

FastSpeech: Fast, Robust and Controllable Text to Speech

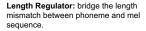
Yi Ren*, Yangjun Ruan*, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, Tie-Yan Liu

Motivation

Due to the long mel-spectrogram sequence and the autoregressive generation, end-to-end TTS models face several challenges:

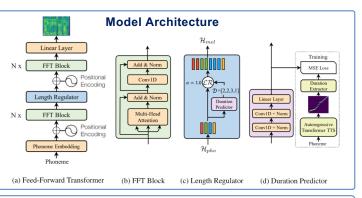
- Slow inference speed for mel-spectrogram generation.
- Synthesized speech is not robust (word skipping and repeating).
- Synthesized speech is lack of controllability.

Our proposed FastSpeech can address the above-mentioned three challenges as follows:


- Greatly speeds up the mel-spectrogram generation (by 270x).
- · Almost eliminate word skipping and repeating.
- · Can adjust voice speed and control part of the prosody.

Our Method

Phoneme-->[Fastspeech] -->Mel-spectrogram -->[Vocoder] -->Voice


Feed-forward transformer: generate mel-spectrogram in parallel both in training and inference.

- FFT (Feed-Forward Transformer) block: basic block from Transformer, stack N layers.
- Replace dense connection with 1D convolution for speech.
- · Share the same model structure between the phoneme and mel side.

Duration Predictor is jointly trained with the FastSpeech model to predict the length of mel-spectrograms for each phoneme with the mean square error (MSE) loss. We extract the ground-truth phoneme duration from an autoregressive teacher TTS model as target.

Experiments

All experiments are conducted on LJSpeech dataset. We randomly split the dataset into 3 sets: 12500 samples for training, 300 samples for validation and 300 samples for testing.

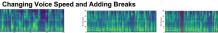
(c) 0.5x Voice Speed

Voice Quality

Method	MOS
GT	$ 4.41 \pm 0.08$
GT (Mel + WaveGlow)	4.00 ± 0.05
Tacotron 2 [22] (Mel + WaveGlow)	3.86 ± 0.05
Merlin [28] (WORLD)	2.40 ± 0.13
Transformer TTS [14] (Mel + WaveGlow)	3.88 ± 0.05
FastSpeech (Mel + WaveGlow)	$ 3.84 \pm 0.08$

Figure 3: The mel-spectrograms of the voice with 1.5x, 1.0x and 0.5x speed respectively. The

input text is "For a while the preacher addresses himself to the congregation at large, who listen


(a) 1.5x Voice Speed (b) 1.0x Voice Speed

attentively

Robustness

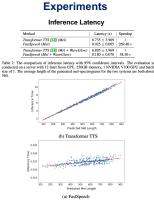

Method	Repeats	I	Skips	I	Error Sentences	ī	Error Rate
Tacotron 2	4	1	11	1	12	ī	24%
Transformer TTS	7		15		17		34%
FastSpeech	0	1	0	1	0	T	0%

Table 3: The comparison of robustness between FastSpeech and other systems on the 50 particularly hard sentences. Each kind of word error is counted at most once per sentence.

(a) Original Mel-spectrograms (b) Mel-spectrograms after adding break

Figure 4: The mel-spectrograms before and after adding breaks between words. The corresponding text is "that he appeared to feel deeply the force of the reverent gendeman's observations, especially when the chapter species, but add breaks after the words "deeply" and "expecially" to improve the prosody. The red boxes in Figure III correspond to the added breaks.

Ablation Studies						
System	CMOS					
FastSpeech	0					
FastSpeech without 1D convolution in FFT block	-0.113					
FastSpeech without sequence-level knowledge distillation	-0.325					

Table 4: CMOS comparison in the ablation studies.

Audio Samples: https://speechresearch .github.io/fastspeech/

taoqin@microsoft.com raveren@ziu.edu.cn xuta@microsoft.com