Optimal Representations for Covariate Shift

Yangjun Ruan

Joint with Yann Dubois, Chris J. Maddison

ICLR 2022

ML experiences distribution shifts from train (source) to test (target)

ML experiences distribution shifts from train (source) to test (target)

Goal: learn robust representations Z of data X from which source (d_s) predictors perform well on target (d_t)

ML experiences distribution shifts from train (source) to test (target)

Goal: learn robust representations Z of data X from which source (d_s) predictors perform well on target (d_t)

Optimal Z^* : all source optimal predictors minimize target risk

We characterize the optimally robust Z^* to covariate shift

 \odot prove sufficient and necessary condition for optimal Z^*

We characterize the optimally robust Z^* to covariate shift

- \odot prove sufficient and necessary condition for optimal Z^*
- \odot derive practical self-supervised objectives for learning Z^*

We characterize the optimally robust Z^* to covariate shift

- \odot prove sufficient and necessary condition for optimal Z^*
- \odot derive practical self-supervised objectives for learning Z^*
- ③ show why CLIP [4] is more robust over other SSL methods

We characterize the optimally robust Z^* to covariate shift

- \odot prove sufficient and necessary condition for optimal Z^*
- \odot derive practical self-supervised objectives for learning Z^*
- © show why CLIP [4] is more robust over other SSL methods
- improve CLIP's robustness with our objectives

Theory: Characterizing Z^*

Desiderata: reduce to typical ML setup in Z space

Desiderata: reduce to typical ML setup in Z space

✓ Sufficient condition (...most previous work hinted towards)

Desiderata: reduce to typical ML setup in Z space

- ✓ Sufficient condition (...most previous work hinted towards)
- X Necessary? Achievable?

Minimal sufficiency: Z^* should

- remain discriminative about Y
- have invariant support

discriminative & support

Minimal sufficiency: Z^* should

- remain discriminative about Y
- have invariant support

Minimal sufficiency: Z^* should

- remain discriminative about Y
- have invariant support

Formalization with domain generalization (DG) language:

- 1. Given
 - A set of domains \mathcal{D}
 - ullet Domain-specific $\left\{p_{X,\,Y\,|\,\,d}
 ight\}_{d\in\mathcal{D}}$
 - Loss $\ell: \mathcal{Y} \times \Gamma \to \mathbb{R}_{\geq 0}$

[Asm: discrete finite]

[Asm: gen. covariate shift]

Formalization with domain generalization (DG) language:

- 1. Given
 - A set of domains \mathcal{D}
 - Domain-specific $\left\{p_{X,Y\mid d}\right\}_{d\in\mathcal{D}}$
 - Loss $\ell: \mathcal{Y} \times \Gamma \to \mathbb{R}_{\geq 0}$
- 2. Learn an encoder $p_{Z|X}$

[Asm: discrete finite]

[Asm: gen. covariate shift]

Formalization with domain generalization (DG) language:

- 1. Given
 - A set of domains \mathcal{D}
 - Domain-specific $\{p_{X,Y|d}\}_{d\in\mathcal{D}}$
 - Loss $\ell: \mathcal{Y} \times \Gamma \to \mathbb{R}_{\geq 0}$

- [Asm: discrete finite]
- [Asm: gen. covariate shift]

- 2. Learn an encoder $p_{Z|X}$
- 3. Measure DG risk:
 - Select a random source D_s and target D_t
 - Train a source predictor: $h \in \mathcal{H}_{D_s}^* := \arg\min_h \mathrm{R}_h^{D_s} \left[Y | Z \right]$
 - Measure target risk $R_h^{D_t}[Y|Z]$

where
$$\mathrm{R}_{\scriptscriptstyle h}^{\scriptscriptstyle d}\left[\left.Y\right|\left.Z\right]:=\mathbb{E}_{p_{Z,\left.Y\right|\left.d}}[\ell(\left.Y,h(Z)\right)]\right.$$

Goal: minimize the idealized domain generalization (IDG) risk w.r.t. Z

$$\mathbf{R}_{\mathrm{IDG}}\left[\left.Y\right|Z\right] := \underbrace{\mathbb{E}_{p_{Ds,D_t}}}_{\substack{\mathsf{random} \\ \mathsf{domains}}} \underbrace{\sup_{h \in \mathcal{H}_{Ds}^*}}_{\substack{h \in \mathcal{H}_{Ds}^*}} \underbrace{\mathbb{R}_{h}^{D_t}\left[\left.Y\right|Z\right]}_{\substack{\mathsf{target risk}}}$$

Uniform guarantees:

- · random domains
- worst-case source predictor

Goal: minimize the idealized domain generalization (IDG) risk w.r.t. Z

$$\mathbf{R}_{\mathrm{IDG}}\left[\left.Y\right|Z\right] := \underbrace{\mathbb{E}_{p_{Ds},D_t}}_{\substack{\mathsf{random} \\ \mathsf{domains}}} \underbrace{\sup_{h \in \mathcal{H}_{Ds}^*}}_{\substack{h \in \mathcal{H}_{Ds}^* \\ \mathsf{risk} \ \mathsf{min}}} \underbrace{\mathbf{R}_h^{D_t}\left[\left.Y\right|Z\right]}_{\substack{\mathsf{target} \ \mathsf{risk}}}$$

Uniform guarantees:

- random domains
- worst-case source predictor

Idealized setup for simplicity:

- population risk used for source predictor selection
- universal hypothesis class

Theorem (Optimality conditions, informal)

Under generalized covariate shift and some mild assumptions, Z^{*} is optimal for IDG if and only if it

- remains discriminative: $R[Y|Z^*] = R[Y|X]$
- has invariant support: $\operatorname{supp}(p_{Z^* \mid d_s}) = \operatorname{supp}(p_{Z^* \mid d_t}), \ \forall d_s, d_t \in \mathcal{D}$

Theorem (Optimality conditions, informal)

Under generalized covariate shift and some mild assumptions, Z^* is optimal for IDG if and only if it

- remains discriminative: $R[Y|Z^*] = R[Y|X]$
- has invariant support: $\operatorname{supp}(p_{Z^* \mid d_s}) = \operatorname{supp}(p_{Z^* \mid d_t}), \ \forall d_s, d_t \in \mathcal{D}$

achievable sufficient and necessary condition

Theorem (Optimality conditions, informal)

Under generalized covariate shift and some mild assumptions, Z^* is optimal for IDG if and only if it

- remains discriminative: $R[Y|Z^*] = R[Y|X]$
- has invariant support: $\operatorname{supp}(p_{Z^* \mid d_s}) = \operatorname{supp}(p_{Z^* \mid d_t}), \ \forall d_s, d_t \in \mathcal{D}$
- achievable sufficient and necessary condition
- requires access to labeled target domain

Proposition (No free lunch for IDG, informal)

Let Z_{d_s} be any rep. chosen on some source d_s and C a constant rep.

Under mild assumptions, if Z_{d_s} outperforms C on some "good" targets outside the source's support, there are many "bad" targets on which Z_{d_s} is strictly worse than C.

Proposition (No free lunch for IDG, informal)

Let Z_{d_s} be any rep. chosen on some source d_s and C a constant rep.

Under mild assumptions, if Z_{d_s} outperforms C on some "good" targets outside the source's support, there are many "bad" targets on which Z_{d_s} is strictly worse than C.

- ✓ implies the failure of current DG methods
 - ② unable to outperform ERM on a unified benchmark [3]
 - insufficient access to or strong asmp. on targets

Proposition (No free lunch for IDG, informal)

Let Z_{d_s} be any rep. chosen on some source d_s and C a constant rep.

Under mild assumptions, if Z_{d_s} outperforms C on some "good" targets outside the source's support, there are many "bad" targets on which Z_{d_s} is strictly worse than C.

- ✓ implies the failure of current DG methods
 - ② unable to outperform ERM on a unified benchmark [3]
 - insufficient access to or strong asmp. on targets
- * how to deal with necessary (but unrealistic) access to targets?

Method: Learning Z^* with SSL

Deviation: Self-Supervised Learning (SSL)

Recent SSL methods learn transferable and robust reps.:

- train on large-scale unlabelled data (≫= ImageNet)
- use augmentations as surrogate information for Y

SimCLR [1]: image aug.

CLIP [4]: text caption as aug.

Deviation: Self-Supervised Learning (SSL)

Recent SSL methods learn transferable and robust reps.:

- train on large-scale unlabelled data (≫= ImageNet)
- use augmentations as surrogate information for Y

SimCLR [1]: image aug.

CLIP [4]: text caption as aug.

Robustness of different SSL methods varies:

© CLIP achieves incredible robustness to distribution shifts

Augmentation A for learning Z^* :

 $\bullet \;$ Label-perserving: retain information about Y

Augmentation A for learning Z^* :

- ullet Label-perserving: retain information about Y
- Domain-agnostic: no correlation with domain

Augmentation A for learning Z^* :

- Label-perserving: retain information about Y
- Domain-agnostic: no correlation with domain

Domain-agnostic A

- ✓ Example: image-text aug. (e.g., CLIP [4])
- ✗ Counterexample: standard image aug. (e.g., SimCLR [1])

CLIP aug. \Rightarrow domain-agnostic rep.

SimCLR aug. \Rightarrow domain-correlated rep.

Augmentation A for learning Z^* :

- ullet Label-perserving: retain information about Y
- Domain-agnostic: no correlation with domain

Domain-agnostic A

- ✓ Example: image-text aug. (e.g., CLIP [4])
- ✗ Counterexample: standard image aug. (e.g., SimCLR [1])

CLIP aug. \Rightarrow domain-agnostic rep.

SimCLR aug. \Rightarrow domain-correlated rep.

implies the incredible robustness of CLIP over other SSL models

Proposition (Learning Z^* with domain-agnostic A)

Let $p_{A \mid X}$ be a domain-agnostic augmenter. Then any optimal solution $p_{Z^* \mid X}$ of the following objective is optimal for IDG:

$$\max_{p_{Z\mid X}} \text{I}[A; Z]$$
 s.t.
$$\text{supp}(p_{Z\mid d}) = \text{supp}(p_Z), \ \forall d \in \mathcal{D}$$

Proposition (Learning Z^* with domain-agnostic A)

Let $p_{A \mid X}$ be a domain-agnostic augmenter. Then any optimal solution $p_{Z^* \mid X}$ of the following objective is optimal for IDG:

$$\max_{p_{Z\mid X}} \mathrm{I}[A;Z]$$
 s.t.
$$\mathrm{supp}(p_{Z\mid d}) = \mathrm{supp}(p_Z), \ \forall d \in \mathcal{D}$$

- No Yanymore!
- support invariance constraint

Practical objectives:

$$\underset{p_{Z \mid X}}{\arg \min} \quad \underbrace{-\operatorname{I}[A;Z]}_{\text{max. MI}} + \lambda \quad \underbrace{\operatorname{B}[Z,D]}_{\text{dom. bottleneck}}$$

Practical objectives:

$$\underset{p_{Z \mid X}}{\arg \min} \quad \underbrace{-\operatorname{I}[A;Z]}_{\text{max. MI}} + \lambda \quad \underbrace{\operatorname{B}[Z,D]}_{\text{dom. bottleneck}}$$

- Maximize I[A; Z]: MI lower bound (e.g., InfoNCE)
- Domain bottleneck B[Z, D]: enforce support invariance

Practical objectives:

$$\underset{p_{Z|X}}{\operatorname{arg\,min}} \quad \underbrace{-\operatorname{I}[A;Z]}_{\text{max. MI}} + \lambda \quad \underbrace{\operatorname{B}[Z,D]}_{\text{dom. bottlened}}$$

- Maximize I[A; Z]: MI lower bound (e.g., InfoNCE)
- Domain bottleneck B[Z, D]: enforce support invariance

Domain bottleneck: previous DG methods (e.g., DANN [2]) can apply

- \square Contrastive adversarial domain (CAD) bottleneck I[Z;D]
 - © Requires no explicit trainable domain classifier
 - © Constructs an implicit domain classifier from contrastive var. dist.
- \square Entropy (Ent) bottleneck H[Z]
 - © Requires no access to domain information

Summary: one can learn optimal Z^* with SSL using:

- large-scale unlabeled data
- contrastive learning with domain-agnostic augmentations
- domain bottlenecks

Experiments

Exploiting Pretrained CLIP for Z^*

Motivation: CLIP was trained

- ✓ with 400M image-text augmentations
- without explicit domain bottlenecks

Idea:

- Finetune CLIP with bottlenecks on available data
- Evaluate with linear probe on DomainBed [3]

Exploiting Pretrained CLIP for Z^*

Algorithm	VLCS	PACS	OfficeHome	DomainNet	
ERM DomainBed SOTA		$86.7 \pm 0.3 \\ 87.2 \pm 0.1$	$66.4 \pm 0.5 \\ 68.4 \pm 0.2$	$41.3 \pm 0.1 \\ 41.8 \pm 0.1$	
DINO + CAD	69.6 ± 0.6	$\textbf{76.1} \pm \textbf{0.1}$	56.9 ± 0.5	33.6 ± 0.1	
CLIP CLIP + CAD	$ \begin{vmatrix} 80.7 \pm 0.4 \\ 81.6 \pm 0.1 \end{vmatrix} $	93.7 ± 0.8 94.9 ± 0.3	$79.6 \pm 0.1 \\ 80.0 \pm 0.2$	$52.8 \pm 0.1 \\ 53.7 \pm 0.1$	

© SOTA result with domain-agnostic aug. and bottlenecks!

Towards Generic Robust Representations with SSL

Idea: learn task- and domain-agnostic robust reps.

- Task: use LAION-400M [5] with text-image contrastive loss
- Domain: finetune CLIP with Ent bottleneck

Towards Generic Robust Representations with SSL

Idea: learn task- and domain-agnostic robust reps.

- Task: use LAION-400M [5] with text-image contrastive loss
- Domain: finetune CLIP with Ent bottleneck

Evaluate: natural distribution shift [6]

	IN	IN-V2	IN-S	YT-BB	IN-Vid	ObjNet	IN-A	IN-R	Avg.
Pretrained	75.2	64.2	41.0	58.4	71.6	42.8	27.5	62.9	52.6
Tuned w/o Ent	73.8	62.1	37.0	56.9	68.8	41.3	26.0	58.1	50.0
Tuned w/ Ent	74.2	62.7	38.9	58.1	70.1	42.1	26.2	60.8	51.3

- © Consistently improved robustness with bottlenecks!
- © Gains could be larger if end-to-end trained with bottlenecks!

Future Directions

- Non-idealized setups: finite sample case, constrained hypothesis?
- Approx. optimality: relaxed constraints?
- More practical methods for learning Z^* ?
- Implicit regularization effect for learning Z*?
- ..

Thank you!

Amazing co-authors:

Yann Dubois

Chris J. Maddison

References i

- [1] T. Chen et al. A simple framework for contrastive learning of visual representations. In *ICML*, 2020.
- [2] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. **Domain-adversarial training of neural networks.** *The journal of machine learning research*, 17(1):2096–2030, 2016.
- [3] I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. In *ICLR*, 2021.
- [4] A. Radford et al. Learning transferable visual models from natural language supervision. In *ICML*, 2021.

References ii

- [5] C. Schuhmann et al. Laion-400m: Open dataset of clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.
- [6] R. Taori et al. Measuring robustness to natural distribution shifts in image classification. arXiv preprint arXiv:2007.00644, 2020.