Improving Lossless Compression Rates via
Monte Carlo Bits-Back Coding

Yangjun Ruan* *2 Karen Ullrich* 2> Daniel Severo* 12
James Townsend * Ashish Khisti' Arnaud Doucet >
Alireza Makhzani 12 Chris J. Maddison 12

LUniversity of Toronto 2Vector Institute
3Facebook Al Research “University College London >University of Oxford

ICML 2021 (Long Talk)

Overview

Bits-back coding [8]...

®© successfully applies latent variable models to lossless compression

© achieves a bitrate equal to the negative ELBO

® suffers from a in the bitrate to the cross-entropy
Cross- ideal net total
entropy entropy bitrate bitrate bitrate
Bits-Back approx. gap | KL gap | dirty bits | init. bits

1/27

Overview

We derive better bits-back schemes from

v remove the KL gap with better bitrates
v introduce little additional cost

v better for out-of-distribution data compression

Cross- ideal net total
entropy entropy bitrate bitrate bitrate
Bits-Back approx. gap | KL gap | dirty bits | init. bits

McBits approx. gap | dirty bits | init. bits

2/27

Background

Lossless Compression

Goal: find shortest binary codes for discrete i.i.d. symbols z ~ p,(z)

3/27

Lossless Compression

Goal: find shortest binary codes for discrete i.i.d. symbols z ~ p,(z)

o Typically a model distribution p(z) is used to approximate p,(z)

3/27

Lossless Compression

Goal: find shortest binary codes for discrete i.i.d. symbols z ~ p,(z)

o Typically a model distribution p(z) is used to approximate p,(z)

e The best possible bitrate is the cross-entropy:

H(pa, p Zpd) log p(z

3/27

Lossless Compression

Goal: find shortest binary codes for discrete i.i.d. symbols z ~ p,(z)

o Typically a model distribution p(z) is used to approximate p,(z)

e The best possible bitrate is the cross-entropy:

H(pa, p Zpd) log p(z

®© Achieved by various near-optimal entropy coders

3/27

Lossless Compression

Goal: find shortest binary codes for discrete i.i.d. symbols z ~ p,(z)

o Typically a model distribution p(z) is used to approximate p,(z)

e The best possible bitrate is the cross-entropy:

H(pa, p Zpd) log p(z

®© Achieved by various near-optimal entropy coders

Key to understand: entropy coder is a store of randomness

m/ —log p(x) encode = with p(x)

m —log p(z) decode z with p(x)

3/27

Lossless Compression with Latent Variable Models

Latent variable model is a class of highly flexible generative models

4/27

Lossless Compression with Latent Variable Models

Latent variable model is a class of highly flexible generative models

¢ Introduce an unobserved latent variable z € S’

@p(IIZ) : f@

symbol latent

4/27

Lossless Compression with Latent Variable Models

Latent variable model is a class of highly flexible generative models
¢ Introduce an unobserved latent variable z € S/

@p(IIZ) : f@

symbol latent

¢ Not directly applicable with entropy coders since evaluating p(z)
is often intractable:

p(z) =Y p(2)p(z|2)

zeS’

4/27

Lossless Compression with Latent Variable Models

Latent variable model is a class of highly flexible generative models
¢ Introduce an unobserved latent variable z € S/

@p(IIZ) : f@

symbol latent

¢ Not directly applicable with entropy coders since evaluating p(z)
is often intractable:

p(z) =Y p(2)p(z|2)

zeS’

Naive approach: to encode a symbol z ...

1. pick some z e §

2. encode (z, z) using p(z, z)

4/27

Lossless Compression with Latent Variable Models

Latent variable model is a class of highly flexible generative models

¢ Introduce an unobserved latent variable z € S’

@p(IIZ) : f@

symbol latent

¢ Not directly applicable with entropy coders since evaluating p(z)
is often intractable:

p(z) =Y p(2)p(z|2)

zeS’

Naive approach: to encode a symbol z ...

1. pick some z e §
. —log p(z, z)
2. encode (z, z) using p(z, z)
® Communicating zis redundant!

4/27

Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS

e Compress a sequence of symbols in a chain

° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z

5/27

Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS

e Compress a sequence of symbols in a chain

° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z

init. bits

5/27

Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS

e Compress a sequence of symbols in a chain

° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z

init. bits

decode z with g(z|z1) .H @

5/27

Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS

e Compress a sequence of symbols in a chain

° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z

init. bits

decode z with g(z|z1)
encode z1 with p(z1|z)

5/27

Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS

e Compress a sequence of symbols in a chain

° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z

init. bits

decode z with g(z|z1)
encode z1 with p(z1|z) @

encode z with p(z)

5/27

Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS
e Compress a sequence of symbols in a chain
° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z
init. bits
decode z with g(z|z1)
x1 encode a1 with p(a1]2)

encode z with p(z)

5/27

Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS

e Compress a sequence of symbols in a chain

° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z

init. bits
decode z with g(z|z1)
1 encode z1 with p(z1|z)
encode z with p(z)
decode 2" with g(z'|z2)
) encode zo with p(z2|2”)

encode 2’ with p(z')

5/27

Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS

e Compress a sequence of symbols in a chain

° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z

init. bits
decode z with g(z|z1)
1 encode z1 with p(z1|z)
encode z with p(z)
decode 2" with g(z'|z2)
) encode zo with p(z2|2”)

encode 2’ with p(z')

net bits

5/27

total bits

Bits-Back Compression with ANS

Bits-Back with Asymmetric Numeral Systems (BB-ANS) [11] achieves
a better bitrate!

e Adopt a stack-like entropy coder ANS

e Compress a sequence of symbols in a chain

° latents z with an approximate posterior ¢(z| z) from the
intermediate message state instead of picking z

init. bits
decode z with q(z|z1)
o encode @1 with p(z1|z) Quantities of interest
encode 2 with p(2) m Initial bits
decode 2’ with g(z'|z2) m Net bitrate
s encode 75 with p(a:|+') m Total bitrate

encode 2’ with p(z')

net bits

5/27

total bits

Bits-Back Compression with ANS

BB-ANS...

© leads to —log ¢(z| z) net bitrate saving

6/27

Bits-Back Compression with ANS

BB-ANS...

© leads to —log ¢(z| z) net bitrate saving
® needs — log ¢(z| z) initial bits for the first symbol, causing a

6/27

Bits-Back Compression with ANS

BB-ANS...

© leads to —log ¢(z| z) net bitrate saving
® needs — log ¢(z| z) initial bits for the first symbol, causing a

In an ideal scenario, if we assume z ~ ¢(z| z), the net bitrate of
BB-ANS achieves the (negative) ‘evidence lower bound’ (ELBO):

E’ZNq(z\ T) [_ IOg p(SU, Z) + log Q(z‘ I)]
= —log p(z) + Dxr(q(z| 7) || p(2] z))

We refer to vanilla BB-ANS as BB-ELBO

6/27

Tighter variational bound is better!

® ELBO may be a loose bound on the marginal log-likelihood
= a of BB-ELBO to the cross-entropy

7/27

Tighter variational bound is better!

® ELBO may be a loose bound on the marginal log-likelihood
= a of BB-ELBO to the cross-entropy

© Tighter variational bounds bridge the gap

7/27

Tighter variational bound is better!

® ELBO may be a loose bound on the marginal log-likelihood
= a of BB-ELBO to the cross-entropy

© Tighter variational bounds bridge the gap

Can we derive bits-back coders from those tighter bounds and approach
the cross-entropy?

7/27

Our Method: McBits
Monte Carlo Bits-Back Coding

General Framework

McBits coders are built from elaborate Monte Carlo estimators

8/27

General Framework

McBits coders are built from elaborate Monte Carlo estimators

e Given a positive unbiased MC estimator of the marginal likelihood
pn(z) that can be simulated with O(N) random variables

8/27

General Framework

McBits coders are built from elaborate Monte Carlo estimators

e Given a positive unbiased MC estimator of the marginal likelihood
pn(z) that can be simulated with O(N) random variables

¢ A variational bound on log p(z) can be derived from px(z) by
Jensen’s inequality

E[log pn(7)] < log p(z)

8/27

General Framework

Goal: design bits-back schemes with a net bitrate of — E[log pn(z)]

9/27

General Framework

Goal: design bits-back schemes with a net bitrate of — E[log pn(z)]
Key step: identity the of pn(z)
e Extended latent variables Z ~ Q(Z | z)

¢ Proposal distribution Q(Z | z)
e Target distribution P(z, Z)

9/27

General Framework

Goal: design bits-back schemes with a net bitrate of — E[log pn(z)]
Key step: identity the of pn(z)
e Extended latent variables Z ~ Q(Z | z)

¢ Proposal distribution Q(Z | z)
e Target distribution P(z, Z)

®© The variational bound can be viewed as an ELBO!

Z<rz

9/27

General Framework

Derive McBits coders in a similar way to BB-ELBO

Algorithm: General Procedures of McBits Coders

Procedure Encode (sym x, msg m) Procedure Decode(msg m)
decode Z with Q(Z | z) decode zand Z with P(z, Z)
L encode zand Z with P(z, Z) L encode Z with Q(Z | z)
return m’ return z, m/

10/27

General Framework

Derive McBits coders in a similar way to BB-ELBO

Algorithm: General Procedures of McBits Coders

Procedure Encode (sym x, msg m) Procedure Decode(msg m)
decode Z with Q(Z | z) decode zand Z with P(z, Z)
L encode zand Z with P(z, Z) L encode Z with Q(Z | z)
return m’ return z, m/

© It achieves an ideal net bitrate of — E[log pn(z)]!
© If —E[log py(z)] — — log p(x), it approaches the cross-entropy!

10/27

Bits-Back Importance Sampling

Importance Sampling (IS)

11/27

Bits-Back Importance Sampling

Importance Sampling (IS)

e IS samples N particles z; ~ ¢(z | z) i.i.d. and uses the average
importance weights to estimate p(x)

11/27

Bits-Back Importance Sampling

Importance Sampling (IS)

e IS samples N particles z; ~ ¢(z | z) i.i.d. and uses the average
importance weights to estimate p(x)

. 1 N T, 2

e The corresponding variational bound (IWAE) [3]:

N g p(, 2;)
E{zt}i\]:l [IOg (; NQ(Zz | 56))

< log p()

11/27

Bits-Back Importance Sampling

Importance Sampling (IS)

e IS samples N particles z; ~ ¢(z | z) i.i.d. and uses the average
importance weights to estimate p(x)

. 1 N T, 2

e The corresponding variational bound (IWAE) [3]:

N g p(, 2;)
E{zt}i\]:l [IOg (; NQ(Zz | 56))

¢ Under mild conditions, the IWAE bound converges monotonically
to log p(z) as N — oo

< log p()

11/27

Bits-Back Importance Sampling

IWAE is an ELBO over an '[1, 6,7]

12/27

Bits-Back Importance Sampling

IWAE is an ELBO over an '[1, 6,7]

e The extended space variables Z include the configurations of the
N particles {z}, and an index j € {1 .. N}

12/27

Bits-Back Importance Sampling

IWAE is an ELBO over an '[1, 6,7]

e The extended space variables Z include the configurations of the
N particles {z}, and an index j € {1 .. N}

e |WAE is the ELBO between a different pair of distributions
P(z, 2) and Q(Z |) over the extended space

R

Z\H

12/27

Bits-Back Importance Sampling

Derive BB-IS in a similar way to BB-ELBO

13/27

Bits-Back Importance Sampling

Derive BB-IS in a similar way to BB-ELBO

decode {2}V, with IV g(z]|x)

13/27

Bits-Back Importance Sampling

Derive BB-IS in a similar way to BB-ELBO

decode {2}V, with IV g(z]|x)

decode j with Cat(w;)

13/27

Bits-Back Importance Sampling

Derive BB-IS in a similar way to BB-ELBO

decode {2}V, with IV g(z]|x)
Q@ decode
decode j with Cat(w;)

13/27

Bits-Back Importance Sampling

Derive BB-IS in a similar way to BB-ELBO

decode {2}V, with IV g(z]|x)
Q@ decode
decode j with Cat(w;)

encode {z;}ix; with IT;z;q(z|x)

O
O —O--3
()

13/27

Bits-Back Importance Sampling

Derive BB-IS in a similar way to BB-ELBO

Q@ decode

decode {2}, with ITY,q(z]|x)
decode j with Cat(w;)

encode {z;}ix; with IT;z;q(z|x)

encode with p(z|z;) < -

13/27

Bits-Back Importance Sampling

Derive BB-IS in a similar way to BB-ELBO

Q@ decode

decode {2}, with ITY,q(z]|x)
decode j with Cat(w;)

encode {z;}ix; with IT;z;q(z|x)

encode with p(z|z;) @é ——

encode z; with p(z;)

13/27

Bits-Back Importance Sampling

Derive BB-IS in a similar way to BB-ELBO

Q@ decode

decode {2}, with ITY,q(z]|x)

decode j with Cat(w;)

encode {z;}ix; with IT;z;q(z|x)

encode with p(z|z;)
encode z; with p(z;)

encode j with Cat(1/N)

13/27

Bits-Back Importance Sampling

Derive BB-IS in a similar way to BB-ELBO

Q@ decode

P encode

|
|

decode {2}, with ITY,q(z]|x)
decode j with Cat(w;)

encode {z;}ix; with IT;z;q(z|x)
encode with p(z|z;)

encode z; with p(z;)

encode j with Cat(1/N)

13/27

Bits-Back Importance Sampling

BB-IS...

© ideally achieves a net bitrate equal to the negative IWAE and
asymptotically reaches the cross-entropy

® requires O(N) initial bits <= O(N) decoded latent variables

14/27

Bits-Back Coupled Importance Sampling

Key idea: coupling the particles {2} ; by a shared random number =
decoding a single random number is enough!

15/27

Bits-Back Coupled Importance Sampling

Key idea: coupling the particles {2} ; by a shared random number =
decoding a single random number is enough!

Recap (inverse CDF technique): for a continuous distribution, we can
simulate it by applying its inverse CDF to a random uniform on [0, 1]

15/27

Bits-Back Coupled Importance Sampling

Key idea: coupling the particles {2} ; by a shared random number =
decoding a single random number is enough!

Recap (inverse CDF technique): for a continuous distribution, we can
simulate it by applying its inverse CDF to a random uniform on [0, 1]

Discrete analog: suppose ¢ is approximated to an integer precision r
such that 27¢(z| z) is an integer for all z € §'. The discrete analog of
the inverse CDF function F;l maps the uniform samples on

{0..2" — 1} into samples from ¢

2"q(z | x)
>

.21} [u
-1
Fyo(u)
S|z

15/27

Bits-Back Coupled Importance Sampling

Reparamerization: reparamerize the particles {2}, by a single

uniform random variable u;

(0.2 -1} uy

16/27

Bits-Back Coupled Importance Sampling

Reparamerization: reparamerize the particles {2}, by a single

uniform random variable u;

{0..2" =1} |ug uy U us

16/27

Bits-Back Coupled Importance Sampling

Reparamerization: reparamerize the particles {2}, by a single
uniform random variable u;

{0..2" =1} |ug uy U us

16/27

Bits-Back Coupled Importance Sampling

Reparamerization: reparamerize the particles {2}, by a single

uniform random variable u;
{0..27 -1} |ug uy Us U3

© Decoding a single uniform is all you need!

16/27

Bits-Back Coupled Importance Sampling

Reparamerization: reparamerize the particles {2}, by a single

uniform random variable u;
{0..27 -1} |ug uy Us U3

© Decoding a single uniform is all you need!
© The initial bit cost is reduced to

r—log w; € O(1) + O(log N) = O(log N)
In practice, the O(1) term dominates

16/27

Bits-Back Coupled Importance Sampling

BB-CIS...
®© achieves a net bitrate comparable to BB-1S

N
1 p(z, z;)
o (Z (])ﬂ

=1

_ Eul

17/27

Bits-Back Coupled Importance Sampling

BB-CIS...

®© achieves a net bitrate comparable to BB-1S

N
1 p(z, z;)
o (Z (])ﬂ

i=1

_ Eul

© significantly reduces the initial bit cost of BB-IS
= may motivate other coupling schemes that reduce initial bits

17/27

Bits-Back Annealed Importance Sampling

Bits-Back Annealed Importance Sampling (BB-AIS) and its Bit-Swap [9]
variant (BB-AIS-BitSwap) for reducing initial bit cost

decode 2z with g(zq|x) decode 2z with g(zq|x)
decode zp with 71 (22|21) decode zp with 7i(22|21)
decode z3 with 75 (z3|22) encode z; with 71(z1]22)
encode = with p(z|z3) decode z3 with 73 (z3|22)
encode z; with ’ﬁ(zl |22) encode zy with ’7}(:2\:,;)
encode zy with 7‘2(;2\23) encode x with p(z|z3)
encode z3 with p(z3) encode z3 with p(z3)

(a) BB-AIS (b) BB-AIS-BitSwap

18/27

Bits-Back Sequential Monte Carlo

Bits-Back Sequential Monte Carlo (BB-SMC) and its coupled variant
(BB-CSMC) for reducing initial bit cost

T-1 T 71 p
T»% [— —
o
v .l |/
i J / /
Ary Z7 Aty Zr
all extended latents {Ar_1, Z7, j} with @ distribution Get the special particle trajectory zj. = TraceBack(Z7, Ar_1,)
T-1 T T-1 T
N N
J J
A7y Zy Ay Zy

Encode 27 and @7 with the model distribution Encode other extended latents with the same distributions as Q

Encode the ancestral indices of 27 with uniform distribution

19/27

Experiments

Computational Cost

e McBits coders scale linearly with the number of particles N

L Available at https://github.com/j-towns/crayjax

20/27

https://github.com/j-towns/crayjax

Computational Cost

e McBits coders scale linearly with the number of particles N
e However, particles are amenable to parallelization

L Available at https://github.com/j-towns/crayjax

20/27

https://github.com/j-towns/crayjax

Computational Cost

e McBits coders scale linearly with the number of particles N
e However, particles are amenable to parallelization

e We implemented?! vectorized rANS on the GPU, which allows
McBits coders to scale with particles

Total encode + decode times for the binarized MNIST test set

100 4

Time (seconds)

2

ot
G

BB-IS

1 2 4 8§ 16 32 64 128 256
N
L Available at https://github.com/j-towns/crayjax

20/27

https://github.com/j-towns/crayjax

Toy Mixture Model: Net Bitrate — Entropy

o We performed experiments on a toy mixture model, where the
data generating distribution is randomly initialized and known

21/27

Toy Mixture Model: Net Bitrate — Entropy

o We performed experiments on a toy mixture model, where the
data generating distribution is randomly initialized and known

e A uniform approximate posterior was used to ensure a large
mismatch with the true posterior

21/27

Toy Mixture Model: Net Bitrate — Entropy

o We performed experiments on a toy mixture model, where the
data generating distribution is randomly initialized and known

e A uniform approximate posterior was used to ensure a large
mismatch with the true posterior

e As N — oo, the net bitrate converges to the entropy for most
coders, as expected

a
)

o
o

== == Entropy

= = BB-ELBO
BB-IS

e BB-CIS

BB-AIS

== BB-AIS-BitSwap

o
n

{

Net Bitrate (bits/sym)
B o
o IS

=N

o
=3

e Observation and latent alphabet sizes were 64 and 256, respectively
e Compression was performed on 5000 symbols

21/27

Toy Mixture Model: Initial Bit Cost

e We quantified the initial bit cost by computing the total bitrate
(the net bitrate plus initial bits per symbol) after the first symbol

22/27

Toy Mixture Model: Initial Bit Cost

e We quantified the initial bit cost by computing the total bitrate
(the net bitrate plus initial bits per symbol) after the first symbol

¢ The initial bit cost of naive coders scales linearly with particles,
but coupled and BitSwap [9] variants significantly reduce it

== BB-ELBO
BB-IS
== BB-AIS
2501 ==e= BB-CIS & BB-AIS-BitSwap

W
=]
S

]
G
S

)
=1
S

150

Total Bitrate (bits/sym)

100 4

12 4 8 16 32

22/27

Toy Hidden Markov Model: Net Bitrate — Entropy

o We performed experiments on data from a toy Hidden Markov
Model where prior, emission and transition probabilities were
known, and a uniform approximate posterior was used

23/27

Toy Hidden Markov Model: Net Bitrate — Entropy

We performed experiments on data from a toy Hidden Markov
Model where prior, emission and transition probabilities were
known, and a uniform approximate posterior was used

As N — oo, the net bitrates of BB-IS and BB-SMC converge to the
entropy, but BB-SMC converges much faster

P e L T T
~
g
2 461
= = = Entropy
=1 — = BB-ELBO
Q
z 4“ BB-IS
= BB-SMC
A
D 42
Z

71 T peeyey-_y—y—y >

1 2 4 8 16 32 64 128 256

Observation and latent alphabet sizes were 16 and 32, respectively

A uniform approximate posterior was used, and other distributions were randomly initialized

Compression was performed on 5000 sequences with 10 time-steps each

The entropy was estimated empirically using the forward algorithm 23/27

EMNIST: Transfer Learning Setting

¢ We trained a VAE, with Gaussian latents and Bernoulli
observations, on the binarized EMNIST-Letters and
EMNIST-MNIST datasets [5]

24/27

EMNIST: Transfer Learning Setting

¢ We trained a VAE, with Gaussian latents and Bernoulli
observations, on the binarized EMNIST-Letters and
EMNIST-MNIST datasets [5]

e Compression performance was evaluated on both tests sets

24/27

EMNIST: Transfer Learning Setting

e We trained a VAE, with Gaussian latents and Bernoulli
observations, on the binarized EMNIST-Letters and
EMNIST-MNIST datasets [5]

e Compression performance was evaluated on both tests sets

e BB-IS achieves greater rate savings than BB-ELBO in the
setting

Trained on MNIST Letters

Compressing MNIST Letters MNIST Letters

BB-ELBO 0.236 0310 0.257 0.250
BB-IS (N = 5) 0.231 0.289 0249 0.243
BB-IS(N=50) 0.228 0280 0.244 0.239

Savings 3.4% 4.4%

24/27

Polyphonic Music Datasets: BB-SMC for Sequential Data

e We used a chunked version of 4 polyphonic music datasets from
[2] to evaluate the compression performance of BB-SMC on
sequential datasets

25/27

Polyphonic Music Datasets: BB-SMC for Sequential Data

e We used a chunked version of 4 polyphonic music datasets from
[2] to evaluate the compression performance of BB-SMC on
sequential datasets

e Models were based on the variational RNN [4], with Gaussian
latents and Bernoulli observations, and trained following [10]

25/27

Polyphonic Music Datasets: BB-SMC for Sequential Data

e We used a chunked version of 4 polyphonic music datasets from
[2] to evaluate the compression performance of BB-SMC on
sequential datasets

e Models were based on the variational RNN [4], with Gaussian
latents and Bernoulli observations, and trained following [10]

e BB-SMC achieves the best net bitrates (bits/timestep) on all piano
roll test sets.

Musedata Nott. JSB Piano.

BB-ELBO 10.66 587 1253 1143
BB-IS (N = 4) 10.66 4.86 12.03 11.38
BB-SMC (N = 4) 9.58 476 1092 11.20
Savings 10.1% 18.9% 12.8% 2.0%

25/27

Conclusion

e McBits are bits-back coders that exploit the
of tighter variational bounds for better bitrates

26/27

Conclusion

e McBits are bits-back coders that exploit the
of tighter variational bounds for better bitrates

e The initial bit cost of McBits coders scales linearly with particles,
but can be significantly reduced by the extended latents

26/27

Conclusion

e McBits are bits-back coders that exploit the
of tighter variational bounds for better bitrates

e The initial bit cost of McBits coders scales linearly with particles,
but can be significantly reduced by the extended latents

e When parallelizing computation over particles, McBits coders can
achieve better bitrates than BB-ANS with

26/27

Conclusion

McBits are bits-back coders that exploit the
of tighter variational bounds for better bitrates

The initial bit cost of McBits coders scales linearly with particles,
but can be significantly reduced by the extended latents

When parallelizing computation over particles, McBits coders can
achieve better bitrates than BB-ANS with

Experiments indicate that BB-IS enjoys better bitrate savings in
compression settings

26/27

Thank you!

27/27

References i

[4 C.Andrieu, A. Doucet, and R. Holenstein.
Particle Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society: Series B, 72(3):269-342,
2010.

@ N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent.
Modeling temporal dependencies in high-dimensional sequences:
Application to polyphonic music generation and transcription.
arXiv preprint arXiv:1206.6392, 2012.

[3 Y.Burda, R. Grosse, and R. Salakhutdinov.
Importance weighted autoencoders.
arXiv preprint arXiv:1509.00519, 2015.

27/27

References ii

& J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and
Y. Bengio.
A recurrent latent variable model for sequential data.
Advances in Neural Information Processing Systems, 28:2980-2988,
2015.

[4] G.Cohen,S. Afshar, J. Tapson, and A. Van Schaik.
Emnist: Extending mnist to handwritten letters.
In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 2921-2926. IEEE, 2017.

@ C. Cremer, Q. Morris, and D. Duvenaud.
Reinterpreting importance-weighted autoencoders.
arXiv preprint arXiv:1704.02916, 2017.

27/27

References iii

[4 J. Domke and D. R. Sheldon.
Importance weighting and variational inference.

In Advances in Neural Information Processing Systems, pages
4470-4479, 2018.

[4 G.E.Hinton and D. Van Camp.
Keeping the neural networks simple by minimizing the
description length of the weights.
In Proceedings of the sixth annual conference on Computational
Learning Theory, pages 5-13, 1993.

[FH. Kingma, P. Abbeel, and J. Ho.
Bit-swap: Recursive bits-back coding for lossless compression
with hierarchical latent variables.
arXiv preprint arXiv:1905.06845, 2019.

27/27

References iv

[4 C.J.Maddison, J. Lawson, G. Tucker, N. Heess, M. Norouzi,
A. Mnih, A. Doucet, and Y. Teh.
Filtering variational objectives.
In Advances in Neural Information Processing Systems, pages
6573-6583, 2017.

[4 J. Townsend, T. Bird, and D. Barber.
Practical lossless compression with latent variables using bits
back coding.
ICLR, 2019.

27/27

	Background
	Method
	Experiments

	anm0:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

