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Overview

Bits-back coding [8]...

®© successfully applies latent variable models to lossless compression

© achieves a bitrate equal to the negative ELBO

® suffers from a in the bitrate to the cross-entropy
Cross- ideal net total
entropy entropy  bitrate bitrate bitrate
Bits-Back approx. gap | KL gap | dirty bits | init. bits
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Overview

We derive better bits-back schemes from

v remove the KL gap with better bitrates
v introduce little additional cost

v better for out-of-distribution data compression

Cross- ideal net total
entropy entropy  bitrate bitrate bitrate
Bits-Back approx. gap | KL gap | dirty bits | init. bits

McBits approx. gap | dirty bits | init. bits

2/27



Background



Lossless Compression

Goal: find shortest binary codes for discrete i.i.d. symbols z ~ p,(z)
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Lossless Compression

Goal: find shortest binary codes for discrete i.i.d. symbols z ~ p,(z)

o Typically a model distribution p(z) is used to approximate p,(z)

e The best possible bitrate is the cross-entropy:

H(pa, p Zpd ) log p(z

®© Achieved by various near-optimal entropy coders

Key to understand: entropy coder is a store of randomness

m/ —log p(x) encode = with p(x)

m —log p(z) decode z with p(x)
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Lossless Compression with Latent Variable Models

Latent variable model is a class of highly flexible generative models
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Lossless Compression with Latent Variable Models

Latent variable model is a class of highly flexible generative models

¢ Introduce an unobserved latent variable z € S’

@p(IIZ) : f@

symbol latent

¢ Not directly applicable with entropy coders since evaluating p(z)
is often intractable:

p(z) =Y p(2)p(z|2)

zeS’

Naive approach: to encode a symbol z ...

1. pick some z e §
. —log p(z, z)
2. encode (z, z) using p(z, z)
® Communicating zis redundant!
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Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS

e Compress a sequence of symbols in a chain

° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z
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Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS

e Compress a sequence of symbols in a chain

° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z

init. bits
decode z with q(z|z1)
o encode @1 with p(z1|z) Quantities of interest
encode 2 with p(2) m Initial bits
decode 2’ with g(z'|z2) m Net bitrate
s encode 75 with p(a:|+') m Total bitrate

encode 2’ with p(z')

net bits
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Bits-Back Compression with ANS

BB-ANS...

© leads to —log ¢(z| z) net bitrate saving
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Bits-Back Compression with ANS

BB-ANS...

© leads to —log ¢(z| z) net bitrate saving
® needs — log ¢(z| z) initial bits for the first symbol, causing a

In an ideal scenario, if we assume z ~ ¢(z| z), the net bitrate of
BB-ANS achieves the (negative) ‘evidence lower bound’ (ELBO):

E’ZNq(z\ T) [_ IOg p(SU, Z) + log Q(z‘ I)]
= —log p(z) + Dxr(q(z| 7) || p(2] z))

We refer to vanilla BB-ANS as BB-ELBO
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Tighter variational bound is better!

® ELBO may be a loose bound on the marginal log-likelihood
= a of BB-ELBO to the cross-entropy
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Tighter variational bound is better!

® ELBO may be a loose bound on the marginal log-likelihood
= a of BB-ELBO to the cross-entropy

© Tighter variational bounds bridge the gap

Can we derive bits-back coders from those tighter bounds and approach
the cross-entropy?
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Our Method: McBits
Monte Carlo Bits-Back Coding



General Framework

McBits coders are built from elaborate Monte Carlo estimators
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General Framework

McBits coders are built from elaborate Monte Carlo estimators

e Given a positive unbiased MC estimator of the marginal likelihood
pn(z) that can be simulated with O(N) random variables

¢ A variational bound on log p(z) can be derived from px(z) by
Jensen’s inequality

E[log pn(7)] < log p(z)
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General Framework

Goal: design bits-back schemes with a net bitrate of — E[log pn(z)]
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General Framework

Goal: design bits-back schemes with a net bitrate of — E[log pn(z)]
Key step: identity the of pn(z)
e Extended latent variables Z ~ Q(Z | z)

¢ Proposal distribution Q(Z | z)
e Target distribution P(z, Z)

®© The variational bound can be viewed as an ELBO!

Z<rz
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General Framework

Derive McBits coders in a similar way to BB-ELBO

Algorithm: General Procedures of McBits Coders

Procedure Encode (sym x, msg m) Procedure Decode(msg m)
decode Z with Q(Z | z) decode zand Z with P(z, Z)
L encode zand Z with P(z, Z) L encode Z with Q(Z | z)
return m’ return z, m/

10/27



General Framework

Derive McBits coders in a similar way to BB-ELBO

Algorithm: General Procedures of McBits Coders

Procedure Encode (sym x, msg m) Procedure Decode(msg m)
decode Z with Q(Z | z) decode zand Z with P(z, Z)
L encode zand Z with P(z, Z) L encode Z with Q(Z | z)
return m’ return z, m/

© It achieves an ideal net bitrate of — E[log pn(z)]!
© If —E[log py(z)] — — log p(x), it approaches the cross-entropy!
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Bits-Back Importance Sampling

Importance Sampling (IS)
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Bits-Back Importance Sampling

Importance Sampling (IS)

e IS samples N particles z; ~ ¢(z | z) i.i.d. and uses the average
importance weights to estimate p(x)

. 1 N T, 2

e The corresponding variational bound (IWAE) [3]:

N g p(, 2;)
E{zt}i\]:l [IOg (; NQ(Zz | 56))

¢ Under mild conditions, the IWAE bound converges monotonically
to log p(z) as N — oo

< log p()
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Bits-Back Importance Sampling

IWAE is an ELBO over an '[1, 6,7]

12/27



Bits-Back Importance Sampling

IWAE is an ELBO over an '[1, 6,7]

e The extended space variables Z include the configurations of the
N particles {z}, and an index j € {1 .. N}

12/27



Bits-Back Importance Sampling

IWAE is an ELBO over an '[1, 6,7]

e The extended space variables Z include the configurations of the
N particles {z}, and an index j € {1 .. N}

e |WAE is the ELBO between a different pair of distributions
P(z, 2) and Q(Z | ) over the extended space

R

Z\H
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Derive BB-IS in a similar way to BB-ELBO
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Derive BB-IS in a similar way to BB-ELBO

decode {2}V, with IV g(z]|x)
Q@ decode
decode j with Cat(w;)

encode {z;}ix; with IT;z;q(z|x)

O
O —O--3
()
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Bits-Back Importance Sampling
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Bits-Back Importance Sampling

Derive BB-IS in a similar way to BB-ELBO

Q@ decode

P encode

|
|

decode {2}, with ITY,q(z]|x)
decode j with Cat(w;)

encode {z;}ix; with IT;z;q(z|x)
encode  with p(z|z;)

encode z; with p(z;)

encode j with Cat(1/N)
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Bits-Back Importance Sampling

BB-IS...

© ideally achieves a net bitrate equal to the negative IWAE and
asymptotically reaches the cross-entropy

® requires O(N) initial bits <= O(N) decoded latent variables
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Bits-Back Coupled Importance Sampling

Key idea: coupling the particles {2} ; by a shared random number =
decoding a single random number is enough!
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Bits-Back Coupled Importance Sampling

Key idea: coupling the particles {2} ; by a shared random number =
decoding a single random number is enough!

Recap (inverse CDF technique): for a continuous distribution, we can
simulate it by applying its inverse CDF to a random uniform on [0, 1]

Discrete analog: suppose ¢ is approximated to an integer precision r
such that 27¢(z| z) is an integer for all z € §'. The discrete analog of
the inverse CDF function F;l maps the uniform samples on

{0..2" — 1} into samples from ¢

2"q(z | x)
>

.21} [u
-1
Fyo(u)
S|z

15/27



Bits-Back Coupled Importance Sampling

Reparamerization: reparamerize the particles {2}, by a single

uniform random variable u;

(0.2 -1} uy
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Bits-Back Coupled Importance Sampling

Reparamerization: reparamerize the particles {2}, by a single

uniform random variable u;
{0..27 -1} |ug uy Us U3

© Decoding a single uniform is all you need!
© The initial bit cost is reduced to

r—log w; € O(1) + O(log N) = O(log N)
In practice, the O(1) term dominates

16/27



Bits-Back Coupled Importance Sampling

BB-CIS...
®© achieves a net bitrate comparable to BB-1S

N
1 p(z, z;)
o (Z (] )ﬂ

=1

_ Eul
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Bits-Back Coupled Importance Sampling

BB-CIS...

®© achieves a net bitrate comparable to BB-1S

N
1 p(z, z;)
o (Z (] )ﬂ

i=1

_ Eul

© significantly reduces the initial bit cost of BB-IS
= may motivate other coupling schemes that reduce initial bits
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Bits-Back Annealed Importance Sampling

Bits-Back Annealed Importance Sampling (BB-AIS) and its Bit-Swap [9]
variant (BB-AIS-BitSwap) for reducing initial bit cost

decode 2z with g(zq|x) decode 2z with g(zq|x)
decode zp with 71 (22|21) decode zp with 7i(22|21)
decode z3 with 75 (z3|22) encode z; with 71(z1]22)
encode = with p(z|z3) decode z3 with 73 (z3|22)
encode z; with ’ﬁ(zl |22) encode zy with ’7}(:2\:,;)
encode zy with 7‘2(;2\23) encode x with p(z|z3)
encode z3 with p(z3) encode z3 with p(z3)

(a) BB-AIS (b) BB-AIS-BitSwap
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Bits-Back Sequential Monte Carlo

Bits-Back Sequential Monte Carlo (BB-SMC) and its coupled variant
(BB-CSMC) for reducing initial bit cost

T-1 T 71 p
T»% [ — —
o
v .l |/
i J / /
Ary Z7 Aty Zr
all extended latents {Ar_1, Z7, j} with @ distribution Get the special particle trajectory zj. = TraceBack(Z7, Ar_1, )
T-1 T T-1 T
N N
J J
A7y Zy Ay Zy

Encode 27 and @7 with the model distribution Encode other extended latents with the same distributions as Q

Encode the ancestral indices of 27 with uniform distribution
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Experiments



Computational Cost

e McBits coders scale linearly with the number of particles N

L Available at https://github.com/j-towns/crayjax
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Computational Cost

e McBits coders scale linearly with the number of particles N
e However, particles are amenable to parallelization

e We implemented?! vectorized rANS on the GPU, which allows
McBits coders to scale with particles

Total encode + decode times for the binarized MNIST test set

100 4

Time (seconds)

2

ot
G

BB-IS

1 2 4 8§ 16 32 64 128 256
N
L Available at https://github.com/j-towns/crayjax
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Toy Mixture Model: Net Bitrate — Entropy

o We performed experiments on a toy mixture model, where the
data generating distribution is randomly initialized and known
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Toy Mixture Model: Net Bitrate — Entropy

o We performed experiments on a toy mixture model, where the
data generating distribution is randomly initialized and known

e A uniform approximate posterior was used to ensure a large
mismatch with the true posterior

e As N — oo, the net bitrate converges to the entropy for most
coders, as expected

a
)

o
o

== == Entropy

= = BB-ELBO
BB-IS

e BB-CIS

BB-AIS

== BB-AIS-BitSwap

o
n

{

Net Bitrate (bits/sym)
B o
o IS

=N

o
=3

e Observation and latent alphabet sizes were 64 and 256, respectively
e Compression was performed on 5000 symbols
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Toy Mixture Model: Initial Bit Cost

e We quantified the initial bit cost by computing the total bitrate
(the net bitrate plus initial bits per symbol) after the first symbol
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Toy Mixture Model: Initial Bit Cost

e We quantified the initial bit cost by computing the total bitrate
(the net bitrate plus initial bits per symbol) after the first symbol

¢ The initial bit cost of naive coders scales linearly with particles,
but coupled and BitSwap [9] variants significantly reduce it

== BB-ELBO
BB-IS
== BB-AIS
2501 ==e= BB-CIS & BB-AIS-BitSwap

W
=]
S

]
G
S

)
=1
S

150

Total Bitrate (bits/sym)

100 4

12 4 8 16 32
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Toy Hidden Markov Model: Net Bitrate — Entropy

o We performed experiments on data from a toy Hidden Markov
Model where prior, emission and transition probabilities were
known, and a uniform approximate posterior was used
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Toy Hidden Markov Model: Net Bitrate — Entropy

We performed experiments on data from a toy Hidden Markov
Model where prior, emission and transition probabilities were
known, and a uniform approximate posterior was used

As N — oo, the net bitrates of BB-IS and BB-SMC converge to the
entropy, but BB-SMC converges much faster

P e L T T
~
g
2 461
= = = Entropy
=1 — = BB-ELBO
Q
z 4“ BB-IS
= BB-SMC
A
D 42
Z

71 T peeyey-_y—y—y >

1 2 4 8 16 32 64 128 256

Observation and latent alphabet sizes were 16 and 32, respectively

A uniform approximate posterior was used, and other distributions were randomly initialized

Compression was performed on 5000 sequences with 10 time-steps each

The entropy was estimated empirically using the forward algorithm 23/27



EMNIST: Transfer Learning Setting

¢ We trained a VAE, with Gaussian latents and Bernoulli
observations, on the binarized EMNIST-Letters and
EMNIST-MNIST datasets [5]
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EMNIST: Transfer Learning Setting

e We trained a VAE, with Gaussian latents and Bernoulli
observations, on the binarized EMNIST-Letters and
EMNIST-MNIST datasets [5]

e Compression performance was evaluated on both tests sets

e BB-IS achieves greater rate savings than BB-ELBO in the
setting

Trained on MNIST Letters

Compressing MNIST Letters MNIST Letters

BB-ELBO 0.236 0310 0.257 0.250
BB-IS (N = 5) 0.231 0.289 0249 0.243
BB-IS(N=50) 0.228 0280 0.244 0.239

Savings 3.4% 4.4%
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Polyphonic Music Datasets: BB-SMC for Sequential Data

e We used a chunked version of 4 polyphonic music datasets from
[2] to evaluate the compression performance of BB-SMC on
sequential datasets
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Polyphonic Music Datasets: BB-SMC for Sequential Data

e We used a chunked version of 4 polyphonic music datasets from
[2] to evaluate the compression performance of BB-SMC on
sequential datasets

e Models were based on the variational RNN [4], with Gaussian
latents and Bernoulli observations, and trained following [10]

e BB-SMC achieves the best net bitrates (bits/timestep) on all piano
roll test sets.

Musedata  Nott. JSB Piano.

BB-ELBO 10.66 587 1253 1143
BB-IS (N = 4) 10.66 4.86 12.03 11.38
BB-SMC (N = 4) 9.58 476 1092 11.20
Savings 10.1% 18.9% 12.8% 2.0%

25/27



Conclusion

e McBits are bits-back coders that exploit the
of tighter variational bounds for better bitrates
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Conclusion

McBits are bits-back coders that exploit the
of tighter variational bounds for better bitrates

The initial bit cost of McBits coders scales linearly with particles,
but can be significantly reduced by the extended latents

When parallelizing computation over particles, McBits coders can
achieve better bitrates than BB-ANS with

Experiments indicate that BB-IS enjoys better bitrate savings in
compression settings
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