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Graphs are Common Representations of Structure

Context: Q: Is Greg afraid of Bernhard?

1. Lily is a swan. A: Yes.

2. Bernhard is a lion.
3. Greg is a swan.
4. Bernhard is white.
5. Brian is a lion.

Q: Do Greg and Lily have the
same color?
A: Yes.

Select
next

6. Lily is gray. . . . direction A
7. Julius is a rhino. g-' rl\‘so.lullus aon?
8. Julius is gray. T
9. Greg is gray. =
10. Swan is afraid of lion.
Infer graph Use graph

Infer graph Use graph
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Why Generative Models of Graphs?

Infer graphs from input (map building, relation extraction, etc.)
Graph completion (knowledge graph completion, social networks)

Generate new structures (drug discovery)
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Generative Models of Graphs

Stochastic Graph models

e Erdos-Renyi model, Barabasi-Albert model, stochastic block model, small-world model
e Nice theory, but limited capacity

Tree models

e Tons of tree generation models
e Only works on trees

Graph grammars
e Makes hard distinction between what is in the language vs not, hard to use
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A Very General Graph Generation Process

loop until not adding new nodes:

(1) add node? No more nodes
|:> or a node type

(2) create node, add to the graph

(3) loop until not adding new edges:

(a) addedge?
(b) choose an existing node (and edge type) and

create edge
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A Very General Graph Generation Process

loop until not adding new nodes:
(1) add node?
(2) create node, add to the graph
(3) loop until not adding new edges:
(a) addedge?
(b) choose an existing node (and edge type) and

create edge
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A Very General Graph Generation Process

loop until not adding new nodes:

(1) add node? O { }
> {yes, no

(2) create node, add to the graph

(3) loop until not adding new edges:

(@) add edge?
(b) choose an existing node (and edge type) and

create edge
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A Very General Graph Generation Process

loop until not adding new nodes:
(1) add node?
(2) create node, add to the graph

(3) loop until not adding new edges:
(a) addedge?
(b) choose an existing node (and edge type) to

create edge
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A Very General Graph Generation Process

No assumptions on the graph structure, capable of generating arbitrary graphs.
e Can handle typed / untyped, directed / undirected graphs easily.

Generation of a graph = A sequence of graph generating decisions.

Add node (0)? Add edge? Add node (1)? Add edge? Pick node (0) to
(yes/no) (yes/no) (yes/no) (yes/no) add edge (0,2)

O] IC) | o 0 Lo | e T

||

Generation steps
Add edge? Add node (2)? Add edge? Pick node (0) to Add edge?
/ no) I (yes/no) | yes/no) I ® add edge (0.2) | @ (yes/no)
& & & o —
@ @ @ @
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A Very General Graph Generation Process

3 Types of Decisions
e Add node (node type) vs not / Add edge vs not / Choose node (and edge type)

Order matters.

6 DeepMind

Possible Sequence 1:

<add node (node 0)>
<don’t add edge>

<add node (node 1)>
<add edge>
<pick node 0 (edge (0, 1))>
<don’t add edge>

<add node (node 2)>
<add edge>
<pick node 0 (edge (0, 2))>
<add edge>
<pick node 1 (edge (1, 2))>
<don’t add edge>

<don’t add node>

(o)
4

Possible Sequence 2:

<add node (node 1)>
<don’t add edge>

<add node (node 0)>
<add edge>
<pick node 1 (edge (0, 1))>
<don’t add edge>

<add node (node 2)>
<add edge>
<pick node 1 (edge (1, 2))>
<add edge>
<pick node 0 (edge (0, 2))>
<don’t add edge>

<don’t add node>
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Model Details

Compute graph representations Graph level predictions Node selection
by T rounds of propagation (add node / add edge) (edge type selection)

T rounds of propagation 3
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Model Details

Each step: take a graph as input, make a prediction for that step.
Node states persist across steps, i.e. this is a recurrent model.

Easy to make it a conditional model

e Simply add a conditioning vector to the input, can go into any of the three modules or
be used for node initialization.
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Learning and Evaluation

Our model defines a joint distribution p(G, ) over graph G and its generation
ordering .

The marginal p(G) = £_p(G, x) is intractable (sum over O(n!) terms).

We can do importance sampling

= 320(Gom) = Zle )> Hglalc) [q<(7r|G)>

Variance is minimized when q(x|G) = p(szG).
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Learning and Evaluation

Training to optimize marginal p(G) is intractable.

We learn the joint distribution instead by maximizing

Epdata(G,ﬂ') [log p(G7 7T)] — Epdata(G)Epdata("r|G) [log p(G7 7T)]

We pick p .. (|G), then take q(x|G) = p,,.(|G) to match the evaluation process.

e Once the model is trained to optimum, q(x|G) = p_,.(|G) gives the lowest variance
estimator of the marginal likelihood.
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Experiments

In the experiments we compare:

e Graph model vs. LSTMs
e Graph generating sequence vs. domain specific sequentialization

Metrics:

e log-likelihood
e other sample quality metrics when available
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Generating Synthetic Graphs

Cycles Trees Barabasi-Albert Graphs
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Other sample quality measures

Dataset \_Graph Model LSTM E-R Model

Cycles 84.4% 48.5% 0.0%
Trees 96.6 % 30.2% 0.3%
B—A Graphs 0.0013 0.0537 0.3715
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Molecule Generation

Data: sets of drug-like molecules, typed nodes, typed edges

Marginal \ /k j\

Arch Grammar  Ordering | N %valid  %novel = Fixed Best
LSTM  SMILES Fixed 1 93.59 81.27 = 1728  15.98 15.90 Fi 5
LSTM  SMILES Random | <100 9348 8395 1595 1576  15.67 il Bl
LSTM Graph Fixed 1 85.16 80.14  16.79  16.35 16.26
LSTM Graph Random | O(n!) 91.44 91.26 = 20.57 18.90 15.96
Graph Graph Fixed 1 97.52 90.01 1609 1575 15.64
Graph Graph Random | O(n!) 95.98 95.54  20.18 18.56 15.32

(b DeepMind

CVAE: close to 0% valid
GrammarVAE: 34.9% valid
Graph VAE: 13.5% valid
Ours: 89% valid and novel.

sample quality
measure

evaluating likelihood on
small molecules

Comparing with previous methods (on another dataset):
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Molecule Generation

Different generation behavior when trained with different ordering

Canonical ordering Uniform random ordering
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https://docs.google.com/file/d/0B_3NEcP3ZotFT1Z2ME5nZ1YwMkU/preview
https://docs.google.com/file/d/0B_3NEcP3ZotFOW5weEhOS1JGYnM/preview
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Conditional Molecule Generation

Generate molecules conditioned on molecule properties

e Number of atoms, number of bonds, number of rings

Train on molecules with 0, 1, and 3 rings, test on molecules with

e 0/1/3rings (same as training)
e 2rings (interpolation)
e 4rings (extrapolation)

'b DeepMind

% property match

Arch  Grammar Condition Valid Novel Atom Bond Ring All
LSTM SMILES Training 843 828 713 709 82.7 69.8
LSTM  Graph Training 656 649 633 627 503 482
Graph Graph Training 93.1 921 817 79.6 764 663
LSTM SMILES 2-rings 644 612 7l 42 438 05
LSTM Graph 2-rings 549 542 235 217 239 98
Graph Graph 2-rings 915 913 758 724 62.1 50.2
LSTM SMILES 4-rings 717 694  46.5 3.7 L3 G4
LSTM  Graph 4-rings 429 421 164 101 34 18
Graph Graph 4-rings 848 840 487 409 17.0 133
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Generating Parse Trees and AMR Graphs

Parse tree generation (WSJ) AMR graph generation
Model Gen.Seq Ordering | Perplexity = %Correct
LSIM  Tec  Depth-hust | (lid L e Briefly tried for 1 week before dd|,
LSTM Tree Breadth-First 1.187 28.3
LSTM  Graph  Depth-First | 1.158 262 results not good.
LSTM  Graph  Breadth-First 1.399 0.0
Graph Graph Depth-First 1.124 28.7
Graph Graph Breadth-First 1.238 213
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Future Directions

Ordering

e can we learn the ordering?

Long sequences
e the current graph generating sequence is quite long.

Scalability
e challenging to scale this approach to large graphs.

Difficulty in training
e training is unstable, so has to use very small learning rate - slow learning.
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