Optimal Representations for Covariate Shift

Yangjun Ruan

Joint with Yann Dubois, Chris J. Maddison

ICLR 2022



Overview



Overview

ML experiences from train (source) to test (target)

source -

@ l"l @ @

1/18



Overview

ML experiences from train (source) to test (target)

Goal: learn robust representations Z of data X from which source (d;)
predictors perform well on target (d;)

source

1/18



Overview

ML experiences from train (source) to test (target)

Goal: learn robust representations Z of data X from which source (d;)
predictors perform well on target (d;)

Optimal Z*: all source optimal predictors target risk

source

1/18



Overview

We characterize the optimally robust Z* to covariate shift

© prove condition for optimal Z*

2/18



Overview

We characterize the optimally robust Z* to covariate shift

© prove condition for optimal Z*

®© derive practical objectives for learning Z*

2/18



Overview

We characterize the optimally robust Z* to covariate shift

®© prove condition for optimal Z*
®© derive practical objectives for learning Z*
® show why CLIP [4] is more robust over other SSL methods

2/18



Overview

We characterize the optimally robust Z* to covariate shift

®© prove condition for optimal Z*
®© derive practical objectives for learning Z*
® show why CLIP [4] is more robust over other SSL methods

© improve CLIP's robustness with our objectives

2/18



Theory: Characterizing 7*
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Desiderata: reduce to typical ML setup in Z space

g

h
i <+
source PZ|d,
Y =0 Y =1
target Pz W

match distribution

v Sufficient condition (...most previous work hinted towards)

X Necessary? Achievable?
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Problem Setup

Formalization with domain generalization (DG) language:
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e A set of domains D [Asm: discrete finite]
e Domain-specific{py, v/ ’i}deD [Asm: gen. covariate shift]
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Formalization with domain generalization (DG) language:

1. Given
e A set of domains D [Asm: discrete finite]
e Domain-specific{py, v/ ’i}deD [Asm: gen. covariate shift]

o loss/: Y xI' = Rxg
2. Learn an encoder pyz| x
3. Measure DG risk:

e Selecta source D, and target D,
e Train a source predictor: h € H},, := argmin, R} [Y] Z]
e Measure target risk R [Y] Z]

where R [Y] 2] :=E,, , ,[((Y, h(2))]
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Problem Setup

Goal: minimize the idealized domain generalization (IDG) risk w.r.t. Z
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Ripe [Y]| 2 :=E

PDs,Dy

sup R [Y]|Z]
heHT}, =~
random \,_; target risk

domains \orst source
risk. min.

Uniform guarantees:

e random domains

° source predictor
Idealized setup for simplicity:

e population risk used for source predictor selection

e universal hypothesis class
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Characterization of 7*

Theorem (Optimality conditions, informal)
Under generalized covariate shift and some mild assumptions, Z* is
optimal for IDG it

e remains discriminative: R[Y| Z*] = R[Y] X]
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optimal for IDG it

e remains discriminative: R[Y| Z*] = R[Y] X]
e has invariant support: supp(pz« | 4,) = supp(pz-|4,), Vds, ds € D

© sufficient and condition

® requires access to labeled target domain
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Characterization of 7*

Proposition (No free lunch for IDG, informal)
Let Z,, be any rep. chosen on some source d; and C'a constant rep.

Under mild assumptions, if Z;, outperforms C'on some “good”
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Proposition (No free lunch for IDG, informal)
Let Z,, be any rep. chosen on some source d; and C'a constant rep.

Under mild assumptions, if Z;, outperforms C'on some “good”
targets outside the source’s support, there are many “bad” targets on
which Z;_ is than C.

v implies the failure of current DG methods

® unable to outperform ERM on a unified benchmark [3]
® insufficient access to or strong asmp. on targets

X how to deal with necessary (but unrealistic) access to targets?
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Method: Learning 7* with SSL



Deviation: Self-Supervised Learning (SSL)

Recent SSL methods learn transferable and reps.:

e train on large-scale unlabelled data (>>= ImageNet)
e use augmentations as surrogate information for Y
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SimCLR [1]: image aug. CLIP [4]: text caption as aug.
Robustness of different SSL methods varies:

®© CLIP achieves incredible robustness to distribution shifts
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Learning Z* with SSL

Proposition (Learning Z* with domain-agnostic A)
Let p | x be a domain-agnostic augmenter. Then any optimal
solution p- | x of the following objective is optimal for IDG:

max I[A4; 7]
Pz x

s.t. supp(pz|q) = supp(pz), Vd € D
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Proposition (Learning Z* with domain-agnostic A)
Let p | x be a domain-agnostic augmenter. Then any optimal
solution p- | x of the following objective is optimal for IDG:

max I[A4; 7]
Pz x

s.t. supp(pz|q) = supp(pz), Vd € D

© No Yanymore!

® support invariance constraint
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Practical objectives:
argmin  —I[4;Z]+\ B[Z, D]
N—_——

Pz| x
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Learning Z* with SSL

Practical objectives:
argmin  —I[4;Z]+\ B[Z, D]
N—_——

Pz| x
max. Ml dom. bottleneck

e Maximize I[4; Z]: Ml lower bound (e.g., InfoNCE)

¢ Domain bottleneck B[Z, D]: enforce support invariance
Domain bottleneck: previous DG methods (e.g., DANN [2]) can apply

O Contrastive adversarial domain (CAD) bottleneck 1] Z; D]

© Requires domain classifier

®© Constructs an domain classifier from contrastive var. dist.
O Entropy (Ent) bottleneck H[Z]

© Requires information
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Learning Z* with SSL

Summary: one can learn optimal Z* with using:

e large-scale unlabeled data

e contrastive learning with augmentations
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Experiments



Exploiting Pretrained CLIP for 7*

Motivation: CLIP was trained

v with 400M image-text augmentations

b 4 explicit domain bottlenecks
Idea:

¢ Finetune CLIP with bottlenecks on available data

¢ Evaluate with linear probe on DomainBed [3]
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Exploiting Pretrained CLIP for 7*

Algorithm ‘ VLCS PACS OfficecHome DomainNet
ERM 77.6 £03 86.7+03 66.4+0.5 41.3+0.1
DomainBed SOTA | 79.9+0.2 872+01 684+0.2 41.8+0.1
DINO + CAD ‘ 69.6+06 761+01 569+05 33.6 £0.1
CLIP 80.7+04 937+08 79.6+0.1 528 £ 0.1
CLIP + CAD 81.6 0.1 949+0.3 80.0 £0.2 53.7+0.1

© result with aug. and !
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Towards Generic Robust Representations with SSL

Idea: learn robust reps.

e Task: use LAION-400M [5] with text-image contrastive loss
e Domain: finetune CLIP with Ent bottleneck
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Towards Generic Robust Representations with SSL

Idea: learn robust reps.

e Task: use LAION-400M [5] with text-image contrastive loss
e Domain: finetune CLIP with Ent bottleneck

Evaluate: natural distribution shift [6]

‘ IN ‘ IN-V2 IN-S YT-BB IN-Vid ObjNet IN-A IN-R Avg.
Pretrained ‘ 75.2 ‘ 642 410 584 716 428 275 62.9 526
Tuned w/o Ent | 73.8 | 62.1 37.0 56.9 688 413 26.0 581 50.0
Tunedw/ Ent |74.2| 62.7 389 581 70.1 421 262 60.8 51.3

© Consistently improved robustness with bottlenecks!

® Gains could be larger if end-to-end trained with bottlenecks!
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Future Directions

Non-idealized setups: finite sample case, constrained hypothesis?

Approx. optimality: relaxed constraints?

More practical methods for learning Z7*?

Implicit regularization effect for learning Z*?
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Thank you!

Amazing co-authors:

Yann Dubois
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