
On Compositions of Quadratic Forms in Many Variables1

Identities like (x2 + y2)(z2 + w2) = (xz − yw)2 + (xw + yz)2 and Lagrange’s identity are useful
in Number Theory; when do they exist? To answer such a question, it is necessary first to put it in
clear terms. We ask for what values of m, n, ` does there exist an identity of the form

(x2
1 + x2

2 + · · ·+ x2
n)(y2

1 + y2
2 + · · ·+ y2

m) = (z2
1 + z2

2 + · · ·+ z2
` ),

where each zi is a bilinear function of the m + n variables x1 up to xn and y1 up to ym. What
is a bilinear function (or combination) and why do we require it? It is simply a sum of the form∑

cijxiyj. This is exactly the form of the known identities, and is also very natural. In this paper
we are only concerned in the case n = m = `. There are known identities for n = 1, 2, 4, 8. The
identity for n = 1 is simply x2y2 = (xy)2, the identity for n = 2 was listed above, the identity for
n = 4 is Lagrange’s identity, and the identity for n = 8 is too long and cumbersome to write down
here2. We note that the identity for n = 1 comes from real multiplication, the one for n = 2 comes
from complex multiplication, the one for n = 4 comes from quaternion multiplication, and the one
for n = 8 comes from octonion multiplication3. In fact, in some sense, these are the only possible
identities (we do not pursue this here).

How can we represent such a composition formula? In other words, how do we represent the
bilinear combinations forming the zis? We shall use an n×n matrix whose entries are linear functions
of the xis (functions of the form

∑
cixi). Each row represents a different bilinear combination.

Denoting by aij the element at row i and column j, we have zi =
∑

aijyj. When does such a matrix
A represent a composition formula? Let us compute:

n∑
i=1

z2
i =

n∑
i=1

(
n∑

j=1

aijyj

)2

=
n∑

i=1

n∑
j=1

n∑

k=1

aijaikyjyk.

The transpose A′ of a matrix is obtained by interchanging the rows and columns. It is easy to see
that the sum

∑
i aijaik is the (j, k)th element of the matrix AA′. Our required composition formula

can be written
n∑

i=1

z2
i =

n∑
j=1

n∑

k=1

x2
jy

2
k

and we see that if j = k then the (j, k)th element of AA′ should equal
∑

x2
i , and otherwise it should

equal zero. In other words, AA′ =
∑

x2
i (this is a shorthand for (

∑
x2

i )I where I is the identity
matrix of appropriate size).

Now let us find out when does the equality AA′ =
∑

x2
i hold. Recall that each element of A

is actually a linear function of the xis, so we can write A =
∑

xiAi, where each Ai is an ordinary
matrix. This turns the required equality to the form (

∑
xiAi)(

∑
xiA

′
i) =

∑
x2

i , using properties
of the transpose. The next step is a further reduction. Let us single out the last variable xn.
Substituting x1 = x2 = · · · = xn−1 = 0 and xn = 1, we see that AnA′

n = I, and so An and A′
n are

inverses (such matrices are called orthogonal). This means in particular that A′
nAn = I.

1Based on the paper “Über die Komposition der quadratischen Formen von beliebig vielen Variablen” by Adolf
Hurwitz, number LXXXII in his collected works.

2I’m using here the words of Herstein. Hurwitz in fact listed this identity.
3The octonions are non-associative (and also non-commutative, like the quaternions), and form a vector space of

dimension 8 over the reals.
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Now let Bi = AiA
′
n. Note that Bn = I and that B′

i = AnA′
i. The basic equality satisfied by

these new matrices is the following:

n∑
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x2
i =

(
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xiAi

)(
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i=1

xiA
′
i

)
=

(
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i=1

xiAi

)
A′

nAn

(
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i=1

xiA
′
i

)

=

(
n∑

i=1

xiAiA
′
n

)(
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i=1

xiAnA
′
i

)
=

(
n∑

i=1

xiBi

)(
n∑

i=1

xiB
′
i

)
.

If we expand the righthand side, we see that the coefficient of x2
i is BiB

′
i, whereas the coefficient

of xixj (for i 6= j) is BiB
′
j + BjB

′
i. Since the identity should be true if arbitrary numbers are

substituted for the xis, it follows that B2
i = I and BiB

′
j = −BjB

′
i for i 6= j. In particular, for

j = n we get Bi = −B′
i. We call such matrices skew-symmetric (matrices like AA′ which satisfy

M = M ′ are called symmetric). It also follows that B2
i = −BiB

′
i = −I. When is this possible?

Since det B2
i = (det Bi)

2 and det In = (−1)n, it follows that n must be even (unless n = 1, in
which case the only equality available to us is B1B

′
1 = I) and det B2

i = 1. In particular, each Bi is
regular (also called non-singular and invertible). Another use of the skew-symmetry is noting that
BiBj = −BiB

′
j = BjB

′
i = −BjBi.

Now let us consider the 2n−1 possible products of different matrices from the set {B1, . . . , Bn−1}.
Such products are very special: they are all either symmetric or skew-symmetric, depending on the
number of factors. We now show why this is so. Consider the product Bi1Bi2 · · ·Bim containing m
factors. Taking the transpose, the order of the factors is reversed:

(Bi1Bi2 · · ·Bim)′ = B′
imB′

im−1
· · ·B′

i1
.

Since all the Bis are skew-symmetric, we can get rid of the transposes:

B′
imB′

im−1
· · ·B′

i1
= (−1)mBimBim−1 · · ·Bi1 .

Next, let us try to restore the order of the matrices. Bringing Bi1 to the front requires m − 1
transpositions (operations of the type BiBj = −BjBi), which incurs an overhead of (−1)m−1. Next,
bringing Bi2 to lie just beside it requires m− 2 transpositions. Continuing this way, we get that

(Bi1Bi2 · · ·Bim)′ = (−1)m+(m−1)+···+1Bi1Bi2 · · ·Bim .

Now m+(m− 1)+ · · ·+1 = m(m+1)/2, which is even if m ≡ 0 or 3 (mod 4), and odd otherwise.
This is so because m(m + 1)/2 is odd or even depending on the residue modulo 4 of m(m + 1), and
this reduces to four trivial cases. Hence, our product is symmetric when m ≡ 0 or 3 (mod 4), and
skew-symmetric otherwise.

Now we wish to find out what is the rank of these 2n−1 matrices, that is how many of them
are linearly independent. For this, consider a linear dependency containing I, the empty product
(a linear dependency is a linear combination which sums to 0; we say that a linear combination
contains a matrix if its coefficient is non-zero). We can write any such combination in the form
I = L, where L is some linear combination of the other matrices. Let us separate the combination L
into symmetric and skew-symmetric matrices, so that L = E+O, where E is a linear combination of
symmetric matrices and O is a linear combination of skew-symmetric matrices. Since I is symmetric
we have E − O = E ′ + O′ = L′ = L = E + O, and so O sums to zero. Hence we can assume that
L is a linear combination of symmetric matrices (this means that from the existence of any linear
combination L it follows the existence of one containing no skew-symmetric matrices). Such a linear
combination looks like this:

I =
∑

i,j,k

ci,j,kBiBjBk +
∑

i,j,k,`

ci,j,k,`BiBjBkB` + · · · .
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Suppose we multiply this by some Bm on the right:

Bm =
∑

i,j,k

ci,j,kBiBjBkBm +
∑

i,j,k,`

ci,j,k,`BiBjBkB`Bm + · · · .

As before, all symmetric matrices here sum to zero. Their sum is of the form RBm, because all
terms have Bm as their rightmost factor. Since RBm = 0 and Bm is regular, we deduce that R = 0,
hence we can assume that the new sum contains no symmetric matrices. If m is different from all
of i, j, k then BiBjBkBm is symmetric, hence choosing the right m we deduce that ci,j,k = 0. This
works unless n = 4. If m is equal to one of i, j, k, ` then BiBjBkB`Bm equals (up to sign) a product
of three different matrices (since the equal matrices cancel), i.e. it is symmetric. Choosing m = i
we see that ci,j,k,` = 0. This always works. Continuing this way, we can eliminate most factors,
with the possible exception of the last one, if n − 1 ≡ 3 (mod m), i.e. if 4 | m. In this case, we
may get I = cB1B2 · · ·Bn−1. Squaring this equation, remembering that this term is symmetric and
cancelling, we get that I = c2, and so c = ±1.

Let us see where we’re standing. Take any linear dependency, containing some term Bi1Bi2 · · ·Bim .
Multiply the linear dependency by the transpose B′

imB′
im−1

· · ·B′
i1

from the right and note that each
new term reduces (up to sign) to one of the original 2n−1 products (using BiBj = −BjBi to reorder
factors and B2

i = −I to cancel identical factors). Hence if 4 - n then all matrices are linearly
independent, and otherwise, each linear dependency containing Bi1Bi2 · · ·Bim is equivalent to

Bi1Bi2 · · ·Bim = cB1B2 · · ·Bn−1Bi1Bi2 · · ·Bim = ±Bj1Bj2 · · ·Bjn−1−m ,

where the indexes ik and jk together form the set {1, 2, . . . , n − 1}. This inevitably works also
the other way around, and so we get a matching of the 2n−1 matrices into pairs that are either
equal or additive inverses. Note that since 4 | n, either both members are symmetric, or both are
skew-symmetric. Let us choose one matrix from each such pair. We claim that the resulting 2n−2

matrices are linearly independent.
To prove this, consider first linear dependencies containing I (we assume I was chosen). Since

we do not allow I’s ‘mate’ B1B2 · · ·Bn−1, we can cancel all the terms which supposedly equal to I,
hence no linear dependency can contain I. Now take any linear dependency. It is easy to see that
multiplying any pair by any matrix, we get another pair (the resulting pair index sets are obtained
as the symmetric difference with the index set of the matrix, and so still sum to {1, 2, . . . , n− 1}).
Hence multiplying our candidate dependency by the transpose of any of its matrices reduces it to
a linear dependency containing I. Since the candidate dependency contained at most one matrix
from each pair, all the terms ‘survive’, and so we reduce to the previous case, proving the claim.

The end is nigh. Since the dimension of the vector space of n × n matrices over the reals is
n2, we get the inequality 2n−2 ≤ n2 (this can be sharpened to 2n−1 ≤ n2 if 4 - n). The function
2n−2 grows much faster that n2 and already 28 > 102. Hence n < 10, and we are left with
n = 2, 4, 6, 8 (recall we disposed of the case n = 1 earlier), since n must be even. We know that
all of n = 2, 4, 8 are actually possible, so consider the case n = 6. Since 4 - 6, we know that all
25 = 32 products must be linearly independent. How many of them are skew-symmetric? The
number is

(
5
1

)
+

(
5
2

)
+

(
5
5

)
= 5 + 10 + 1 = 16, exactly half, and they are also linearly independent.

Now what is the dimension of the vector space of n × n skew-symmetric matrices over the reals?
Any skew-symmetric real matrix must have all its diagonal elements zero. Therefore, a basis of the
skew-symmetric matrices over the reals is {Oij | 1 ≤ i < j ≤ n}, where Oij has only two non-zero
entries, the (i, j)th entry which equals 1, and the (j, i)th entry which equals −1. This basis contains
(n− 1) + (n− 2) + · · ·+ 1 = n(n− 1)/2 elements (n− 1 possibilities of j when i = 1, and so on up
to i = n − 1 when j must equal n). In our case, n = 6, this basis contains 6 · 5/2 = 15, hence the
16 skew-symmetric matrices considered earlier can’t be linearly independent. Thus the case n = 6
is excluded, and the proof is complete.

3


