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Graphs are Common Representations of Structure
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Why Generative Models of Graphs?
Infer graphs from input (map building, relation extraction, etc.)

Graph completion (knowledge graph completion, social networks)

Generate new structures (drug discovery)
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Generative Models of Graphs
Stochastic Graph models
● Erdos-Renyi model, Barabasi-Albert model, stochastic block model, small-world model
● Nice theory, but limited capacity

Tree models
● Tons of tree generation models
● Only works on trees

Graph grammars
● Makes hard distinction between what is in the language vs not, hard to use
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A Very General Graph Generation Process

loop until not adding new nodes:

(1) add node?

(2) create node, add to the graph

(3) loop until not adding new edges:

(a) add edge?

(b) choose an existing node (and edge type) and 

create edge

No more nodes 
or a node type
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A Very General Graph Generation Process

{yes, no}

loop until not adding new nodes:
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A Very General Graph Generation Process
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(3) loop until not adding new edges:
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(b) choose an existing node (and edge type) to 

create edge
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A Very General Graph Generation Process
No assumptions on the graph structure, capable of generating arbitrary graphs.
● Can handle typed / untyped, directed / undirected graphs easily.

Generation of a graph ⇒ A sequence of graph generating decisions.
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A Very General Graph Generation Process
3 Types of Decisions
● Add node (node type) vs not / Add edge vs not / Choose node (and edge type)

Order matters.
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Model Details
Graph level predictions
(add node / add edge)

Node selection
(edge type selection)

Compute graph representations 
by T rounds of propagation

T rounds of propagation
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Each step: take a graph as input, make a prediction for that step.

Node states persist across steps, i.e. this is a recurrent model.

Easy to make it a conditional model
● Simply add a conditioning vector to the input, can go into any of the three modules or 

be used for node initialization.

Model Details
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Learning and Evaluation
Our model defines a joint distribution p(G, ᶢ) over graph G and its generation 
ordering ᶢ.

The marginal p(G) = ᵑᶢ p(G, ᶢ) is intractable (sum over O(n!) terms).

We can do importance sampling

Variance is minimized when q(ᶢ|G) = p(ᶢ|G).



Learning Deep Generative Models of Graphs — Yujia Li

Learning and Evaluation
Training to optimize marginal p(G) is intractable.

We learn the joint distribution instead by maximizing

We pick pdata(ᶢ|G), then take q(ᶢ|G) = pdata(ᶢ|G) to match the evaluation process.

● Once the model is trained to optimum, q(ᶢ|G) = pdata(ᶢ|G) gives the lowest variance 
estimator of the marginal likelihood.
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In the experiments we compare:
● Graph model vs. LSTMs
● Graph generating sequence vs. domain specific sequentialization

Metrics:
● log-likelihood
● other sample quality metrics when available

Experiments
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Generating Synthetic Graphs

Evaluating log p(G, ᶢ)
ᶢ ~ Uniform

Other sample quality measures



Learning Deep Generative Models of Graphs — Yujia Li

Molecule Generation
Data: sets of drug-like molecules, typed nodes, typed edges.

Comparing with previous methods (on another dataset):
● CVAE: close to 0% valid
● GrammarVAE: 34.9% valid
● Graph VAE: 13.5% valid
● Ours: 89% valid and novel.

sample quality 
measure

evaluating likelihood on 
small molecules
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Molecule Generation
Different generation behavior when trained with different ordering

Canonical ordering Uniform random ordering

https://docs.google.com/file/d/0B_3NEcP3ZotFT1Z2ME5nZ1YwMkU/preview
https://docs.google.com/file/d/0B_3NEcP3ZotFOW5weEhOS1JGYnM/preview
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Molecule Samples
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Conditional Molecule Generation
Generate molecules conditioned on molecule properties
● Number of atoms, number of bonds, number of rings

Train on molecules with 0, 1, and 3 rings, test on molecules with
● 0 / 1 / 3 rings (same as training)
● 2 rings (interpolation)
● 4 rings (extrapolation)

% property match
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Generating Parse Trees and AMR Graphs 
(preliminary)

Parse tree generation (WSJ) AMR graph generation

● Briefly tried for 1 week before ddl, 
results not good.
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Future Directions
Ordering
● can we learn the ordering?

Long sequences
● the current graph generating sequence is quite long.

Scalability
● challenging to scale this approach to large graphs.

Difficulty in training
● training is unstable, so has to use very small learning rate - slow learning.


