2 ≡ (2 · 3 · 5)2 = 302 (mod 77),

(520− 30, 77) = (490, 77) = 7.

7.1 MPQS

A note about MPQS, used to reduce the size of of integers required to be
smooth, is in order. Instead of considering only ψ(x) = x2 − n, we consider
quadratic polynomials of the form f(x) = Ax2 + Bx+ C with A = α2 and
discriminant B2 − 4AC = n. We can complete the square:

f(x) = (αx)2 +Bx+C =

(
αx+

B

2α

)2

− B2

4A
+C =

(
αx+

B

2α

)2

− n

(2α)2
.

10

We conclude that

(2α)2f(x) ≡ (2Ax+B)2 (mod n).

If A ≈
√
n/2x and B is small then 4Af(x) (mod n) is O(

√
n), i.e. it is small

and so has higher chance to be smooth. Since 4A = (2α)2 is a square, we
can use this just like the relations we’ve described earlier.

How do we find such A,B,C? Choose a bound for x, and now our goal
is to get A ≈

√
n/2x and B small. Find a prime α close to 4

√
n/
√

2x (using
a probabilistic prime checking algorithm), such that n is a quadratic residue
with respect to α (this happens with probability half), say n ≡ B2 (mod α)
(square roots modulo primes can be effectively found), where we can assume
B is odd (the sum of the square roots is α so one is even and the other is
odd); note that B = O(4

√
n). Thus there exists C such that B2 − AC = n.

Since B is odd, B2 ≡ 1 (mod 4). If n ≡ 1 (mod 4) then 4 | C (because A
is odd) and we’re done. If n = 4m + 3, then AC ≡ 2 (mod 4), and so 2C
is integral. This means that we can use the polynomial 4Ax2 + 4Bx + 4C
instead.

7.2 Provable variants

A variant of the quadratic sieve was rigorously analyzed by Dixon in Asymp-
totically fast factorization of integers. Dixon’s idea is to consider arbitrary
integers x rather than integers slightly above

√
n. This ensures that all

square roots modulo n of ψ(x) are equally likely to be chosen, and so makes
it unlikely that

∏
ψ(xi) ≡

∏
x2i (mod n) leads to a trivial factorization. In-

deed, assuming n = pq, suppose that
√∏

ψ(xi) ≡
∏
xi modulo both p and

q. The integer xi has three “siblings” with the same value of ψ(xi). Two of
these, if they replace xi, will lead to factorization. Since all four are equally
likely, the procedure succeeds with probability 1/2.

Dixon’s algorithm was improved by Pomerance in Fast, rigorous fac-
torization and discrete logarithm algorithms and by Vallée in Generation
of elements with small modular squares and provably fast integer factor-
ing algorithms. The fastest rigorously analyzed factoring algorithm replaces
squares with arbitrary binary quadratic forms. This algorithm is analyzed
by Lenstra and Pomerance in A Rigorous Time Bound for Factoring Inte-
gers. It runs in time and space exp

(
(1 + o(1))

√
log n log log n

)
.

11

http://www.jstor.org/stable/2007743
http://www.jstor.org/stable/2007743
http://www.math.dartmouth.edu/~carlp/disclog.pdf
http://www.math.dartmouth.edu/~carlp/disclog.pdf
http://www.jstor.org/stable/2008412
http://www.jstor.org/stable/2008412
http://www.jstor.org/stable/2008412
http://math.dartmouth.edu/~carlp/PDF/paper85.pdf
http://math.dartmouth.edu/~carlp/PDF/paper85.pdf

8 Number-Field Sieve

In the quadratic sieve we defined a homomorphism ψ and looked for numbers
xi such that ψ(xi) is a square. We then used an equation

∏
x2i ≡

∏
ψ(xi)

(mod n) in order to try to factor n. The square on the left came for free,
but we had to work hard for the square on the right: we needed to gather
enough smooth numbers ψ(xi) so that we could find a subset multiplying to
a square using linear algebra. Pollard’s NFS uses two different homomor-
phisms, and this time there is no square coming for free. However, the size
of the numbers that are required to be smooth is lowered from

√
n to about

exp((log n)2/3(log log n)1/3), which makes that event much more probable.
Let d be a small integer, and m = bn1/dc. There exists a d-degree integer

polynomial P with “small” coefficients satisfying P (m) ≡ 0 (mod n) (we
will later construct it explicitly). Choose a root α of P (m), and consider the
number field F = Z[α]. Any number in F can be written as a polynomial
in α. Since P (m) ≡ 0 (mod n), we can think of m as α mod n. More
explicitly, the operation of substituting m for α is a homomorphism from F
to Zn. Denote this operation by φ.

Define α(x, y) = x + αy and β(x, y) = x + my. Since φ is a homomor-
phism, we have

φ
(∏

α(xi, yi)
)
≡
∏

β(xi, yi) (mod n).

Our goal is clear now: we would like to find pairs (x, y) such that both
α(x, y) and β(x, y) are smooth, and then we can attempt to factorize n just
like in the quadratic sieve. It is clear what smoothness means for β(x, y),
but what does it mean for α(x, y)?

The norm operator is defined for algebraic number fields as the product
of all conjugates (conjugates are obtained by replacing α by any other root
of P). The norm is multiplicative, and so if z ∈ F is a square then so is N(z).
The converse is almost true: we can add some more “statistics” (quadratic
characters) which are also guaranteed zero for squares, and given we take
enough of them, a number whose norm is square and all of whose statistics
are zero is most probably square. These statistics are homomorphisms from
F to Z2, so they fit nicely to our scheme. The final ingredient, square root
extraction in F , is arcane (F need not be a unique factorization domain!)
but possible.

So smoothness for an element of F corresponds mainly to smoothness
of its norm. If P (t) =

∑
cit

i then it turns out that the norm of x − αy is∑
cix

iyd−i (recall that d = degP), and this number is small if d, ci, x, y are

12

small. In order to explain exactly how small, we need to present a sample
polynomial P . Writing n in base m is tantamount to finding an expression
n =

∑
cim

i with 0 ≤ ci < m. Note that since m = bn1/dc, we can convert
this expansion into a degree d polynomial.

If |x|, |y| ≤ B for some bound B then |α(x, y)| ≤ (d + 1)mBd+1 and
|β(x, y)| ≤ (m+ 1)B. Since we want both α(x, y) and β(x, y) to be smooth,
we can think of them as one big number of size roughly M = dm2Bd+2

which is required to be smooth. Given a list of numbers of magnitude M ,
choosing z = exp

√
(1/2) logM log logM as a smoothness bound, if we have

at least N = exp
√

2 logM log logM of them, then we expect to find more
than z smooth ones; this choice of z minimizes N . Equating N and B2, we
can express B in terms of M , namely B ≈ z. One can now calculate the
optimal choices of B and d minimizing the running time B2, which are

B = exp
(

(89 log n)1/3(log log n)2/3
)
,

d = exp

(√
2/(89)1/3(log n/ log log n)1/3

)
.

The resulting running time is

exp
((

64
9 log n

)1/3
(log log n)2/3

)
.

This is significantly faster than any other known method.
We mention in passing that for some numbers, a polynomial P can be

found which is sparse, and this leads to a better constant in the exponent
(replacing 64/9). The general method is called the GNFS, and the special
method in which P is sparse is called the SNFS. In fact, even for the GNFS
the constant can be reduced somewhat employing trickery.

More material on the NFS can be found in Pomerance’s The Number
Field Sieve, and in the book The Development of the Number Field Sieve.

9 Summary

We’ve presented several different factorization methods. Let us summarize
them and their running time, where n is an integer, and p is its smallest
prime factor:

• Pollard’s rho algorithm — O(
√
p). Finds x ≡ y (mod p) in a pseudo-

random sequence.

13

• Pollard’s p− 1 algorithm — O(P), where P is largest prime factor of
p− 1. Calculates (xP ! − 1, n) for iteratively increasing P .

• Williams’ p+ 1 algorithm — O(P), where P is largest prime factor of
p + 1. Calculates (TrαP ! − 2, n) for iteratively increasing P and an
element α of order p+ 1 in some quadratic field.

• Lenstra’s ECM — exp(
√

2 log p log log p). Same as Pollard’s p − 1,
replacing Z×p with a random elliptic curve with smooth size modulo p.

• Shanks’ SQUFOF — O(4
√
n). Uses reduction of quadratic forms to

find x2 ≡ y2 (mod n), then calculates (n, x± y).

• Pomerance’s QS — exp(
√

log n log log n). Finds a host of x such that
ψ(x) = x2 (mod n) is smooth (by sieving). Solves a set of linear
equations to find a square of the form

∏
ψ(x), which is equivalent to∏

x2 modulo n. Proceeds as in SQUFOF.

• Lenstra’s NFS — exp(c(log n)1/3(log log n)2/3). Defines a number field
with a homomorphism φ into Z×n . Finds smooth number, in the num-
ber field and Z×n , which are equivalent under φ. Solves a set of linear
equations to find a set which multiplies to squares on both sides. Pro-
ceeds as in SQUFOF and QS.

The methods we’ve presented cannot, as yet, be analyzed formally as stated.
However, as we have described above, there are provable variants of the
quadratic sieve with roughly the same running time.

A complementary question is the Discrete Logarithm problem, which
is the basis of many practical cryptographic primitives (such as the Diffie-
Hellman key exchange algorithm). Given a prime p, a generator g of Z×p
and x ∈ Z×p , find an exponent y such that x ≡ gy (mod p). Some of the
algorithms for solving this problem use ideas similar to the ones used in
integer factorization.

14

	Introduction
	Pollard's rho
	Pollard's p-1
	Williams' p+1
	Elliptic Curve Method
	Continued Fractions
	Quadratic Sieve
	MPQS
	Provable variants

	Number-Field Sieve
	Summary

