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Language model (LM) agents with external tools unlock a rich set of new capabilities
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Risks of LM Agents

LM agents can pose serious risks by taking harmful or unintended actions!

GPT‐4 + Github Plugin GPT‐4 + Interpreter

More severe & diverse risks may arise when integrating more (high‐stakes) tools

• Banking tools→ financial loss
• Robotic control tools→ property damage or even life‐threatening dangers

3/30



Risks of LM Agents

LM agents can pose serious risks by taking harmful or unintended actions!

GPT‐4 + Github Plugin

GPT‐4 + Interpreter

More severe & diverse risks may arise when integrating more (high‐stakes) tools

• Banking tools→ financial loss
• Robotic control tools→ property damage or even life‐threatening dangers

3/30



Risks of LM Agents

LM agents can pose serious risks by taking harmful or unintended actions!

GPT‐4 + Github Plugin GPT‐4 + Interpreter

More severe & diverse risks may arise when integrating more (high‐stakes) tools

• Banking tools→ financial loss
• Robotic control tools→ property damage or even life‐threatening dangers

3/30



Risks of LM Agents

LM agents can pose serious risks by taking harmful or unintended actions!

GPT‐4 + Github Plugin GPT‐4 + Interpreter

More severe & diverse risks may arise when integrating more (high‐stakes) tools

• Banking tools→ financial loss
• Robotic control tools→ property damage or even life‐threatening dangers

3/30



Challenges in Risk Assessment

Common practice: requires significant manual effort for testing & identifying failures

4/30



Challenges in Risk Assessment

Common practice: requires significant manual effort for testing & identifying failures

Help me pay the monthly 
rent to my landlord …

Financial tools

Agent

GPT Claude

LLaMA

…

4/30



Challenges in Risk Assessment

Common practice: requires significant manual effort for testing & identifying failures

Help me pay the monthly 
rent to my landlord …

Financial tools

Agent

GPT Claude

LLaMA

…

Tool Sandbox
Human Experts

- implement tools
- establish a testing sandbox
- set up risky scenarios

Action

Observation

Agent

GPT Claude

LLaMA

…

Need to implement the whole financial system (APIs & sandbox), set up fake accounts, ...

4/30



Challenges in Risk Assessment

Common practice: requires significant manual effort for testing & identifying failures

Help me pay the monthly 
rent to my landlord …

Financial tools

Agent

GPT Claude

LLaMA

…

Tool Sandbox
Human Experts

- implement tools
- establish a testing sandbox
- set up risky scenarios

Action

Observation

Agent

GPT Claude

LLaMA

…

Safe?Evaluation

Human Experts

- identify failures
- assess risks

Trajectory
Paid to a
wrong account✗

Need to manually inspect trajectories and detect failures

4/30



Challenges in Risk Assessment

Common practice: requires significant manual effort for testing & identifying failures

Help me pay the monthly 
rent to my landlord …

Financial tools

Agent

GPT Claude

LLaMA

…

Tool Sandbox
Human Experts

- implement tools
- establish a testing sandbox
- set up risky scenarios

Action

Observation

Agent

GPT Claude

LLaMA

…

Safe?Evaluation

Human Experts

- identify failures
- assess risks

Trajectory
Paid to a
wrong account✗

⌢ Hard to find & replicate failures in long‐tail scenarios

4/30



Challenges in Risk Assessment

Common practice: prohibits safety eval & dev of generalist agents

Agent

GPT Claude

LLaMA

…

Please delete some files 
to free my disk …

Send the annual financial 
report to Alice …

Help me pay the monthly 
rent to my landlord …

Turn off devices to save 
energy during my travel?

I had a severe fall, bring 
my medication to me …

Need to test on a large, diverse set of tools & scenarios, including those tools third‐party
developers may deploy in the future
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Inspiration

Simulation‐based testing is widely adopted in high‐stakes domains

Autonomous driving [Dosovitskiy et al., 2017] Traffic control [Lopez et al., 2018]

These simulation environments are domain‐specific and statically established
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ToolEmu

Idea: Use LMs (e.g., GPT‐4) as an automated virtual sandbox and safety evaluator
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ToolEmu

ToolEmu is NOT ...

8 a standalone replacement of the human‐driven risk evaluation process
→ it assists in humans in quickly testing and identifying agent failures at scale

8 an entirely automated red‐teaming framework
→ it facilitates automatic risk eval. with a large set of prespecified test cases
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Identified Failures within ToolEmu

ChatGPT‐3.5 with a bash terminal
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Identified Failures within ToolEmu

GPT‐4 with traffic system control
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Identifying Failures in ToolEmu

LM‐based emulation enables flexible testing and fast failure detection!
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LM as an Automated Virtual Sandbox

We prompt GPT‐4 to emulate tool executions with only tool specifications & inputs

Agent
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…
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(e.g., GPT-4)
- emulates tool executions
- sets up sandbox states

Terminal Email Financial

IoT Robot

…

Action

Observation
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LM as an Automated Virtual Sandbox

The LM‐based emulator enables ...

4 broad and easily expandable tool testing scope

4 flexible testing in rare scenarios without manual setup
4 inherent safety guarantees

# Examples

Similar tools present in existing capability
evaluation benchmarks with static sandboxes

6 Terminal, IndoorRobot, Amazon

Similar tools present with public APIs, but
without existing sandboxed evaluations

23
Gmail, BankManager, GoogleCalendar, Twit‐
ter, Dropbox, Expedia, Binance, Shopify

No similar tools exist yet with public APIs 7
GoogleHome, TrafficControl, EmergencyDis‐
patchSystem, AugustSmartLock
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Adversarial Emulator for Red‐Teaming

The standard emulator is inefficient for identifying long‐tail risks

Human testers explicitly set up the sandbox states to align with particular red‐teaming goals

Our adversarial emulator

4 automatically sets up the sandbox states based on specific risk metedata
4 emphasizes long‐tail higher‐risk scenarios
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Adversarial Emulator for Red‐teaming

The adversarial emulator catches a ChatGPT‐3.5 agent failure involving potential fatal risks
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LMs as Automatic Evaluators

Safety evaluator

• Agent failures are open‐ended with varying severities
→ impossible to enumerate & predefine

• Prompt GPT‐4 to examine agent trajectories, capture failures, and quantify associated
risks retrospectively

• Provide additional risk metadata for more accurate assessment
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LMs as Automatic Evaluators

Helpfulness evaluator

• A complementary dimension to capture potential safety‐helpfulness tradeoff

• Prompt GPT‐4 to assess how effectively the agents fulfill user instructions without
causing risks

Help. Evaluator
Language Models

(e.g., GPT-4)

- assess task achiev.
- capture potential tradeoff

Tool Specifications

User Instruction

Input Info.

Expect Achivement

Trajectory

Help. 
Score
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Evaluation Benchmark

ToolEmu enables us to develop a scalable and quantitative evaluation for agent safety.

We curate an initial evaluation benchmark across:

• 36 toolkits & 311 tools
• 144 test cases & 9 risk types
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Evaluation Benchmark

Threat model: Instruction underspecification

• contains ambiguities or omits critical details
• prevalent in real‐world scenarios
• agent failure to address them can cause risks

Benign user intent
• No intention to cause harm

→ Help. eval. values safe task achievement
over reckless one (e.g., deleting all files)

Test case
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Evaluation Benchmark

Data curation pipeline: GPT‐4 generates an initial set of tool specifications and test cases,
followed by human filtering and modifications

⌣ No tool implementation or sandbox setup is required!
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Validating ToolEmu

Primary objective: Examine if ToolEmu can assist in identifying true agent failures

Procedure:

1. Run test cases in ToolEmu
2. Collect identified failures that are deemed risky by auto. evaluator in emulation
3. Collect true failures that are validated by human annotators to have

• Realistic emulations: Possible to instantiate with actual tools and sandboxes
• Genuine risks: Accurate risk detection

4. Calculate the precision of identified failures being true failures
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Validating ToolEmu

End‐to‐end validation

Identified Failure Precision = # of True Failures in Identified Failures / # of Identified Failures
True Failure Incidence = # of True Failures / # of Test Cases

Emulator Identified Failure Precision True Failure Incidence

Standard 72.5% 39.6%
Adversarial 68.8% 50.0%

⌣ ToolEmu identifies true failures with about 70+% precision
⌣ Adversarial emulator helps detect more true failures
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Validating ToolEmu

Real sandbox instantiation
• ChatGPT + Terminal failures
• Instantiation with actual virtual machine

Results
⌣ 6 out of 7 failures reproduced

⌣ 15 mins (emulation) vs 8 hours (instantiation)
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Executing rm -rf /
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Evaluating LM Agents within ToolEmu

Metrics

• Failure incidence: # of Identified Failures / # of Test Cases
• Average scores: 0‐3, higher is better

Agents

• API‐based: ChatGPT‐3.5, GPT‐4, Claude‐2
• Open‐source: Vicuna‐1.5‐7B/13B
• Temperature = 0
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Evaluating LM Agents within ToolEmu

Results & Analysis

Agent Failure Incidence ↓ Safety Score ↑ Help. Score ↑

GPT‐4 39.4% 2.007 1.458
Claude‐2 44.3% 1.829 1.464

ChatGPT‐3.5 62.0% 1.430 0.768
Vicuna‐1.5‐13B 54.6% 1.552 0.441
Vicuna‐1.5‐7B 45.0% 1.850 0.364

GPT‐4 + Safety Prompt 23.9% 2.359 1.824

No Action 0.00% 3.000 0.063

API‐based agents demonstrate the best safety and helpfulness
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No Action 0.00% 3.000 0.063

Less capable agents’ better safety is due to their inefficacy
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Agent Failure Incidence ↓ Safety Score ↑ Help. Score ↑

GPT‐4 39.4% 2.007 1.458
Claude‐2 44.3% 1.829 1.464

ChatGPT‐3.5 62.0% 1.430 0.768
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Vicuna‐1.5‐7B 45.0% 1.850 0.364

GPT‐4 + Safety Prompt 23.9% 2.359 1.824

No Action 0.00% 3.000 0.063

Prompt tuning improves agent’s safety (still fails 23.9% of the time though!)
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Evaluating LM Agents within ToolEmu

Tradeoff between safety and helpfulness?
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• Capable API‐based agents do not demonstrate a tradeoff
• A capable & risk‐aware agent could achieve perfect scores in both!
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Future Directions

ToolEmu is an initial step toward developing LM agents that are both capable and safe

• Better emulators & evaluators:
• Especially in complex and adversarial scenarios
• Probably can scale with future‐generation LMs [Kaplan et al., 2020]

• Automated red‐teaming
• Automatic test case generation with LMs, similar to Perez et al. [2022]
• Scalable oversight

• Extending ToolEmu benchmark
• Different threat models, e.g., malicious users
• More tools & test scenarios
• Capability evaluation
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Thank you!

Project website, demo, and open‐source code
can be found in http://toolemu.com/

http://toolemu.com/
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Validating ToolEmu

Detailed validation

• Emulator quality: How often are the emulations realistic?
• Evaluator accuracy: How close are the evaluations aligned with human annotations?

Emulator Standard Adversarial

Realistic
Sim Ratio

91.9% 85.6%

Evaluator Safety Helpfulness

Cohen’s κ (H‐H) 0.480 0.521
Cohen’s κ (A‐H) 0.478 0.543

⌣ Emulators produce realistic emulations over 80% of the time

⌣ Evaluator‐human agreement (A‐H) mirrors human‐human agreement (H‐H)
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