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1. Equating Pattern Potentials and RBMs

This section provides the detailed proof of the equiva-
lence between pattern potentials and RBMs. The high level
idea of the proof is to treat each hidden variable in an RBM
as encoding a pattern.

We first introduce the definition of pattern potentials by
Rother et al.in [2], a few necessary change of variable
tricks, and two different ways to compose more general high
order potentials, “sum” and “min”.

Then we relates the composite pattern potentials to
RBMs. We show in Section 1.2 that minimizing out hid-
den variables in RBMs are equivalent to pattern potentials.
When there are no constraints on hidden variables, we re-
cover the “sum” composite pattern potentials; when there
is a 1-of-J constraint on hidden variables, we recover the
“min” composite pattern potentials. In Section 1.3, we
show that summing out hidden variables in RBMs approx-
imates pattern potentials, and similarly with and without
constraints on hidden variables would lead us to “min” and
“sum” cases respectively.

The RBM formulation offers considerable generality via
choices about how to constrain hidden unit activations. This
allows a smooth interpolation between the “sum” and “min”
composition strategies. Also, this formulation allows the
application of learning procedures that are appropriate for
cases other than just the “min” composition strategy.

In Section 2, we provide a way to unify minimizing out
hidden variables and summing out hidden variables by in-
troducing a temperature parameter in the model.

Notation. In this section, we use g for pattern poten-
tials and ¢ for the high order potentials induced by RBMs.
Superscripts ‘s’ and ‘m’ on g corresponds to two composi-
tion schemes, sum and min. Superscripts on § correspond
to two types of constraints on RBM hidden variables, and
subscripts on ¢ correspond to minimizing out or summing

out hidden variables.
1.1. Pattern potentials

In [2], a basis pattern potential for a clique of binary vari-
ables y, is defined as

g(ya) = min{d(Ya) + o, 9max} (1)

where d : {0,1}/%l — R is a deviation function specifying
the penalty for deviating from a specific pattern. The pattern
potential penalizes configurations of y, that deviates from
the pattern, and the penalty is upper bounded by 6,,,,x While
6o is a base penalty.

For a specific pattern Y, the deviation function d(y,) is
defined as'

d(ya) =Y abs(w;)(y; # Y) )
i€a
where abs() is the absolute value function. This is essen-
tially a weighted hamming distance of y, from Y. Since
Yo and Y are both binary vectors, we have the following
alternative formulation

dya) = Z (—wi)(1 —yi) + Z wiYi
i€a:Y;=1 i€a:Y ;=0
= Y wyi+ Y, (—w) 3)
1€a i€aY;=1

w; specifies the cost of assigning y; to be 1. w; > 0 when
Y, =0and w; < OwhenY; = 1.
We can subtract constant 6, from Eq. 1 to get

g(}’a)min{zwiyi+ Z (wi)evo} 4

1€a i€aY;=1

Note that in [2], there is also a factor 6 in this definition (d(yq) is
given by the product of factor 6 and the sum), but actually the 6 factor can
always be absorbed in w;’s to get this equivalent formulation.



Making the change of variables w, = —w;, ¢ = 0 +
Y icay,—1 Wi, We can rewrite the above equation as

9(yo) = min {—c — Z Wiy, O} (5)

i€a

This formulation is useful for establishing connections with
RBMs as shown later in this section.

[2] proposed two ways to compose more general high
order potentials from basis pattern potentials defined above.
One is to take the sum of different pattern potentials

J
gs(ya) = Z min{dj (Ya) + 9]‘7 amax}
j=1

J
= Z min{d;(ya) + 65,0} + const  (6)
j=1

and the other is to take the minimum of them, to get

9" (ya) = min {d;(ya) +0;} )

In both cases, d;(.)’s are J different deviation functions,
and 6;’s are base penalties for different patterns. In the
“min” case, we can also fix one deviation function to be
0 (i.e. by setting all weights w; = 0), to get a constant
threshold.

Using the change of variable tricks introduced above, we
can rewrite the “sum” composite pattern potential as

J
9°(ya) = Zmin {cj — Zwijyi,O} )
j=1

i€a

where we ignored the constant term, and rewrite the “min”
composite pattern potential as

9" (ya) = min {_Cj - Zw]y} ©)

i€a

Since we always work on a clique of variables in this
section, we drop the subscript a on y for the rest of this
section.

1.2. Minimizing out hidden variables in RBMs

We start from minimizing hidden variables out. The
probability distribution defined by a binary RBM is given
by

p(y,h) = %exp (—E(y,h)) (10)

where the energy

I I J
E(y,h) = - Zzwijyihj - Zbiyi - chhj (11)
i=1 =1

i=1 j=1

min{z, O}T min{0, z,, ,}
N

-log(1+exp(-z))

7112077 474
i

i
'III///,,,

-log(1+exp(-z;)+exp(-1,))

(a) (b)
Figure 1. (a) — log(1 + exp(—x)) is a smoothed approximation to
min{z, 0}; (b) —log(1 + exp(—z1) + exp(—x2)) is a smoothed
approximation to min{z1, z2, 0}.

Minimizing out the hidden variables, the equivalent high
order potential is

J

I
Gmin(y) = min § — > (Cj + ;wijyz) hj o (12)

j=1

When there is no constraint on hidden variables, i.e. they
are independent binary variables, the minimization can be
factorized and moved inside the sum

J I
grlilcln(y) = Zmin{cj - szgyuo} (13)
j=1 i=1

The superscript “uc” is short for “unconstrained”. This is
exactly the same as the “sum” composite pattern potentials
in Eq. 8.

When we put a 1-of-J constraint on hidden variables, i.e.
forcing Z'J.]:l h; = 1, the minimization becomes

I
i (v) = | min {—cj - Zwmyi} (14)
- i=1

This is exactly the same as the “min” composite pattern po-
tentials in Eq. 9.

1.3. Summing out hidden variables in RBMs

The key observation that relates the pattern potentials
and RBMs with hidden variables summed out is the follow-
ing approximation,

min{z,0} ~ —log(1 + exp(—z)) (15)

It is easy to see that when x is a large positive value, the
right hand side will be close to 0 and when z is a large
negative value, the right hand side will be linear in x. This
is illustrated in Fig 1 (a).

With this approximation, we can rewrite the basis pattern
potential in Eq. 5 as

I
g(y) ~ —log <1 +exp (c +> w’y>> (16)

=1



On the other hand, summing out hidden variables in an
RBM with no constraints on hidden variables, the marginal
distribution becomes

I J I
1
p(y) = - exp (zzl biyi> Jli[l (1 + exp <c]- + izlwijyi>>
a7
Eq. 5 in the main paper is another equivalent form of this.

Therefore the equivalent high order potential induced by
summing out the hidden variables is

J I
G (y) == log (1 + exp (Cj + ZW@/))
j=1 i=1

(18)
which is exactly a sum of potentials in the form of Eq. 16.
Now we turn to the “min” case. We show that the com-
posite pattern potentials are equivalent to RBMs with a 1-
of-J constraint on hidden variables and hidden variables
summed out, up to the following approximation

J
min{zy, z3,...,25,0} = —log | 1+ Zexp(—xj)
Jj=1
(19)
This is a high dimensional extension to Eq. 15. The 2-D
case is illustrated in Fig 1 (b).

We use the definition of “min” composite pattern poten-
tials in Eq. 7, but fix d;(y) to be 0, to make a constant
threshold on the cost.

Then we can subtract constant §; from the potential and
absorb 0 ; into all other 6;’s (with the same change of vari-
able tricks) to get

I I
9" (y) = min {—Cl = D WitYiy ey —CIo1 = Y Wig-1Yi, 0}
=1 =1

(20)
Using the approximation, this high order potential becomes

J—1 I
g"(y)~ —log [ 1+ ) exp (cj + Zwijyz) 1)
j=1 i=1

In an RBM with J hidden variables, the 1-of-J con-
straint is equivalent to 23'721 h; = 1. With this constraint,
the energy (Eq. 11) can be transformed into

I J-1 I
E(y,h) == biyi— » <Cj —cs+ > (wij — wiJ)ZJi) h;
i=1

j=1 i=1
I
- <CJ + Zwuyi>
i=1

(b; —wig)ys

i

<
[

1
- <Cj —cr+ D (wij — wiJ)?Ji) —cy (22)
i=1

j=1

We can therefore use a new set of parameters b, = b; —w; J,
U

C; cj—cyJ and ’ng = Wij — Wij, and get
I J—1 I
E(y,h) == by — > (c; - Zwéj%) hj (23)
i=1 j=1 i=1

We ignored the constant c; because it would cancel out
when we normalize the distribution. Note that now the set
of J — 1 hidden variables can have at most one on, and they
can also be all off, corresponding to the case that the Jth
hidden variable is on.

Summing out h, we get

I J—1 I
=g (3] (e (2t
’ o4
The constant 1 comes from the Jth hidden variable. The
equivalent high-order potential for this model is then

J—1 I
gt (y) = —log [ 1+ ) exp <C§- + Zw’jy>
J=1 i=1

(25)
which has exactly the same form as Eq. 21.
Our results in this section are summarized in Table 1.

2. The CHOPP
We define the CHOPP as
J I
f(y;T) = —Tlog <ZGXP (7{ > (Cj + Zwijyi> hj))
h j=1 i=1

(26)
where 7' is the temperature parameter. Summation over h is
a sum over all possible configurations of hidden variables.

Setting 7" = 1, this CHOPP becomes

J

I
f(y;1) = —log Z exp Z <Cj + Z wzjy1> h;
h j=1 i=1
(27
This is the equivalent RBM high order potential with hidden
variables summed out. When there is no constraint on h, the
above expression simplifies to

J I
fuC(y; 1) = — Z log <1 + exp (CJ + Z w,]gh))
=1 i=1
’ (28)

When there is a 1-of-J constraint on h, the above potential
is

J I
flofJ(y; 1) = —log Zexp <ci + Zﬂ)ijyz)
=1 i=1

(29)



Composition Scheme Operation on RBM Hidden Variables (7" axis) Constraint on h
for Minimizing out h Summing out h (sparsity axis)
Pattern Potentials T—0 T=1 parsity
Min mini<j<g {—Cj — Zle Wjjyi} —log (1 + Z;.]:_f exp (¢j + Y iea wi]-yi)) 1-of-J
Sum ijl min {—Cj — ZLI WijYi, O} — Z}]:1 log (1 + exp (Cj + Zf;l U)ijyi)) None

Table 1. Equivalent compositional high order potentials by applying different operations and constraints on RBMs. Minimizing out hidden
variables results in high order potentials that are exactly equivalent to pattern potentials. Summing out hidden variables results in approx-
imations to pattern potentials. 1-of-J constraint on hidden variables corresponds to the “min” compositional scheme. No constraints on
hidden variables corresponds to “sum” compositional scheme. Corresponding temperature 7" in the CHOPP is also shown in the table.

Setting T' — 0, the CHOPP becomes

J

I
f(y:;0) = mlin - Z (Cj + z_;wljyl> hj (30)

j=1

this is exactly the same as the high order potential induced
by a RBM with hidden variables minimized out, and there-
fore equivalent to composite pattern potentials as shown in
Section 1.2. When there are no constraints on hidden vari-
ables we will get the “sum” composite pattern potentials,
while adding a 1-of-J constraint will give us the “min”
composite pattern potentials.

Therefore, by using a temperature parameter 7T,
CHOPPs can smoothly interpolate summing out hidden
variables (usually used in RBMs) and minimizing out hid-
den variables (used in Rother et al.[2]). On the other hand,
by using sparsity (the 1-of-.J constraint), it interpolates the
“sum” and “min” composition schemes.

[1] gives another family of potentials that includes dif-
ferent types of composition (max and min), but they do not
explore different temperatures or consider different struc-
tures over hidden units, so the axes they explore are mostly
orthogonal to those we explore here.

Note that all experiments in the paper are done with
T = 1. It would be interesting to try other temperature
settings, which corresponds to operations on h inbetween
marginalization and minimization.

3. Remark on LP Relaxation Inference

After summing out hidden variables when there are no
sparsity constraints, the remaining energy function has a
sum over J terms, one per hidden unit. It is possible to view
each of these terms as a high order potential, then to use
modern methods for MAP inference based on linear pro-
gram (LP) relaxations [3]. In fact, we tried this approach,
formulating the “marginal MAP” problem as simply a MAP
problem with high order potentials, then using Dual De-
composition to solve the LP relaxation. The key computa-
tional requirement is a method for finding the minimum free
energy configuration of visibles for an RBM with a single
hidden unit, which we were able to do efficiently. How-
ever, we found that the energies achieved by this approach

were worse than those achieved by the EM procedure de-
scribed above. We attribute this to looseness in the result-
ing LP relaxation. This hypothesis is also supported by the
results reported by Rother et al. [2], where ordinary belief
propagation outperformed LP-based inference, which tends
to occur when LP relaxations are loose. Going forward, it
would be worthwhile to explore methods for tightening LP
relaxations [4].

4. Convolutional Structures

We explored the convolutional analog to RBMs in our
experiments. We tried two variants: (a) a vanilla pre-trained
convolutional RBM, and (b) a pre-trained convolutional
RBM with conditional hidden biases as described in Section
4.1 in the paper. We tried two different patch sizes (8x8,
12x12) and tiled the images densely. Though the condi-
tional variant outperformed the unconditional variant, over-
all results were discouraging—performance was not even
as good as the simple Unary+Pairwise model. This is sur-
prising because a convolutional RBM should in theory be
able to easily represent pairwise potentials, and convolu-
tional RBMs have fewer parameters than their global coun-
terparts, so overfitting should not be an issue. We believe
the explanation for the poor performance is that learning
methods for convolutional RBMs are not nearly as evolved
as methods for learning ordinary RBMs, and thus the learn-
ing methods that we have at our disposal do not perform as
well.

On the bright side, this can be seen as a challenge to
overcome in future work.

5. Real Data Sets

Images in the three real data sets are shown in Fig. 2 and
Fig. 3.

You can find the original Weizmann horses data set from
http://www.msri.org/people/members/eranb/
and PASCAL VOC data set from http://pascallin.
ecs.soton.ac.uk/challenges/VOC/voc2011/.

Our version of the three data sets as well as the 6 syn-
thetic data sets will be available online.


http://www.msri.org/people/members/eranb/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2011/
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Figure 2. Horse and bird data sets.

6. Learned Filters

The learned filters, i.e. weights w;;, with a pretrained
RBM for each of the three data sets, are shown in Fig. 4. Fil-
ters for 6 synthetic data sets are shown in Fig. 5 and Fig. 6.
For each filter, the weights are positive for bright regions
and negative for dark regions. In other words, filters favor
bright regions to be on and dark regions to be off.

We can see the compositional nature of RBMs from
these filters. For example, each single horse filter is actu-
ally expressing soft rules like “if the head of a horse is here,

then the legs are likely to be there”. Any single filter would
not make too much sense, but only when a few different
filters are combined can we recover a horse.

7. Prediction Results

Some example segmentations for horse, bird and person
data sets are given in Fig. 7, Fig. 8 and Fig. 9.
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Figure 3. Person data set.
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(b) Bird filters

(a) Horse filters

(c) Person filters.
Figure 4. Filters learned on three real data sets.
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(a) Hardness level 0, 32 hidden variables.
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(b) Hardness level 1, 64 hidden variables.
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(c) Hardness level 2, 128 hidden variables.
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(d) Hardness level 3, 128 hidden variables.
Figure 5. Filters learned on synthetic data sets.
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(f) Hardness level 5, 256 hidden variables.

Figure 6. Filters learned on synthetic data sets, continued.
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Figure 7. Prediction results on horse data set. The three cate-
gories best, average and worst are measured by the improvement
of Unary+Pairwise+RBM over Unary+Pairwise. Each row left to
right: original image, ground truth, Unary+Pairwise prediction,
Unary+Pairwise+RBM prediction.

T

RS
H
P

rnmgmllnx

-
.

LB s\l

ﬂﬂﬂd ‘d’ 4 S Ei[' fof
(a) Best (b) Average (c) Worst
Figure 8. Prediction results on bird data set. The three cate-
gories best, average and worst are measured by the improvement
of Unary+Pairwise+RBM over Unary+Pairwise. Each row left to

right: original image, ground truth, Unary+Pairwise prediction,
Unary+Pairwise+RBM prediction.
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Figure 9. Prediction results on person data set. The three cate-
gories best, average and worst are measured by the improvement
of Unary+Pairwise+RBM over Unary+Pairwise. Each row left to
right: original image, ground truth, Unary+Pairwise prediction,
Unary+Pairwise+RBM prediction.



