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Abstract

One previously unexplained observation about numeral sys-
tems is the shared tendency in numeral expressions: Numer-
als greater than 20 often have the larger constituent number
expressed before the smaller constituent number (e.g., twenty-
four as opposed to four-twenty in English), and systems that
originally adopt the reverse order of expression (e.g., four-
and-twenty in Old English) tend to switch order over time. To
explore these phenomena, we propose the view of Rapid In-
formation Gain and contrast it with the established theory of
Uniform Information Density. We compare the two theories
in their ability to explain the shared tendency in the ordering
of numeral expressions around 20. We find that Rapid Infor-
mation Gain accounts for empirical patterns better than the al-
ternative theory, suggesting that there is an emphasis on infor-
mation front-loading as opposed to information smoothing in
the design of large compound numerals. Our work shows that
fine-grained generalizations about numeral systems can be un-
derstood in information-theoretic terms and offers an opportu-
nity to characterize the design principles of lexical compounds
through the lens of informative communication.

Keywords: language universals; numeral system; lexical com-
pound; information theory; informative communication

Number is a fundamental domain of human cogni-
tion (Spelke & Kinzler, 2007), but numeral systems vary sub-
stantially across cultures (Comrie, 2013). For instance, some
cultures in the Amazon lack exact numerals for expressing
numbers beyond 5 (Gordon, 2004; Pica, Lemer, Izard, & De-
haene, 2018). Some languages use body parts to describe
numbers (Comrie, 2013). However, the majority of languages
in the world define numbers precisely and over a large range
through recursive numeral systems (Comrie, 2013). Recent
work has suggested that the diversity of numeral systems is
constrained by the need for efficient communication (Xu &
Regier, 2014; Kemp, Xu, & Regier, 2017). By this account,
numeral systems are designed to facilitate highly informative
communication of numbers, despite their differences in com-
plexity.

The proposal of informative communication helps to ex-
plain why numeral systems vary the way they do, but it
does not directly account for fine-grained generalizations
about numeral expressions. In particular, many languages ex-
press compound numerals by specifying the larger constituent
number first (e.g., twenty-four in English or Mandarin), and
fewer languages express these in the reverse order (e.g., vier-
entwintig in Dutch, interpreted as “four twenty”). Moreover,
numeral systems that originally use the reverse order of ex-
pression (e.g., Old English expresses 24 as four-and-twenty)

tend to switch order over time (Berg & Neubauer, 2014). This
preference of having the larger constituent number expressed
before the smaller constituent number is prevalent in numer-
als for the range above 20 but less prominent for smaller num-
bers (Calude & Verkerk, 2016). Here we ask what principles
might account for this shared tendency in numeral ordering.

This problem has been discussed by Greenberg in his
cross-linguistic generalization about the design of recursive
numerals (Greenberg, 1978). Recursive numeral systems rep-
resent numbers based on the canonical expression x;n* + ... +
xyn+y. Here n is called the base and the values of x;’s and y
are in the range of 1 to the base (Comrie, 2013). For numbers
in the range 1 — 100 in a base-10 system such as English or
Mandarin, xn will be considered the base term (i.e., 10, 20,
.., 90) and y (i.e., 1, 2, ..., 9) will be considered the atom
term. Greenberg observed that if a numeral system has both
atom-base (e.g., fifteen) and base-atom (e.g., twenty-four) or-
derings in its numeral expressions, the system will always
begin with atom-base, and then switch to base-atom at some
number on the number line (Greenberg, 1978). In English
and many other languages, this switch takes place at 20.

Independent work from Hurford has sought to address
this phenomenon in light of the “packing strategy” (Hurford,
2007). According to this proposal, numeral expressions
should allow one to go as far as possible along the number-
line with a given set of terms (Hurford, 2007). This would
imply that terms should be arranged in decreasing order, with
the larger constituents coming first, and it confirms that the
base-atom order should be preferred over the atom-base or-
der. Although this work provides an intuitive theory for the
ordering preference in large numerals, it leaves open two im-
portant questions: 1) why the base-atom order is preferred
across languages for numbers above 20, but this preference
is substantially less for smaller numerals (e.g., 11 to 19), and
similarly, 2) why ordering switch should typically take place
in numerals above 20 and in particular, why it occurs only
in one direction (atom-base—base-atom) but not in the other
(base-atom—atom-base).

We examine the problem of numeral ordering through the
lens of informative communication. Consistent with the
growing literature on this topic, we suggest that language
design is driven by the basic need for efficient communica-
tion (Gibson et al., 2013; Kemp et al., 2017). Extending this
line of research, we propose the view of Rapid Information



Gain (RIG) that focuses on explaining the design of com-
pound numerals, particularly the ordering of constituent ex-
pressions in terms of the need to optimize information flow.
We hypothesize that lexical ordering of a compound numeral
expression should maximize information gain for the listener
in the process of reconstructing the speaker’s intended ref-
erent. We contrast this view with the established theory of
Uniform Information Density (UID) postulating that infor-
mation smoothing should be preferred (instead of information
front-loading) in word ordering in sentences, online (Levy &
Jaeger, 2007) or offline (Maurits, Navarro, & Perfors, 2010).
We show that RIG explains empirical patterns better than UID
in the domain of numerals, and we believe this work has the
potential for developing a domain-general account of the de-
sign principle of lexical compounds.

Two theories of informative communication

We present the numeral ordering problem in a simple commu-
nicative scenario, illustrated in Figure la. Here the speaker
has the target number 85 in mind and wishes to convey that
number to the listener. We consider two possibilities in the or-
dering of constituent expressions of that numeral, using En-
glish as an example: 1) “Eighty-five”, which is the attested
order or base-atom; 2) “Five-eighty”, which is the alternate
order, or atom-base in this case. The problem is to deter-
mine which order should be generally preferred in natural lan-
guages and in what range of the number line this preference
might be most prominent.

We postulate that the preferred numeral order should tend
to minimize the listener’s uncertainty in reconstructing the
target number as the speaker’s utterance is processed. We
consider how uncertainty arises over time in the listener’s
mind as the constituent expressions are uttered sequentially
by the speaker. Based on the ordering of “eighty-five”, upon
hearing the first constituent “eighty”, the listener would con-
sider numbers in the range 80-89 as possible candidates for
the target, because numerals for numbers within that range
all begin with the same constituent. In this case, uncertainty
depends on the probability ratio between the actual target and
the candidate set. Based on the ordering of “five-eighty”,
upon hearing the alternative first constituent “five”, the lis-
tener would instead consider numerals that begin with “five”
(e.g., 5, 15, ..., 85, 95) as the candidate set for the target. We
illustrate these alternative candidate sets in Figure 1a.

We consider two alternative theories that quantify uncer-
tainty given choices of numeral ordering based on Shannon’s
information theory (Shannon, 1948). The first view is based
on Uniform Information Density (Levy & Jaeger, 2007),
which predicts that uncertainty incurred should be as smooth
as possible. This view suggests that the listener would experi-
ence a uniform information flow as a compound expression is
uttered. We propose a second view, Rapid Information Gain,
that makes the alternative prediction. We hypothesize that the
preferred order in compound numerals should tend to front-
load information as opposed to smoothing information, such
that uncertainty in the listener can be reduced as quickly as

possible. We illustrate the predicted uncertainty profile from
each theory in Figure 1b. As we show later, the property of
information front-loading is more salient in the ordering of
larger numbers (>20) than in the case of smaller numbers,
which explains why the cross-linguistic preference and the or-
dering switch toward base-atom expressions are stronger for
larger numbers. We now describe the details of each theory.
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Figure 1: Illustration of the numeral ordering problem and
the two theoretical proposals of informative communication.

Uniform Information Density (UID). Following Shannon
(1948), we define uncertainty by surprisal or negative log
probability —logs(p(+)) = logz(ﬁ). We define the informa-
tion content of a compound linguistic expression by the sum
of surprisals from its sequential constituents, following the



formulation of UID (Levy & Jaeger, 2007). The cumulative
information conveyed by an expression U with n constituents
wi...w, in reference to a target ¢ is the following:
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In the case of two-constituent numeral expressions such
as twenty-four (i.e., base constituent and atom constituent),
this formulation effectively captures the information flow of
a compound numeral as it is processed incrementally in terms
of its constituent expressions:
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Cumulative surprisal defined in Equation 1 can thus be sim-
plified to
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As such, the cumulative surprisal of hearing “twenty-four”
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Empirical studies of UID typically focus on speaker infor-
mation modulation given the predictability of different units.
This would involve measuring information-theoretic entropy
rather than surprisal formulated here. However, the UID prin-
ciple implies that the flow of information to follow a uniform
trajectory in cumulative surprisal, and we test the applicabil-
ity of this proposal in the case of numeral ordering.

More specifically, UID suggests an even distribution of in-
formation (in the design of compound numerals), such that
the amount of information conveyed in the sequence of con-
stituents should be identical. This predicts that if the speaker
has alternative ways of ordering a numeral expression, she
should choose the order in which information is distributed
more evenly. Here we are interested in the cost of a numeral
order versus its reverse order, and we quantify cost by mea-
suring how a numeral order deviates from the theoretical UID
information flow. Prior work has taken a similar approach to
examine whether UID predicts preferred word orders (e.g.,
subject-verb-object) across languages (Maurits et al., 2010).
In that work, deviation from UID is defined by the percentage
deviation from the theoretical UID information flow. Abbre-
viating the components of the information flow in Equation 2
by Iy = logz(ﬁ), L= logz(m) ..., we measure the de-
viation from UID following Maurits et al. (2010):
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Here n is the phrase length of an expression (Maurits et al.,
2010). In our work, we use the same formula to quantify how

the design of a numeral expression deviates from UID. Con-
cretely, we consider n = 2 because each compound numeral
expression that we use for analyses has two constituents. We
also know that I = 0 since full certainty is obtained after the
second (or last) constituent of a numeral is uttered. UID pre-
dicts a linear relationship between information content and
number of constituents. If UID explains the shared tendency
in numeral ordering across languages, we should expect the
attested numeral order to yield a smaller deviation from the
linear information profile than the alternate order, more so for
the numerical range above 20 than the range under 20.

Rapid Information Gain (RIG). We propose an alterna-
tive theory for numeral ordering based on rapid information
gain. We postulate that the ordering of numerals should facili-
tate quick delivery of information to the listener, such that the
constituent expression that contains more information should
be arranged prior to the constituent that contains less infor-
mation. This notion of rapid information gain is related to
work on optimal data selection. For instance, when perform-
ing a series of tasks, optimal data selection implies that peo-
ple should order the tasks so that they gain the most infor-
mation possible at each step (Oaksford & Chater, 2003). We
believe that similar principles apply to the design of numer-
als. Our proposal is not equivalent to the claim that the larger
numeral should always precede the smaller numeral in a com-
pound (Hurford, 2007; Berg & Neubauer, 2014). Instead, it
suggests that the ordering of constituent numerals depends on
the amount of information they convey, as opposed to their
magnitudes per se. We demonstrate later that our proposal
correctly predicts information front-loading to be more criti-
cal for high-order numbers than low-order numbers, an aspect
that could not be explained fully by a magnitude account that
always predicts the larger numeral to be expressed first in a
compound numeral.

We evaluate our proposal by measuring the cumulative sur-
prisal of a numeral expression over its constituents:

c= ZI,» ®)

This formulation is the same as Equation 3, and we con-
sider n =2 and since I, = 0, ¢ = Iy + I;. The RIG theory pre-
dicts an elbow-like information profile which differs from the
linear profile predicted by UID (see illustrations of the two
theoretical information flows in Figure 1b). We expect that
a lower cumulative surprisal should generally be preferred as
a consequence of rapid information gain. More specifically,
the attested numeral order should yield a lower cumulative
surprisal than the alternate order when there is a strong prefer-
ence toward the attested order (e.g., for numbers >20), but the
two possible orders might yield similar cuamulative surprisals
when there is greater flexibility in the ordering conventions
of numerals across languages (e.g., for numbers <20).



Materials and methods

To facilitate the information analyses and evaluation of the
two theories, we collected numeral frequencies for estimating
surprisals along with cross-linguistic numeral data.

Numeral frequencies. We estimated probabilities of the
number terms for the range 1-100 (following Xu & Regier,
2014) in 8 different languages: English, French, German,
Hebrew, Italian, Mandarin, Russian, and Spanish. We
collected these frequency data from the Google Ngrams cor-
pora (Michel et al., 2011) by averaging numeral frequencies
from 1900 to 2000. We used part-of-speech tags for numerals
in the corpus if those were available for a given language.
For each language, we queried frequencies of numeral
terms from a standard set of numeral expressions (data from
www.sf.airnet.ne.jp/ts/language/number.html).
When multiple expressions were available for a numeral,
we took the most frequent expression. The frequencies of
the numerals for each of the languages were normalized to
probabilities so that they sum to 1.

Calculation of surprisals. To calculate surprisals, we
decomposed a numeral expression into two separate con-
stituents, atom and base, while ignoring connectives such as
hyphens, e.g., “twenty-one” — [“twenty”, “one”]. Although
it is possible to split some terms into multiple constituents,
e.g. “quatre-vingts huit” (4x20+8=88) — [“quatre”, “vingts”,
“huit”’] ([4, 20, 8]), we chose to split only along additive terms
for consistency. We did not choose to treat suffixes as separate
constituents. We calculated the surprisal based on each con-
stituent expression, where surprisal is the negative log prob-
ability of the target number being correctly inferred from the
set of candidate targets. Finally, for each numeral expression
we computed the deviation from UID according to Equation
4 and the cumulative surprisal for RIG according to Equation
5.

Cross-linguistic numeral data. We tested the theories
against numeral data collected from 334 languages in 53
listed language families sampled from Numeral Systems of
the World’s Languages (Comrie & Chan, 2018). We sampled
languages evenly from each family whenever possible, taking
10 from each family, or if 10 were not available, taking the
maximum number possible. This was so that language fami-
lies with a large number of languages such as Indo-European
or Sino-Tibetian did not bias the sample. For each language,
we recorded the attested orders in the numeral expressions,
atom-base or base-atom, for the numerical ranges of 11-19
and 21-29 (chosen to be symmetric about 20 where order
switch most commonly takes place). If a language did not
have sufficient data for the numerical ranges, we would ex-
clude that language and sample other languages from the fam-
ily until 10 or the maximum possible number were collected.

Results
Empirical patterns in the ordering of numerals. We first
present cross-linguistic tendencies and switches in “atom-
base” and “base-atom” ordering of numeral expressions in the

sample of 334 languages that we considered. Table 1 summa-
rizes the cross-linguistic occurrences for these orders in the
numerical ranges 11-19 and 21-29. If the atom-base order-
ing was used for at least one term in 11-19 in a language,
we considered that language as having an atom-base ordering
in that range. We observed that the base-atom order is at-
tested in more than 96% of the languages for the range 21-29,
whereas this order is attested much less commonly in about
76% of the languages for the lower range 11-19. This find-
ing confirms descriptive generalizations from previous work
(e.g., Greenberg, 1978) and indicates an asymmetric prefer-
ence toward base-atom ordering in larger numerals, and more
flexibility in the ordering of smaller numerals.

Table 2 confirms that the same asymmetric preference ap-
plies to switches in the ordering of numerals. In particular,
out of all languages that were attested to have switched order
in numeral expressions, switch took place exclusively in the
direction atom-base — base-atom but not in the opposite di-
rection. Moreover, out of the 63 languages that use the atom-
base order for expressing the numerical range 11-19, 52 (or
~83%) switch the order to base-atom but only for numerals
expressing the range 21-29. Together, these empirical data
suggest that preference toward the base-atom order is more
prominent in larger but not smaller numerals.

Numeral frequencies across languages. Figure 2 sum-
marizes the meta-mean and language-specific probabilities
of numerals, estimated from the corpus-based frequencies
over the past 200 years. These probability profiles show
a consistent near-logarithmic decay that confirms previous
findings in cross-linguistic numeral and digit-based frequen-
cies (Greenberg, 1978; Calude & Verkerk, 2016): Numerals
in the lower numerical range tend to be referred to more fre-
quently than numerals in the higher range. We used these
probabilities for surprisal calculations for the two theories.

Table 1: Ordering conventions in numerals across languages.

Number of languages | Range 11-19 | Range 21-29
atom-base ordering 63 11
base-atom ordering 271 323

Table 2: Switch in numeral ordering conventions. For each
language, the original numeral order is the same as that in the
lower range 11-19, and ordering switch is attested in numerals
for the upper range 21-29.

Number of languages | No switch | Switched
atom-base — base-atom 11 52
base-atom — atom-base 271 0

Evaluation of the two theories. We evaluated UID and
RIG by first considering a “template” language that reflects
the cross-linguistic tendency in numeral ordering we and
other scholars have observed: Atom-base order in numerals
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Figure 2: Numeral frequencies across 8 languages.

for the range 11-19, and base-atom order in numerals for the
range above 20. An ideal theory should explain 1) why there
is a strong preference for the attested base-atom order over
the alternate atom-base order in the upper numerical range;
2) why this preference between the attested and alternate or-
ders is much weaker in the lower range. As such, we expected
a greater discrepancy in the attested and alternate orders for
the theoretically predicted information profile we described
(e.g., under UID or RIG), and a substantially smaller discrep-
ancy in these orders for the same measure of information. To
test these ideas, we calculated the information profile for each
of the numerals within the range 1-100 based on the mean
numeral probabilities we had obtained. We performed these
calculations for both the attested order and the alternate order,
resulting in two sets of measures for UID deviation and two
sets of measures for RIG cumulative surprisal.

Figure 3 (a) and (d) summarize the results. At the broad
level, both UID and RIG identify the attested order to be
closer to their theoretical information profiles than the alter-
nate order. However, a closer examination of these results
reveals variation in the precision of these theories. For the
numerical range beyond 20, UID shows an ambivalent pref-
erence toward the base-atom order over the atom-base order,
manifested in the noisy deviation scores between the two or-
derings. In contrast, RIG provides a clearer advantage of the
base-atom order over the atom-base order for numerals in the
same range, indicating that there is a dominance toward the
first order as predicted by this theory. Moreover, for numer-
als in the range 11-19, UID shows a strong support for the
base-atom order, but RIG shows that both orderings render
roughly equal cumulative surprisals—this suggests that infor-
mation front-loading is less relevant to ordering variation in
this lower numerical range.

To further examine the precision of the two theories, we ex-
amined their predictions for two sample languages, English
and Mandarin. For these cases, we used language-specific
numeral probabilities for calculations of UID deviation and

RIG cumulative surprisals. Figure 3 shows that the results for
these individual languages are consistent with our findings
with the template language, such that RIG provides a more
precise explanation for the asymmetric preference in ordering
of larger and smaller numerals. Figure 4 illustrates the infor-
mation profiles in the attested and alternate orders with two
example numerals, fiffeen and twenty-four in English, along
with the theoretical predictions from UID. In both cases, the
attested order shows an elbow-like information profile that
deviates from the ideal linear profile of UID, providing evi-
dence against the idea that numerals are designed under the
criterion of information smoothing. Importantly, the informa-
tion profile under the alternate order for fiffeen—a low-order
numeral—is almost identical to the elbow-like profile under
the attested order, reflecting the fact that information front-
loading is insensitive to ordering of numerals in this range. It
is worth noting that both alternate and attested profiles deviate
from the UID prediction. In addition, for twenty-four, the al-
ternate order produces an information profile that approaches
the UID prediction. This profile yields a cumulative surprisal
higher than the attested order, suggesting information front-
loading is desirable for larger numerals in English.

As a final analysis, we examined whether the preferred or-
dering switch from atom-base to base-atom can be explained
away by the theory of RIG. In particular, we performed a fo-
cused analysis that compares cumulative surprisal between
these two orders for the numerical ranges 11-19 and 21-29
respectively. We expected that the cumulative surprisal might
be comparable under the two orders for the smaller range, but
substantially discrepant for the larger range, which would ex-
plain why switching of order tends to occur beyond 20 and
only in the atom-base — base-atom direction.

For each of the numerical range in question, we conducted
a permutation test that shuffles the numeral expressions be-
tween the base-atom and atom-base orders. We then repeated
the shuffle 100,000 times and for each repetition, calculated
the mean difference in cumulative surprisal between the two
orders. This effectively helped construct the null hypothesis
that there should be no between-order difference in cumula-
tive surprisal. We also calculated the same quantities for the
unshuffled data, and compared those against the null distribu-
tions for the two numerical ranges of interest. Figure 5 shows
that there is no statistical significance (p = 0.56) to reject the
null for the range 11-19, but there is high statistical signifi-
cance (p < 0.004) in rejecting the null for the range 21-29.
These results provide evidence for the idea that information
front-loading is equally prominent under atom-base or base-
atom orderings for smaller numerals, but it is more promi-
nently represented in the base-atom order as opposed to the
atom-base for larger numerals. Possibly due to this reason,
historical changes in ordering convention of numerals tend to
occur uni-directionally beyond but not below 20.

Discussion
We investigated two theories for explaining the shared ten-
dency in the ordering of numeral expressions. We found that
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Figure 4: Information flows under alternative orders of ex-
pression for English numerals 15 and 24. The attested or-
der for 15 is atom-base (“fifteen”), and the alternate order is
base-atom (“teenfif”’). The attested order for 24 is base-atom
(“twenty-four”), and the alternate order is atom-base (“four-
twenty”). “UID” refers to the UID theoretical prediction.

the proposal of rapid information gain provides a better ac-
count for the empirical data across languages than the ex-
isting theory of uniform information density. Our findings
suggest that the dominant preference toward the base-atom
ordering in larger numerals reflects the need for informa-
tion front-loading as opposed to information smoothing, and
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Figure 5: Permuted surprisals with attested ones marked.

greater flexibility in the ordering of smaller numerals is ex-
plained partly by the fact that information flow is less affected
by ordering conventions in numerals for the lower range. Our
study differs from existing research in UID that focuses on
information processing at the sentence level. Our emphasis is
to characterize the design principles of complex lexical items,
particularly compounds. This difference in the level of anal-
ysis might provide one explanation as to why UID does not
predict as well in the current study. An alternative possibility
is that the domain of numerals has characteristics that make
a uniform information flow less desirable than information
front-loading. Future research should delineate when UID
might apply and when alternative principles such as RIG are
more appropriate. It is also worth exploring whether the RIG
principle can be applied to compounds in other domains.
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