
Technical notes on information theory

Yang Xu

Information theory provides a mathematical foundation for the quantification, compression and
transmission of information. This note summarizes a core set of concepts concerning entropy - a
measure for information, or uncertainty, that is central to the work pioneered by Shannon (1948).

1. Bit

Bit is a unit of information. 1 bit refers to the amount of information that one is uncertain
about in a binary random variable that takes the value of either 0 or 1 with equal probability.

2. Surprisal

Surprisal (s) quantifies the uncertainty in a random variable X taking a certain value x based
on its probability of occurrence p(X = x) or p(x). Surprisal is measured in bits when the
base of the logarithm is 2.

s(x) = log2
1

p(x)
= − log2 p(x). (1)

Due to the logarithmic transformation, surprisal decreases monotonically as probability in-
creases. Figure 1 illustrates this relationship. An event with zero probability would have an
infinite level of surprisal, because one would be maximally uncertain about the outcome of this
event (and consequentially, one would be completely surprised). An event with probability
of 0.5, e.g. a fair coin toss, would have a surprisal value of 1 bit, indicated by the blue lines.
A sure event would have a surprisal of 0 as indicated by the green lines, because (intuitively)
the outcome would always be within one’s expectation, hence entailing no surprise.
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Figure 1: Surprisal vs. probability.
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3. Entropy

Entropy H(·) for a random variable X is the expected or average surprisal based on its
probability distribution. Entropy is measured in bits when the base of the logarithm is 2.

H(X) =
∑
x

p(x)s(x) =
∑
x

p(x) log2
1

p(x)
= −

∑
x

p(x) log2 p(x). (2)

For example, the random variable that determines whether a coin shows up heads or tails in
a given toss has the entropy:

H(X) = p(head) log2
1

p(head)
+ p(tail) log2

1

p(tail)
. (3)

For a fair coin, the entropy would be 0.5 log2
1
0.5 + 0.5 log2

1
0.5 = 1 bit. It is easy to show, e.g.

by simulation, that entropy is maximal when the outcomes are equally probable.

4*. Source coding theorem

It is impossible to compress an input variable (or a data source) at a rate less than its entropy
without any loss of information.

5. Joint entropy

Joint entropy of two discrete variables X and Y (swap sums with integrals for continuous
variables) is the total amount of uncertainty in the outcomes of these events:

H(X,Y ) = −
∑
x,y

p(x, y) log2 p(x, y). (4)

Pictorically, the joint entropy is the union of areas covered by the two circles (i.e. the entropies
of two individual variables) in Figure 2.
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Figure 2: Illustration of entropy, joint entropy, conditional entropy, and mutual information.
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6. Conditional entropy

Conditional entropy H(X|Y ) is the amount of uncertainty in X given what one knows about
Y , and vice versa for H(Y |X):

H(X|Y ) = −
∑
x,y

p(x, y) log2 p(x|y); (5)

H(Y |X) = −
∑
x,y

p(x, y) log2 p(y|x). (6)

Pictorially, H(X|Y ) is equivalent to the area occupied by H(X,Y ) (i.e. joint entropy of X
and Y ) with the area under H(Y ) excluded in Figure 2, and similarly, H(Y |X) is equivalent
to the area under H(X,Y ) with the area under H(X) subtracted. Thus, the conditional
entropies can be also formulated in terms of the joint and individual entropies:

H(X|Y ) = H(X,Y )−H(Y ); (7)

H(Y |X) = H(X,Y )−H(X). (8)

7. Mutual information

Mutual information (MI) I(·; ·) between two variables X and Y quantifies the amount of
information that is “shared” between the variables, or the degree of dependence between two
variables. Pictorially, MI is the area where H(X) and H(Y ) overlap in Figure 2. Thus MI
can be calculated in multiple ways:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (9)

= H(X) +H(Y )−H(X,Y ) = H(X,Y )−H(X|Y )−H(Y |X)

=
∑
x,y

p(x, y) log2
p(x, y)

p(x)p(y)
.

When two variables are independent, their mutual information is 0 since p(x, y) = p(x)p(y).

8. Kullback-Leibler divergence

Kullback-Leibler divergence, or KL divergence, measures the relative entropy or divergence
between two probability distributions:

KL(Px||Py) =
∑
i

px(i) log
px(i)

py(i)
. (10)

It is an asymmetric measure such that KL(Px||Py) 6= KL(Py||Px). It is also not hard to show,
by comparing Equations 9 and 10, that mutual information between X and Y is equivalent to
the KL divergence (when the base of the logarithm is 2): I(X;Y ) = KL(p(x, y)||p(x)p(y)).
This equivalence provides the interpretation that mutual information measures the divergence
between the joint probability and the product of the marginal probablities of two variables.

9*. Channel capacity (noisy-channel coding theorem)

The channel capacity C is defined as the maximal amount of information that can be trans-
mitted between an input X and an output Y , namely the supremum of mutual information
between the two variables considering all possible values of the input:

C = supp(x)I(X;Y ). (11)
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10*. Maximum entropy principle

The maximum entropy principle (Jaynes, 1957) provides a bridge between information theory
and probability theory. It states that given certain a priori knowledge, the distribution that
best represents the state of knowledge is the one with maximal entropy. As such, this principle
explains why certain probability distributions take the forms they do. Below are two examples.

Case 1: Uniform distribution (discrete)
It can be shown that a uniform distribution maximizes the entropy of a probability distribution
P (X) subject to no more prior knowledge than that the probability masses need to sum to
1. This can be formulated in terms of a Langrange function L(·) as follows:

L(X,λ) = H(X) + λ(
∑
x

P (X = x)− 1) = −
∑
x

p(x) log p(x) + λ(
∑
x

p(x)− 1). (12)

Maximizing this function involves setting derivatives with respect to probability of each value
of x = x′, i.e. p(x′), to 0, and similarly with respect to the Langrange multiplier λ:

∂L
∂p(x′)

= − log p(x′)− 1 + λ = 0 , ∀x′; (13)

∂L
∂λ

=
∑
x

p(x)− 1 = 0. (14)

Equation 13 suggests that p(x′) = eλ−1, ∀x′, hence p(x) = 1
N (N is the total number of

possible values of x) is a probability distribution that satisfies the a priori constraint and
maximizes the uncertainty under that constraint.

Case 2: Gaussian distribution (continuous)
It can be shown that a Gaussian distribution maximizes the entropy of a probability distri-
bution f(x) subject to the prior knowledge that 1) the probability distribution sums to 1; 2)
the mean of the distribution is µ; 3) the variance of the distribution is σ2. These constraints
can be formulated with Langrange multiples λ0, λ1, and λ2:

L(X,λ0, λ1, λ2) = H(X) +λ0(

∫
x
f(x)dx− 1) +λ1(

∫
x
xf(x)dx) +λ2(

∫
x
x2f(x)dx−σ2). (15)

Maximizing this Langrange function (by setting the partial derivatives to 0) would yield a
Gaussian distribution, although we omit the details here because the derivation is beyond the
scope of the course. The constraints on mean and variance are a special case of constraints
on N orders of moments (M) of a distribution, where the generalized Langrangian is:

L(X, {λ0, λ1, ..., λN}) = H(X) +

N∑
i=0

λi(

∫
x
gi(x)f(x)dx−Mi). (16)

Here gi(x) is a polynomial function of order i, e.g. g2(x) = x2. It can be shown that a general
solution to the maximum entropy distribution is (Z(λ) is the normalizing constant):

f(x) = Z(λ)e
∑N

i=1 λigi(x). (17)
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